Framework for Detecting Fake Retweets Using Deep Neural Network

Social networking has been increasingly popular in recent years. For news, chatting, entertainment, and other reasons, the majority of people are linked to social media. On social media, misinformation, false data, and conspiracy theories might rapidly spread. A "trending subject" or simpl...

Full description

Saved in:
Bibliographic Details
Published in2022 IEEE 7th International conference for Convergence in Technology (I2CT) pp. 1 - 6
Main Authors Dinesh Hegde, Sampad, Shetty, Akhilesh, Manoj, NM, Kalasad, Abhigna, Bharathi, R
Format Conference Proceeding
LanguageEnglish
Published IEEE 07.04.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Social networking has been increasingly popular in recent years. For news, chatting, entertainment, and other reasons, the majority of people are linked to social media. On social media, misinformation, false data, and conspiracy theories might rapidly spread. A "trending subject" or simply a "trend" on Twitter, for example, is a term, phrase, or topic that receives more attention than others. Retweets help to increase the number of people who see a tweet. Fresh tweets with hashtags related to a trending topic are added to a list of trending tweets to boost the trend's popularity. A classifier employing topic modelling and deep neural networks is established to determine whether these retweets are genuine or related. Deep learning techniques have recently been observed to be useful in the field of natural language processing. Two different frameworks are established namely LDA and Fully Connected Neural Network (FCNN-LDA), and the other one is bag of words and Bidirectional- Long Short Term Memory (Bi-LSTM-BoW). On the validation dataset, the hybrid classifier framework combining both LDA and Fully Connected Neural Network (FCNN-LDA)produced the best results, with 91.8 percent accuracy. The results reveal that the proposed classification system effectively distinguishes tweets and retweets as fake or authentic.
AbstractList Social networking has been increasingly popular in recent years. For news, chatting, entertainment, and other reasons, the majority of people are linked to social media. On social media, misinformation, false data, and conspiracy theories might rapidly spread. A "trending subject" or simply a "trend" on Twitter, for example, is a term, phrase, or topic that receives more attention than others. Retweets help to increase the number of people who see a tweet. Fresh tweets with hashtags related to a trending topic are added to a list of trending tweets to boost the trend's popularity. A classifier employing topic modelling and deep neural networks is established to determine whether these retweets are genuine or related. Deep learning techniques have recently been observed to be useful in the field of natural language processing. Two different frameworks are established namely LDA and Fully Connected Neural Network (FCNN-LDA), and the other one is bag of words and Bidirectional- Long Short Term Memory (Bi-LSTM-BoW). On the validation dataset, the hybrid classifier framework combining both LDA and Fully Connected Neural Network (FCNN-LDA)produced the best results, with 91.8 percent accuracy. The results reveal that the proposed classification system effectively distinguishes tweets and retweets as fake or authentic.
Author Manoj, NM
Bharathi, R
Dinesh Hegde, Sampad
Shetty, Akhilesh
Kalasad, Abhigna
Author_xml – sequence: 1
  givenname: Sampad
  surname: Dinesh Hegde
  fullname: Dinesh Hegde, Sampad
  email: sampadhegde@gmail.com
  organization: PES University,Bangalore,India
– sequence: 2
  givenname: Akhilesh
  surname: Shetty
  fullname: Shetty, Akhilesh
  email: shettyakhilesh1505@gmail.com
