Fault Detection and Classification of Machinery Bearing Under Variable Operating Conditions Based on Wavelet Transform and CNN

The rolling bearing, one of the most critical components of wind turbines, is subject to variable operating conditions because of the unsteadiness of environmental aspects. The development of an efficient technique for predicting and classifying rolling bearing faults is a critical task. Condition-b...

Full description

Saved in:
Bibliographic Details
Published in2021 International Mobile, Intelligent, and Ubiquitous Computing Conference (MIUCC) pp. 117 - 123
Main Authors Eltotongy, Assem, Awad, Mohammed I., Maged, Shady A., Onsy, Ahmed
Format Conference Proceeding
LanguageEnglish
Published IEEE 26.05.2021
Subjects
Online AccessGet full text
DOI10.1109/MIUCC52538.2021.9447673

Cover

Abstract The rolling bearing, one of the most critical components of wind turbines, is subject to variable operating conditions because of the unsteadiness of environmental aspects. The development of an efficient technique for predicting and classifying rolling bearing faults is a critical task. Condition-based maintenance (CBM) techniques are used to plan the maintenance procedure depending on the actual state of the asset. The convolutional neural network (CNN) structure was built using a neural architecture search (NAS) approach based on reinforcement learning. The time-series data of vibration signals are preprocessed using the continuous wavelet transform (CWT) before delivering to the CNN. The results confirmed that the proposed approach would automatically learn and discover distinct features from vibration signals, as well as identify various rolling bearing health conditions.
AbstractList The rolling bearing, one of the most critical components of wind turbines, is subject to variable operating conditions because of the unsteadiness of environmental aspects. The development of an efficient technique for predicting and classifying rolling bearing faults is a critical task. Condition-based maintenance (CBM) techniques are used to plan the maintenance procedure depending on the actual state of the asset. The convolutional neural network (CNN) structure was built using a neural architecture search (NAS) approach based on reinforcement learning. The time-series data of vibration signals are preprocessed using the continuous wavelet transform (CWT) before delivering to the CNN. The results confirmed that the proposed approach would automatically learn and discover distinct features from vibration signals, as well as identify various rolling bearing health conditions.
Author Awad, Mohammed I.
Maged, Shady A.
Onsy, Ahmed
Eltotongy, Assem
Author_xml – sequence: 1
  givenname: Assem
  surname: Eltotongy
  fullname: Eltotongy, Assem
  email: asem.eltotongy@eng.asu.edu.eg
  organization: Ain Shams University,Mechatronics Engineering Faculty of Engineering,Cairo,Egypt
– sequence: 2
  givenname: Mohammed I.
  surname: Awad
  fullname: Awad, Mohammed I.
  email: mohammed.awad@eng.asu.edu.eg
  organization: Ain Shams University,Mechatronics Engineering Faculty of Engineering,Cairo,Egypt
– sequence: 3
  givenname: Shady A.
  surname: Maged
  fullname: Maged, Shady A.
  email: shady.maged@eng.asu.edu.eg
  organization: Ain Shams University,Mechatronics Engineering Faculty of Engineering,Cairo,Egypt
– sequence: 4
  givenname: Ahmed
  surname: Onsy
  fullname: Onsy, Ahmed
  email: aonsy@uclan.ac.uk
  organization: University of Central Lancashire Computing and Technology Building,School of Engineering,Preston,PR1 2HE,UK
