Trajectory Tracking Control for Quadrotor Formation Subject to Environmental and Model Uncertainties

This paper proposes a robust adaptive global control approach for quadrotor aircraft formation system based on RBF neural network against parametric uncertainties and bounded external disturbances for the quadrotor aircraft sys-tem. The actual controller consists of neural network controller in the...

Full description

Saved in:
Bibliographic Details
Published inProceedings of ... IEEE International Conference on Unmanned Systems (Online) pp. 829 - 834
Main Authors Ma, Zhenwei, Chen, Lin, Wang, Jinbo, Chen, Hongbo
Format Conference Proceeding
LanguageEnglish
Published IEEE 28.10.2022
Subjects
Online AccessGet full text
ISSN2771-7372
DOI10.1109/ICUS55513.2022.9987194

Cover

Abstract This paper proposes a robust adaptive global control approach for quadrotor aircraft formation system based on RBF neural network against parametric uncertainties and bounded external disturbances for the quadrotor aircraft sys-tem. The actual controller consists of neural network controller in the approximate domain and robust controller outside the approximate domain. In order to ensure that all the signals of the closed-loop system are globally consistent and ultimately bounded, a smooth switching function is introduced to realize the smooth switching among controllers. What is more, Lyapunov function and Barbalat lemma are used to prove the stability of the nonlinear quadrotor aircraft formation system, and analyze the system stability strictly. Finally, we apply the proposed controller in MATLAB and Simulink software platforms, and analyze the numerical results.
AbstractList This paper proposes a robust adaptive global control approach for quadrotor aircraft formation system based on RBF neural network against parametric uncertainties and bounded external disturbances for the quadrotor aircraft sys-tem. The actual controller consists of neural network controller in the approximate domain and robust controller outside the approximate domain. In order to ensure that all the signals of the closed-loop system are globally consistent and ultimately bounded, a smooth switching function is introduced to realize the smooth switching among controllers. What is more, Lyapunov function and Barbalat lemma are used to prove the stability of the nonlinear quadrotor aircraft formation system, and analyze the system stability strictly. Finally, we apply the proposed controller in MATLAB and Simulink software platforms, and analyze the numerical results.
Author Wang, Jinbo
Chen, Lin
Ma, Zhenwei
Chen, Hongbo
Author_xml – sequence: 1
  givenname: Zhenwei
  surname: Ma
  fullname: Ma, Zhenwei
  email: mazhw6@mail2.sysu.edu.cn
  organization: School of Systems Science and Engineering, Sun Yat-Sen University,Guangzhou,China
– sequence: 2
  givenname: Lin
  surname: Chen
  fullname: Chen, Lin
  email: chenlin87@mail2.sysu.edu.cn
  organization: School of Systems Science and Engineering, Sun Yat-Sen University,Guangzhou,China
– sequence: 3
  givenname: Jinbo
  surname: Wang
  fullname: Wang, Jinbo
  email: wangjinbo@mail.sysu.edu.cn
  organization: School of Systems Science and Engineering, Sun Yat-Sen University,Guangzhou,China
– sequence: 4
  givenname: Hongbo
  surname: Chen
  fullname: Chen, Hongbo
  email: chenhongbo@mail.sysu.edu.cn
  organization: School of Systems Science and Engineering, Sun Yat-Sen University,Guangzhou,China