  organization: PES University,Bangalore,India
– sequence: 3
  givenname: NM
  surname: Manoj
  fullname: Manoj, NM
  email: manoj.nm2000@gmail.com
  organization: PES University,Bangalore,India
– sequence: 4
  givenname: Abhigna
  surname: Kalasad
  fullname: Kalasad, Abhigna
  email: abhignakalasad@gmail.com
  organization: PES University,Bangalore,India
– sequence: 5
  givenname: R
  surname: Bharathi
  fullname: Bharathi, R
  email: rbharathi@pes.edu
  organization: PES University,Bangalore,India
BookMark eNotj1FLwzAUhSPog5v-AkHyB1pzb9IsfRLprA6Gg7E9j9v2Rsq2dqSR4b-3wz198ME5hzMRt13fsRDPoFIAlb8ssNhkBnNIUSGmuUOjrbkRE7B29GAd3IvXMtCRz33YS98HOefIdWy7b1nSnuWa45k5DnI7XNyc-SS_-CfQYUS8pB7EnafDwI9XTsW2fN8Un8ly9bEo3pZJC-Biosc9PzPI3pDStTJQ-Rm6hsEaJEfeGEDHDTbaeltTbSvCLIO8caoyGeipePrvbZl5dwrtkcLv7vpJ_wGEaEXC
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/I2CT54291.2022.9824364
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1665421681
9781665421683
9781665421669
1665421665
EndPage 6
ExternalDocumentID 9824364
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i118t-3421f742ef4a03c041bf728de1642a8af44128ed2d36f6cac6ba25519d80b4513
IEDL.DBID RIE
IngestDate Thu Jun 29 18:36:45 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-3421f742ef4a03c041bf728de1642a8af44128ed2d36f6cac6ba25519d80b4513
PageCount 6
ParticipantIDs ieee_primary_9824364
PublicationCentury 2000
PublicationDate 2022-April-7
PublicationDateYYYYMMDD 2022-04-07
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-April-7
  day: 07
PublicationDecade 2020
PublicationTitle 2022 IEEE 7th International conference for Convergence in Technology (I2CT)
PublicationTitleAbbrev I2CT
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.807762
Snippet Social networking has been increasingly popular in recent years. For news, chatting, entertainment, and other reasons, the majority of people are linked to...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms BI-LSTM
Deep learning
Deep Neural Network
Entertainment industry
Fully Connected Neural Network
LDA
Natural language processing
Neural networks
Social networking
Social networking (online)
Support vector machines
tweets
Title Framework for Detecting Fake Retweets Using Deep Neural Network
URI https://ieeexplore.ieee.org/document/9824364
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5tT55UWvFNDh7d7ebRdHPyUF2qUBFpobeSxyxIpS12e_HXO0m3FcWDp4QkkBebybf5vhlCbrRgTOWZw-_b-URanyW5MDzRJdPGa13KqPAePavhRD5Ne9MGud1rYQAgks8gDdn4lu-XbhN-lXV1zqVQskmaCNy2Wq1a9Msy3X3kg3GIvhRQH-dp3fhH1JRoNIpDMtp1t-WKzNNNZVP3-csT43_Hc0Q63_I8-rI3PMekAYs2uSt2NCuK91B6D-F1AKtpYeZAXyMdq1rTSBHAWljR4JfDvGMSieAdMikexoNhUkdHSN4QFFSJkJyVCGyhlCYTLpPMln2ee0AAxE1ucJXR9oDnXqhSOeOUNYgfmPZ5ZmWPiRPSWiwXcEoorpeyYITziFGVltiWGcZKC3j84Pl3Rtph8rPV1gHGrJ73-d_FF-QgbECkt_QvSav62MAVWu7KXsct-wK4yplt
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LT8JAEN4gHvSkRoxv96DHlu6D0j0YD2AD8ogxkHDD7e42MRggUmL0t_hX_G_OLgWj8UriqU23aaYz7ex8u9_MIHQpGCFhFCj4v5X2eKIDL2KSeiIlQmohUu4yvDvdsNHnd4PKoIA-VrkwxhhHPjO-PXV7-Xqi5naprCwiylnIcwply7y9AkCbXTfrYM0rSuPbXq3h5T0EvCcInTOPcUpSgH8m5TJgKuAkSas00gZgApWRBFnAQxtNNQvTUEkVJhKibCJ0FCS8Qhg8dwNtQpxRoYvssDzNmASi3KS1nu33ZHEmpX4u3o8-LW6ainfQ5_IFF-yUkT_PEl-9_6r9-F81sItK3wmI-H41te6hghnvo5t4SSTDEGnjurH7HzCMYzky-MERzrIZdiQIGDVTbCuPyGc4OKp7CfXXIvkBKo4nY3OIMNgnTIxkSgMKDwWHe4kkJE0MOFjw8Edo3yp7OF2U-Bjmej7--_IF2mr0Ou1hu9ltnaBta3xH5qmeomL2MjdnEKdkybn7XDB6XLd1vgCfj_XJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE+7th+International+conference+for+Convergence+in+Technology+%28I2CT%29&rft.atitle=Framework+for+Detecting+Fake+Retweets+Using+Deep+Neural+Network&rft.au=Dinesh+Hegde%2C+Sampad&rft.au=Shetty%2C+Akhilesh&rft.au=Manoj%2C+NM&rft.au=Kalasad%2C+Abhigna&rft.date=2022-04-07&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FI2CT54291.2022.9824364&rft.externalDocID=9824364