BookMark eNotUMtOwzAQNBIcoPQLOOAfaMnasZ0caaClUh-XBo7V1lmDpdSpnIDUC99OSnsazew8pL1j16EJxNgjJGOAJH9azsuiUELJbCwSAeM8TY028ooNc5OB1ioFkcrslv1O8bvu-At1ZDvfBI6h4kWNbeudt_gvNY4v0X75QPHIJ4TRh09ehooif-8J7mri6wPF3t0fiiZU_pRr-QRbqnjf8IE_VFPHNxFD65q4P8-sVvfsxmHd0vCCA1ZOXzfF22ixns2L58XIA2TdSEIiUgSFUkmXaElWgJYAPXMWdI65c2h6zCpdWaNM7lJFJ4MRO1RWDtjDudcT0fYQ_R7jcXv5ivwDA-VdjA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/MIUCC52538.2021.9447673
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665412438
1665412437
EndPage 123
ExternalDocumentID 9447673
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i118t-31024a15a353f063ec21631153ffc169a9ffa769a8d6dc7579f45e311572ba5c3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:52 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-31024a15a353f063ec21631153ffc169a9ffa769a8d6dc7579f45e311572ba5c3
PageCount 7
ParticipantIDs ieee_primary_9447673
PublicationCentury 2000
PublicationDate 2021-May-26
PublicationDateYYYYMMDD 2021-05-26
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-May-26
  day: 26
PublicationDecade 2020
PublicationTitle 2021 International Mobile, Intelligent, and Ubiquitous Computing Conference (MIUCC)
PublicationTitleAbbrev MIUCC
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7615274
Snippet The rolling bearing, one of the most critical components of wind turbines, is subject to variable operating conditions because of the unsteadiness of...
SourceID ieee
SourceType Publisher
StartPage 117
SubjectTerms CNN
Computer architecture
condition-based monitoring
Continuous wavelet transforms
deep learning
Maintenance engineering
Neural networks
rolling bearing
Rolling bearings
Ubiquitous computing
Vibrations
Wind turbine
Title Fault Detection and Classification of Machinery Bearing Under Variable Operating Conditions Based on Wavelet Transform and CNN
URI https://ieeexplore.ieee.org/document/9447673
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELbaTkyAWsRbHhhJ2jzsxGsLVUFKYWihW3XxQ0KgtKqSAQZ-O2cnLQIxMOXti3yO77v4uztCrkweqVSxxOPcCM8iAg80S71YmBSSHNAlsbHD2ZRP5vH9gi1a5HoXC6O1duQz7dtdt5avVrKyv8r6Io4TnkRt0sZhVsdqNZStYCD62d18NGIhfsHo9oWB39z9o2yKsxrjfZJt5dVkkVe_KnNffvxKxfjfFzogve_4PPq4szyHpKWLLvkcQ_VW0htdOnZVQaFQ1NW8tGwgpwC6MjRz7Em9eadDHOT4OHWlj-gTHtgwKvqwtnmW7QWUpmpGFx2isVMUW3gGW6mipLMt4K3FTKc9Mh_fzkYTr6mu4L2gU1Hi5IvmGQIGEYsMAhUtQ8RmCBAjY2TABQhjIMFtqriSCUuEiZl2yXlC1KGMjkinWBX6mFDAmQC4TAfKQIwOSp5qQKAF2oZKCTk4IV3bd8t1nUBj2XTb6d-nz8ie1Z9dog_5OemUm0pfoOUv80un8i9ydLC0
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKGWAC1CLeeGAkafOwE68tVC00gaGFbpXjh4RAaVUlAwz8ds5OWgRiYMo7jnyJ77v4--4QutJZIGNJIodSzRyDCByuSOyETMc8yjiEJEY7nKR0OA3vZmTWQNcbLYxSypLPlGtW7Vy-XIjS_CrrsDCMaBRsoW3w-yGp1Fo1acvrsk4ymvb7xIdvGAI_33Pr838UTrF-Y7CHknWLFV3k1S2LzBUfv5Ix_veR9lH7W6GHHze-5wA1VN5CnwNevhX4RhWWX5Vjnktsq14aPpA1AV5onFj-pFq94x685nA5tsWP8BNsGCEVfliaTMvmALQmK04X7oG7kxju8MxNrYoCT9aQt2omTdtoOrid9IdOXV_BeYGwooDhFxw09wgPSKABqijhAzoDiBhoLTzKONOaR7CMJZUiIhHTIVE2PY8PVhTBIWrmi1wdIcxhLOBUxF2peQghShYrDlCLKyOWYqJ7jFqm7-bLKoXGvO62k793X6Kd4SQZz8ej9P4U7Rpbmgl7n56hZrEq1TnggCK7sOb_At4jtAE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+International+Mobile%2C+Intelligent%2C+and+Ubiquitous+Computing+Conference+%28MIUCC%29&rft.atitle=Fault+Detection+and+Classification+of+Machinery+Bearing+Under+Variable+Operating+Conditions+Based+on+Wavelet+Transform+and+CNN&rft.au=Eltotongy%2C+Assem&rft.au=Awad%2C+Mohammed+I.&rft.au=Maged%2C+Shady+A.&rft.au=Onsy%2C+Ahmed&rft.date=2021-05-26&rft.pub=IEEE&rft.spage=117&rft.epage=123&rft_id=info:doi/10.1109%2FMIUCC52538.2021.9447673&rft.externalDocID=9447673