Parallel Convolutional Neural Network Based on Multi-Band Brain Networks for EEG Classification

To increase the classification accuracy of the mental tasks with speech imagery, a parallel convolutional neural network based on multi-band brain networks (MBBN-PCNN) is proposed. In this model, the hybrid experimental paradigm of motor imagery and speech imagery proposed in our previous studies is...

Full description

Saved in:
Bibliographic Details
Published in2022 5th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE) pp. 49 - 53
Main Authors Wang, Jing, Wang, Li
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.04.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To increase the classification accuracy of the mental tasks with speech imagery, a parallel convolutional neural network based on multi-band brain networks (MBBN-PCNN) is proposed. In this model, the hybrid experimental paradigm of motor imagery and speech imagery proposed in our previous studies is used. To acquire richer information in the frequency domain, the electroencephalography (EEG) signals are divided into 3 frequency bands, which are filtered with different frequency ranges for mu(8-12Hz), beta1(13-20Hz), and beta2(21- 30Hz) respectively. By calculating the correlation coefficient and phase- locked value (PLV) of each waveform to construct the brain network, the synchronization and correlation of EEG signals from different channels can be analyzed more effectively. Afterward, to realize the classification of different imagined EEG signals, the generated two-dimensional grayscale maps are fed into our parallel CNN model. The results show that the average classification accuracy of our proposed algorithm is 81.58% for 10 subjects. Compared with brain networks constructed with a single frequency band, multi-band brain networks have higher classification accuracy with the combination of multidimensional features.
AbstractList To increase the classification accuracy of the mental tasks with speech imagery, a parallel convolutional neural network based on multi-band brain networks (MBBN-PCNN) is proposed. In this model, the hybrid experimental paradigm of motor imagery and speech imagery proposed in our previous studies is used. To acquire richer information in the frequency domain, the electroencephalography (EEG) signals are divided into 3 frequency bands, which are filtered with different frequency ranges for mu(8-12Hz), beta1(13-20Hz), and beta2(21- 30Hz) respectively. By calculating the correlation coefficient and phase- locked value (PLV) of each waveform to construct the brain network, the synchronization and correlation of EEG signals from different channels can be analyzed more effectively. Afterward, to realize the classification of different imagined EEG signals, the generated two-dimensional grayscale maps are fed into our parallel CNN model. The results show that the average classification accuracy of our proposed algorithm is 81.58% for 10 subjects. Compared with brain networks constructed with a single frequency band, multi-band brain networks have higher classification accuracy with the combination of multidimensional features.
Author Wang, Jing
Wang, Li
Author_xml – sequence: 1
  givenname: Jing
  surname: Wang
  fullname: Wang, Jing
  email: qingqingwaoo@163.com
  organization: Guangzhou University Guangzhou,School of Mechanical and Electric Engineering,China
– sequence: 2
  givenname: Li
  surname: Wang
