Compare of Machine Learning and Deep Learning Approaches for Human Activity Recognition

Human-centered computing is an emerging research field that aims to understand human behavior and integrate users and their social context with computer systems. This research aimed to find the best algorithm for human activity recognition. We used Logistic Regression, SVM with RBF kernel; CNN, LSTM...

Full description

Saved in:
Bibliographic Details
Published in2022 30th International Conference on Electrical Engineering (ICEE) pp. 592 - 596
Main Authors Moradi, Babak, Aghapour, Mohammad, Shirbandi, Afshin
Format Conference Proceeding
LanguageEnglish
Published IEEE 17.05.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Human-centered computing is an emerging research field that aims to understand human behavior and integrate users and their social context with computer systems. This research aimed to find the best algorithm for human activity recognition. We used Logistic Regression, SVM with RBF kernel; CNN, LSTM, Bi-Directional LSTM, and CNNLSTM algorithms for analyzing the data. The data analysis measured and compared the accuracy and training time. The most accuracy belonged to the CNN-LSTM and Bi-Directional LSTM, and the least training time belonged to the SVM with RBF kernel
AbstractList Human-centered computing is an emerging research field that aims to understand human behavior and integrate users and their social context with computer systems. This research aimed to find the best algorithm for human activity recognition. We used Logistic Regression, SVM with RBF kernel; CNN, LSTM, Bi-Directional LSTM, and CNNLSTM algorithms for analyzing the data. The data analysis measured and compared the accuracy and training time. The most accuracy belonged to the CNN-LSTM and Bi-Directional LSTM, and the least training time belonged to the SVM with RBF kernel
Author Aghapour, Mohammad
Moradi, Babak
Shirbandi, Afshin
Author_xml – sequence: 1
  givenname: Babak
  surname: Moradi
  fullname: Moradi, Babak
  email: babak.moradi1988@gmail.com
  organization: Islamic Azad University,Kermanshah Branch,Department of Computer (Computer engineering),Kermanshah,Iran
– sequence: 2
  givenname: Mohammad
  surname: Aghapour
  fullname: Aghapour, Mohammad
  email: M_aghapour@aut.ac.ir
  organization: Amirkabir University of Technology (Tehran Polytechnic),Department of Electrical,Tehran,Iran
– sequence: 3
  givenname: Afshin
  surname: Shirbandi
  fullname: Shirbandi, Afshin
  email: Afshin_shirbandi@aut.ac.ir
  organization: Amirkabir University of Technology (Tehran Polytechnic),Robotic Research Center,Tehran,Iran
BookMark eNpFkNtKAzEURaMoWGu_QJD8wNTcL49lrLZQEUTxsZxJztSITYaZUejfK1jwacNisR72JTnLJSMhN5zNOWf-dl0vl1obZeaCCTH3Tlgp9QmZeeu4MVo55iw_JRNhlKi8FvaCzIbhgzEmuXPO6wl5q8u-gx5paekjhPeUkW4Q-pzyjkKO9A6x-yeLruvLr4YDbUtPV197yHQRxvSdxgN9xlB2OY2p5Cty3sLngLPjTsnr_fKlXlWbp4d1vdhUiXM3VqI1FrizrvGALQrPYnA-WhCsARlVqzyDRoLyKHSM0IQoGwioQ8OMckFOyfVfNyHituvTHvrD9niF_AHWuVZM
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICEE55646.2022.9827335
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781665480871
