Fault Detection and Classification of Machinery Bearing Under Variable Operating Conditions Based on Wavelet Transform and CNN
The rolling bearing, one of the most critical components of wind turbines, is subject to variable operating conditions because of the unsteadiness of environmental aspects. The development of an efficient technique for predicting and classifying rolling bearing faults is a critical task. Condition-b...
Saved in:
Published in | 2021 International Mobile, Intelligent, and Ubiquitous Computing Conference (MIUCC) pp. 117 - 123 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
26.05.2021
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/MIUCC52538.2021.9447673 |
Cover
Abstract | The rolling bearing, one of the most critical components of wind turbines, is subject to variable operating conditions because of the unsteadiness of environmental aspects. The development of an efficient technique for predicting and classifying rolling bearing faults is a critical task. Condition-based maintenance (CBM) techniques are used to plan the maintenance procedure depending on the actual state of the asset. The convolutional neural network (CNN) structure was built using a neural architecture search (NAS) approach based on reinforcement learning. The time-series data of vibration signals are preprocessed using the continuous wavelet transform (CWT) before delivering to the CNN. The results confirmed that the proposed approach would automatically learn and discover distinct features from vibration signals, as well as identify various rolling bearing health conditions. |
---|---|
AbstractList | The rolling bearing, one of the most critical components of wind turbines, is subject to variable operating conditions because of the unsteadiness of environmental aspects. The development of an efficient technique for predicting and classifying rolling bearing faults is a critical task. Condition-based maintenance (CBM) techniques are used to plan the maintenance procedure depending on the actual state of the asset. The convolutional neural network (CNN) structure was built using a neural architecture search (NAS) approach based on reinforcement learning. The time-series data of vibration signals are preprocessed using the continuous wavelet transform (CWT) before delivering to the CNN. The results confirmed that the proposed approach would automatically learn and discover distinct features from vibration signals, as well as identify various rolling bearing health conditions. |
Author | Awad, Mohammed I. Maged, Shady A. Onsy, Ahmed Eltotongy, Assem |
Author_xml | – sequence: 1 givenname: Assem surname: Eltotongy fullname: Eltotongy, Assem email: asem.eltotongy@eng.asu.edu.eg organization: Ain Shams University,Mechatronics Engineering Faculty of Engineering,Cairo,Egypt – sequence: 2 givenname: Mohammed I. surname: Awad fullname: Awad, Mohammed I. email: mohammed.awad@eng.asu.edu.eg organization: Ain Shams University,Mechatronics Engineering Faculty of Engineering,Cairo,Egypt – sequence: 3 givenname: Shady A. surname: Maged fullname: Maged, Shady A. email: shady.maged@eng.asu.edu.eg organization: Ain Shams University,Mechatronics Engineering Faculty of Engineering,Cairo,Egypt – sequence: 4 givenname: Ahmed surname: Onsy fullname: Onsy, Ahmed email: aonsy@uclan.ac.uk organization: University of Central Lancashire Computing and Technology Building,School of Engineering,Preston,PR1 2HE,UK |