  fullname: Wang, Li
  email: wangli@gzhu.edu.cn
  organization: Guangzhou University Guangzhou,School of Mechanical and Electric Engineering,China
BookMark eNo1zMtKAzEUgOEIutDaJxAkLzA1J_cs22GsQquCuh5OOwkEYyKZqeLbi7fVt_n5z8hxLtkTcglsAcDc1bLbto-dUsrwBWecLxhjoI_I3BkLWitppZHulPQPWDEln2hb8ntJhymWjIne-UP9Yfoo9YWucPQDLZluD2mKzQrzQFcVY_4vRhpKpV23pm3CcYwh7vF7dU5OAqbRz_-ckefr7qm9aTb369t2uWkigJ0aoQG1ACed1kHZQRoUwjAObPAh8KB3VukAoHZ7YxCc4JI7G0xwlgcmjZiRi99v9N73bzW-Yv3snZNWMCm-AF3NUWg
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/AEMCSE55572.2022.00016
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665484749
1665484748
EndPage 53
ExternalDocumentID 9948304
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i118t-361a63194966f58d47a3370210deff2f6b856f115bc77a19324298f7f982f0473
IEDL.DBID RIE
IngestDate Thu Jan 18 11:14:54 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-361a63194966f58d47a3370210deff2f6b856f115bc77a19324298f7f982f0473
PageCount 5
ParticipantIDs ieee_primary_9948304
PublicationCentury 2000
PublicationDate 2022-April
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-April
PublicationDecade 2020
PublicationTitle 2022 5th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE)
PublicationTitleAbbrev AEMCSE
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7927876
Snippet To increase the classification accuracy of the mental tasks with speech imagery, a parallel convolutional neural network based on multi-band brain networks...
SourceID ieee
SourceType Publisher
StartPage 49
SubjectTerms Brain modeling
Brain network
Classification algorithms
Correlation
Correlation coefficient
Electroencephalogram
Electroencephalography
Frequency conversion
Frequency-domain analysis
Multi-band
parallel convolutional Neural Network
Title Parallel Convolutional Neural Network Based on Multi-Band Brain Networks for EEG Classification
URI https://ieeexplore.ieee.org/document/9948304
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSgMxFA21K1cqrfgmC5emr7yXtkwtQqWghe5KJg8Qy1Tq1IVf701mqiIuXM0wBDLkJNxzZ-65B6FrYAAiaGOIZ4ESRoUnynhHmA9BU6AEjkXt8PRBTObsfsEXDXTzpYXx3qfiM9-Jt-lfvlvbbfxU1tWaKRqbf-5B4lZptWrRb7-nu7fZdPSYcc5lFFgNUiPOaGP-wzUlBY3xAZrupqtqRV462zLv2I9fnRj_-z6HqP0tz8Ozr8BzhBq-aKHlzGyiL8oKw6j3ekOZFY7dN9IllXvjIUQth9cFTspbMjSFw8NoE7Eb8YaBxuIsu8PJLzNWEiXw2mg-zp5GE1K7J5BnSBpKQkXfCDhgDBKawJVj0lAqY4rnAIdBELkCmIAQ5lZKE3kchCYVZNBqEHpM0mPULNaFP0E4eMW4U1ZYmjNIxbX03HLXt9QAPzL0FLXi4ixfqwYZy3pdzv5-fI72IzxV-csFapabrb-EyF7mVwnST-uupTA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5jHvSk4sTf5uDR7FeSJj260Tl1HQM32K2kTQLi6GR2HvzrfUm7KeLBU0sJpOQlfN9r3_c-hG6AAQQ2VIoYZilhNDBEKqMJM9aGFCiBZk47HI-D4Yw9zvm8hm63WhhjjC8-M0136__l62W2dp_KWmHIJHXNP3cA93mnVGtVst9OO2zdRXH_OeKcCyex6vpWnM7I_IdvioeNwT6KNxOW1SKvzXWRNrPPX70Y__tGB6jxLdDDky30HKKayY9QMlEr54yywDDqo9pSaoFd_w1_8QXfuAe4pfEyx157S3oq17jnjCI2I94xEFkcRffYO2a6WiIfvgaaDaJpf0gq_wTyAmlDQWjQUQEcMQYpjeVSM6EoFS7J0xCJrg1SCYECSphmQijH5ACcpBU2lF3bZoIeo3q-zM0JwtZIxrXMgoymDJLxUBiecd3JqAKGpOgpOnKLk7yVLTKSal3O_n58jXaH03iUjB7GT-doz4WqLIa5QPVitTaXgPNFeuXD-wW6Lqh5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+5th+International+Conference+on+Advanced+Electronic+Materials%2C+Computers+and+Software+Engineering+%28AEMCSE%29&rft.atitle=Parallel+Convolutional+Neural+Network+Based+on+Multi-Band+Brain+Networks+for+EEG+Classification&rft.au=Wang%2C+Jing&rft.au=Wang%2C+Li&rft.date=2022-04-01&rft.pub=IEEE&rft.spage=49&rft.epage=53&rft_id=info:doi/10.1109%2FAEMCSE55572.2022.00016&rft.externalDocID=9948304