1665480874
EISSN 2642-9527
EndPage 596
ExternalDocumentID 9827335
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
AAJGR
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
CBEJK
CHZPO
IPLJI
OCL
RIE
RIL
ID FETCH-LOGICAL-i118t-2f67a1878b9aefe290dc89d7a20ba3d4f490ab3a49e25ddabcd3bace5cb0648c3
IEDL.DBID RIE
IngestDate Wed Jun 26 19:25:01 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-2f67a1878b9aefe290dc89d7a20ba3d4f490ab3a49e25ddabcd3bace5cb0648c3
PageCount 5
ParticipantIDs ieee_primary_9827335
PublicationCentury 2000
PublicationDate 2022-May-17
PublicationDateYYYYMMDD 2022-05-17
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-May-17
  day: 17
PublicationDecade 2020
PublicationTitle 2022 30th International Conference on Electrical Engineering (ICEE)
PublicationTitleAbbrev ICEE
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003188895
Score 1.8520123
Snippet Human-centered computing is an emerging research field that aims to understand human behavior and integrate users and their social context with computer...
SourceID ieee
SourceType Publisher
StartPage 592
SubjectTerms Activity recognition
Bi-Directional LSTM
Bidirectional control
CNN
CNN-LSTM
Electrical engineering
Human activity recognition
Human computer interaction
Logistic Regression
LSTM
Machine learning algorithms
Support vector machines
SVM with RBF kernel
Training
Title Compare of Machine Learning and Deep Learning Approaches for Human Activity Recognition
URI https://ieeexplore.ieee.org/document/9827335
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB7anvTioxXf5ODRbbebZJMcS22pQkXEYm8lj1kRYbfo9uKvN_toq-LB2xJ2ScgsfPkm3zcDcBUmMhaUmkAzQQPmITXwb3riSj0VkzpB5Qpz8vQ-nszY3ZzPG3C98cIgYik-w27xWN7lu8yuilRZT0kPtpQ3oSlUXHm1NvkU_29KqXhtAu6Hqnc7HI04j1khRIiibv3xjy4qJYiM92C6nr7Sjrx1V7np2s9flRn_u7596GzteuRhA0QH0MD0EHa_VRpsw_Ow0pqTLCHTUj-JpC6t-kJ06sgN4nI7MqgrjeMH8YdaUmb6ycBWnSbI41p0lKUdmI1HT8NJUPdUCF49lciDKImF7kshjdKYYKRCZ6VyQkeh0dSxhKlQG6qZwog7p4111GiL3Bp_eJGWHkErzVI8BuKpofbkkCehE4wxoWlokfrIWBM5xcQJtIstWiyrshmLendO_x4-g50iTMXFfF-cQyt_X-GFx_vcXJaB_gJaqqtC
link.rule.ids 309,310,780,784,789,790,796,27925,54758
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LTgIxFG0QF-rGBxjfduHSGYZpO22XBCGgDDEGIjvSxx1jTAaisPHr7TwANS7cNU0nadpJ7j2355yL0E2QiIgToj1FOfGoC6meW-mAK3FQTKgEpM3EyfEw6o3p_YRNKuh2rYUBgJx8Bn42zN_y7cwss1JZQwoXbAnbQtuMujy3UGutKyru7xRCslIG3Axko9_udBiLaEZFCEO__PxHH5U8jHT3UbzaQMEeefOXC-2bz1_ejP_d4QGqbwR7-HEdig5RBdIjtPfNa7CGntsF2xzPEhznDErApbnqC1apxXcA881Mq_Qahw_s0lqc1_pxyxS9JvDTinY0S-to3O2M2j2v7KrgvTowsfDCJOKqKbjQUkECoQysEdJyFQZaEUsTKgOliaISQmat0sYSrQwwo136Igw5RtV0lsIJwg4cKgcPWRJYTinligQGCJeR0aGVlJ-iWnZE03lhnDEtT-fs7-lrtNMbxYPpoD98OEe72ZVlz_RNfoGqi_clXLrov9BX-aV_AYxlrpU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+30th+International+Conference+on+Electrical+Engineering+%28ICEE%29&rft.atitle=Compare+of+Machine+Learning+and+Deep+Learning+Approaches+for+Human+Activity+Recognition&rft.au=Moradi%2C+Babak&rft.au=Aghapour%2C+Mohammad&rft.au=Shirbandi%2C+Afshin&rft.date=2022-05-17&rft.pub=IEEE&rft.eissn=2642-9527&rft.spage=592&rft.epage=596&rft_id=info:doi/10.1109%2FICEE55646.2022.9827335&rft.externalDocID=9827335