Automatically Designing CNN Architectures for Acoustic Scene Classification

Deep convolutional neural networks (CNNs) have proven their effectiveness in the acoustic scene classification (ASC) task, becoming the state-of-the-art solution to build pow-erful ASC models. Usually, the architectures of these networks and their hyper-parameters have been manually designed by expe...

Full description

Saved in:
Bibliographic Details
Published in2021 16th International Conference on Computer Engineering and Systems (ICCES) pp. 1 - 6
Main Authors Hasan, Noha W., Saudi, Ali S., Khalil, Mahmoud I., Abbas, Hazem M.
Format Conference Proceeding
LanguageEnglish
Published IEEE 15.12.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Deep convolutional neural networks (CNNs) have proven their effectiveness in the acoustic scene classification (ASC) task, becoming the state-of-the-art solution to build pow-erful ASC models. Usually, the architectures of these networks and their hyper-parameters have been manually designed by expert researchers in both the investigated problem and CNN architecture design, which can be a challenging task. In this work, we propose a genetic algorithm (GA) that benefits from the characteristics of state-of-the-art CNN architectures in the field of ASC to specifically optimize CNN architectures for the ASC task, within an acceptable search cost compared to other GAs. After searching for 14 GPU days using a single NVIDIA Tesla K80 GPU on the development dataset of DCASE2020 Task lA, the proposed GA has optimized a CNN architecture that achieved a test accuracy of 68.5 % on the same dataset. The same network has been evaluated on the development dataset of DCASE2018 Task 1A and achieved a classification accuracy of 73.7% without repeating the search process, which demonstrates the generalization capability of the generated CNNs.
AbstractList Deep convolutional neural networks (CNNs) have proven their effectiveness in the acoustic scene classification (ASC) task, becoming the state-of-the-art solution to build pow-erful ASC models. Usually, the architectures of these networks and their hyper-parameters have been manually designed by expert researchers in both the investigated problem and CNN architecture design, which can be a challenging task. In this work, we propose a genetic algorithm (GA) that benefits from the characteristics of state-of-the-art CNN architectures in the field of ASC to specifically optimize CNN architectures for the ASC task, within an acceptable search cost compared to other GAs. After searching for 14 GPU days using a single NVIDIA Tesla K80 GPU on the development dataset of DCASE2020 Task lA, the proposed GA has optimized a CNN architecture that achieved a test accuracy of 68.5 % on the same dataset. The same network has been evaluated on the development dataset of DCASE2018 Task 1A and achieved a classification accuracy of 73.7% without repeating the search process, which demonstrates the generalization capability of the generated CNNs.
Author Hasan, Noha W.
Khalil, Mahmoud I.
Saudi, Ali S.
Abbas, Hazem M.
Author_xml – sequence: 1
  givenname: Noha W.
  surname: Hasan
  fullname: Hasan, Noha W.
  email: noha.wahdan@eng.asu.edu.eg
  organization: Ain Shams University,Computer and Systems Engineering Department,Cairo,Egypt
– sequence: 2
  givenname: Ali S.
  surname: Saudi
  fullname: Saudi, Ali S.
  email: ali.saudi@fci.bu.edu.eg
  organization: Benha University,Faculty of Computers and Artificial Intelligence,Qalubiya,Egypt
– sequence: 3
  givenname: Mahmoud I.
  surname: Khalil
  fullname: Khalil, Mahmoud I.
  email: mahmoud.khalil@eng.asu.edu.eg