BookMark eNotkM1KAzEUhaMoqLVPIEheYGpuMjNJllJaLVRE2q5Lfu5I6jSRTCr07a3Y1Tnwcb7FuSNXMUUk5BHYBIDpp8V0s2qaBsSEM84nWisJur4gYy0VtG1Tq7pp1CW55VJCJYXkN2Q8DDvGmOCsBiVviV9ns0NXUj7SU3VfIX7SaYolp552KdOPg_E5nTidp7w3JaRIVwf7t6El0Vn8CTnFPcZiemqip2_JY0830WEuJsQScLgn153pBxyfc0Q289l6-lot318W0-dlFQBUqYSw1nLnufUctXQaVSc71SptmdCylth6LjpnGQfhanRSemM5dA45KGBiRB7-vQERt9857E0-bs-_iF_-XVul
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICUS55513.2022.9987194
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781665484558
166548456X
1665484551
9781665484565
EISSN 2771-7372
EndPage 834
ExternalDocumentID 9987194
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i118t-33bbb2cd2bd2e97c9e8f7f8689b039747e6d23fcb0213c4ec77dab21fce218103
IEDL.DBID RIE
IngestDate Wed Aug 27 02:27:38 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-33bbb2cd2bd2e97c9e8f7f8689b039747e6d23fcb0213c4ec77dab21fce218103
PageCount 6
ParticipantIDs ieee_primary_9987194
PublicationCentury 2000
PublicationDate 2022-Oct.-28
PublicationDateYYYYMMDD 2022-10-28
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-Oct.-28
  day: 28
PublicationDecade 2020
PublicationTitle Proceedings of ... IEEE International Conference on Unmanned Systems (Online)
PublicationTitleAbbrev ICUS
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003204187
Score 2.199808
Snippet This paper proposes a robust adaptive global control approach for quadrotor aircraft formation system based on RBF neural network against parametric...
SourceID ieee
SourceType Publisher
StartPage 829
SubjectTerms Adaptive robust control
Aircraft
Closed loop systems
Global controller
Military aircraft
Neural networks
Quadrotor formation
RBF neural network
Stability analysis
Switches
Uncertainty
Title Trajectory Tracking Control for Quadrotor Formation Subject to Environmental and Model Uncertainties
URI https://ieeexplore.ieee.org/document/9987194
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELbaTrDwaBFveWAkqWMnsTNXrQpSEQgidatytiMBVYqqZIBfzzlJy0MMbJYTy5Ft-fvuct8dIVcZcvA8YcaT2sReGNnAgwRCLwZlABm-CZXTO8_u4mka3s6jeYdcb7Uw1to6-Mz6rln_yzcrXTlX2RBNA4lGd5d08Zg1Wq2tP0VwFgZKtiLggCXDm1H6GLn6JWgFcu63g39UUalBZLJHZpvpm9iRV78qwdcfvzIz_vf79sngS65H77dAdEA6tjgku98yDfaJQUx6qR307xSb2jnI6agJU6fIW-lDlZn1Cp_TyUbOSPFScWNouaLjLz1ctqRZYagrorakKc5dxxS4vKwDkk7GT6Op1xZY8J7Rrig9IQCAa8PBcJtInViVy1zFKgEmnKFhY8NFrgGJgNCh1VKaDHiQa-uYARNHpFesCntMqGImDCyXVpjI5RAEyRJ8F6-vKGcK1Anpu_VavDU5NBbtUp3-3X1GdtyeOYzg6pz0ynVlLxD8S7isd_0Tp1axVQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKGYCFR4t444GRtIntxM5ctSrQViAaqVsVPyIBVYKqZIBfzzlJW0AMbJYTK5Zj-b7vfN8dQjcxYPAkdLXDlQ4c5hvPkaFkTiCFloDwNRNW7zyeBMOI3c_8WQPdrrUwxpgy-Mx0bLO8y9eZKqyrrAvUgAPp3kLbYPeZX6m11h4VSlzmCV7LgD037N71omffVjABHkhIpx7-o45KaUYG-2i8mkAVPfLWKXLZUZ-_cjP-d4YHqL0R7OHHtSk6RA2THqG9b7kGW0iDVXotXfQfGJrKushxrwpUx4Bc8VMR62UGz_FgJWjEcKzYMTjPcH-jiIsXOE41tmXUFjiCb5dRBTYzaxtFg_60N3TqEgvOCzCL3KFUSkmUJlITE3IVGpHwRAQilC61VMMEmtBESYACVDGjONexJF6ijMUGLj1GzTRLzQnCwtXMM4Qbqn2bRVByN4R34QDzE1dIcYpadr3m71UWjXm9VGd_d1-jneF0PJqP7iYP52jX_j9rMYi4QM18WZhLgAK5vCp3wBccK7Si
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+...+IEEE+International+Conference+on+Unmanned+Systems+%28Online%29&rft.atitle=Trajectory+Tracking+Control+for+Quadrotor+Formation+Subject+to+Environmental+and+Model+Uncertainties&rft.au=Ma%2C+Zhenwei&rft.au=Chen%2C+Lin&rft.au=Wang%2C+Jinbo&rft.au=Chen%2C+Hongbo&rft.date=2022-10-28&rft.pub=IEEE&rft.eissn=2771-7372&rft.spage=829&rft.epage=834&rft_id=info:doi/10.1109%2FICUS55513.2022.9987194&rft.externalDocID=9987194