BookMark | eNotUMtOwzAQNBIcoPQLOOAfaMnasZ0caaClUh-XBo7V1lmDpdSpnIDUC99OSnsazew8pL1j16EJxNgjJGOAJH9azsuiUELJbCwSAeM8TY028ooNc5OB1ioFkcrslv1O8bvu-At1ZDvfBI6h4kWNbeudt_gvNY4v0X75QPHIJ4TRh09ehooif-8J7mri6wPF3t0fiiZU_pRr-QRbqnjf8IE_VFPHNxFD65q4P8-sVvfsxmHd0vCCA1ZOXzfF22ixns2L58XIA2TdSEIiUgSFUkmXaElWgJYAPXMWdI65c2h6zCpdWaNM7lJFJ4MRO1RWDtjDudcT0fYQ_R7jcXv5ivwDA-VdjA |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/MIUCC52538.2021.9447673 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781665412438 1665412437 |
EndPage | 123 |
ExternalDocumentID | 9447673 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i118t-31024a15a353f063ec21631153ffc169a9ffa769a8d6dc7579f45e311572ba5c3 |
IEDL.DBID | RIE |
IngestDate | Thu Jun 29 18:37:52 EDT 2023 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i118t-31024a15a353f063ec21631153ffc169a9ffa769a8d6dc7579f45e311572ba5c3 |
PageCount | 7 |
ParticipantIDs | ieee_primary_9447673 |
PublicationCentury | 2000 |
PublicationDate | 2021-May-26 |
PublicationDateYYYYMMDD | 2021-05-26 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-May-26 day: 26 |
PublicationDecade | 2020 |
PublicationTitle | 2021 International Mobile, Intelligent, and Ubiquitous Computing Conference (MIUCC) |
PublicationTitleAbbrev | MIUCC |
PublicationYear | 2021 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.7615274 |
Snippet | The rolling bearing, one of the most critical components of wind turbines, is subject to variable operating conditions because of the unsteadiness of... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 117 |
SubjectTerms | CNN Computer architecture condition-based monitoring Continuous wavelet transforms deep learning Maintenance engineering Neural networks rolling bearing Rolling bearings Ubiquitous computing Vibrations Wind turbine |
Title | Fault Detection and Classification of Machinery Bearing Under Variable Operating Conditions Based on Wavelet Transform and CNN |
URI | https://ieeexplore.ieee.org/document/9447673 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELbaTkyAWsRbHhhJ2jzsxGsLVUFKYWihW3XxQ0KgtKqSAQZ-O2cnLQIxMOXti3yO77v4uztCrkweqVSxxOPcCM8iAg80S71YmBSSHNAlsbHD2ZRP5vH9gi1a5HoXC6O1duQz7dtdt5avVrKyv8r6Io4TnkRt0sZhVsdqNZStYCD62d18NGIhfsHo9oWB39z9o2yKsxrjfZJt5dVkkVe_KnNffvxKxfjfFzogve_4PPq4szyHpKWLLvkcQ_VW0htdOnZVQaFQ1NW8tGwgpwC6MjRz7Em9eadDHOT4OHWlj-gTHtgwKvqwtnmW7QWUpmpGFx2isVMUW3gGW6mipLMt4K3FTKc9Mh_fzkYTr6mu4L2gU1Hi5IvmGQIGEYsMAhUtQ8RmCBAjY2TABQhjIMFtqriSCUuEiZl2yXlC1KGMjkinWBX6mFDAmQC4TAfKQIwOSp5qQKAF2oZKCTk4IV3bd8t1nUBj2XTb6d-nz8ie1Z9dog_5OemUm0pfoOUv80un8i9ydLC0 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKGWAC1CLeeGAkafOwE68tVC00gaGFbpXjh4RAaVUlAwz8ds5OWgRiYMo7jnyJ77v4--4QutJZIGNJIodSzRyDCByuSOyETMc8yjiEJEY7nKR0OA3vZmTWQNcbLYxSypLPlGtW7Vy-XIjS_CrrsDCMaBRsoW3w-yGp1Fo1acvrsk4ymvb7xIdvGAI_33Pr838UTrF-Y7CHknWLFV3k1S2LzBUfv5Ix_veR9lH7W6GHHze-5wA1VN5CnwNevhX4RhWWX5Vjnktsq14aPpA1AV5onFj-pFq94x685nA5tsWP8BNsGCEVfliaTMvmALQmK04X7oG7kxju8MxNrYoCT9aQt2omTdtoOrid9IdOXV_BeYGwooDhFxw09wgPSKABqijhAzoDiBhoLTzKONOaR7CMJZUiIhHTIVE2PY8PVhTBIWrmi1wdIcxhLOBUxF2peQghShYrDlCLKyOWYqJ7jFqm7-bLKoXGvO62k793X6Kd4SQZz8ej9P4U7Rpbmgl7n56hZrEq1TnggCK7sOb_At4jtAE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+International+Mobile%2C+Intelligent%2C+and+Ubiquitous+Computing+Conference+%28MIUCC%29&rft.atitle=Fault+Detection+and+Classification+of+Machinery+Bearing+Under+Variable+Operating+Conditions+Based+on+Wavelet+Transform+and+CNN&rft.au=Eltotongy%2C+Assem&rft.au=Awad%2C+Mohammed+I.&rft.au=Maged%2C+Shady+A.&rft.au=Onsy%2C+Ahmed&rft.date=2021-05-26&rft.pub=IEEE&rft.spage=117&rft.epage=123&rft_id=info:doi/10.1109%2FMIUCC52538.2021.9447673&rft.externalDocID=9447673 |