  organization: Ain Shams University,Computer and Systems Engineering Department,Cairo,Egypt
– sequence: 4
  givenname: Hazem M.
  surname: Abbas
  fullname: Abbas, Hazem M.
  email: hazem.abbas@eng.asu.edu.eg
  organization: Ain Shams University,Computer and Systems Engineering Department,Cairo,Egypt
BookMark eNotT0tOwzAUNBIsoPQELPAFUvzi1naWkSm0oiqLwrp6cZ6LpdRBsbPo7YlEVzPSfDTzwG5jH4mxZxALAFG9bK1dH1ZLIWFRihIWlTJKmNUNm1fagFKTZJTW9-yjHnN_xhwcdt2Fv1IKpxjiidv9nteD-wmZXB4HStz3A69dP6bJzA-OInHbYUrBT-Ec-vjI7jx2ieZXnLHvt_WX3RS7z_etrXdFADC5kKUh1TrduNYZR1jKaSd5XRKA1jARkFh5aLAh7zyhEaKpYKk9YNsIlDP29N8biOj4O4QzDpfj9aL8A1D6TVE
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICCES54031.2021.9686085
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665408677
1665408677
EndPage 6
ExternalDocumentID 9686085
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i118t-328e6dc7bcdc8cea23403ef72e11771f7213a9f1babefcfea800b9147f1adb0a3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:48 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-328e6dc7bcdc8cea23403ef72e11771f7213a9f1babefcfea800b9147f1adb0a3
PageCount 6
ParticipantIDs ieee_primary_9686085
PublicationCentury 2000
PublicationDate 2021-Dec.-15
PublicationDateYYYYMMDD 2021-12-15
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-Dec.-15
  day: 15
PublicationDecade 2020
PublicationTitle 2021 16th International Conference on Computer Engineering and Systems (ICCES)
PublicationTitleAbbrev ICCES
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8406814
Snippet Deep convolutional neural networks (CNNs) have proven their effectiveness in the acoustic scene classification (ASC) task, becoming the state-of-the-art...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Acoustic scene classification (ASC)
Acoustics
Classification algorithms
Computer architecture
Convolutional neural networks
convolutional neural networks (CNNs)
genetic algorithms (GAs)
Graphics processing units
Image analysis
Neural networks
neural-network architecture optimization
Title Automatically Designing CNN Architectures for Acoustic Scene Classification
URI https://ieeexplore.ieee.org/document/9686085
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI7GTpwAbYi3cuBIuybt2uY4lU0DtAlpTNptysORENOKoD3Ar8fJyniIAzeridTKVuLP9WebkEt0InGe2CToM9BBohIT5FyaQHODS5KnInb1zpNpOp4nt4v-okWutrUwAODJZxA60efyTalr96usJ9I8RYiwQ3YyITa1Wg1li0Wid1MUwxkCkNiFfZyFze4fY1O81xjtkcnn-zZkkaewrlSo33-1YvzvB-2T7ld9Hr3fep4D0oJ1h9wN6qr0DVjlavVGrz01A5dpMZ3Swbd8wStFoEoHuvSDvOhM43VH_XBMRxvyluqS-Wj4UIyDZlRC8IgRQhXEPIfU6Expo3MNkseoB7AZB5eUZSiwWArLlFRgtQWJOFEJlmSWSaMiGR-S9rpcwxGhUW45KJtmBkONCBUtohQMIqU8knhYs2PScYpYPm-6YSwbHZz8_fiU7DpjOAII65-RdvVSwzm68UpdePt9ADV2n30
link.rule.ids 310,311,783,787,792,793,799,27939,55088
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI7GOMAJ0IZ4kwNH2jXp-ziVTRvbKqRt0m5THo6EmFYE7QF-PUlWxkMcuFlNpFa2En-uP9sI3Wgn4ieBCpyQgHACHkgnoUw6gkq9xGiU-qbeeZJHg3lwvwgXDXS7rYUBAEs-A9eINpcvC1GZX2WdNEoiDRF20G5ocMWmWqsmbREv7QyzrDfVEMQ3gR8lbr3_x-AU6zf6B2jy-cYNXeTJrUruivdfzRj_-0mHqP1VoYcftr7nCDVg3UKjblUWtgUrW63e8J0lZ-hlnOU57n7LGLxiDVVxVxR2lBeeCn3hYTse0xCHrK3aaN7vzbKBUw9LcB51jFA6Pk0gkiLmQopEAKO-1gOomIJJyxItEJ-linDGQQkFTCNFnpIgVoRJ7jH_GDXXxRpOEPYSRYGrKJY62PBiDSG9CKTGSonH9HGNT1HLKGL5vOmHsax1cPb342u0N5hNxsvxMB-do31jGEMHIeEFapYvFVxqp17yK2vLD75Foso
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+16th+International+Conference+on+Computer+Engineering+and+Systems+%28ICCES%29&rft.atitle=Automatically+Designing+CNN+Architectures+for+Acoustic+Scene+Classification&rft.au=Hasan%2C+Noha+W.&rft.au=Saudi%2C+Ali+S.&rft.au=Khalil%2C+Mahmoud+I.&rft.au=Abbas%2C+Hazem+M.&rft.date=2021-12-15&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FICCES54031.2021.9686085&rft.externalDocID=9686085