Compare of Machine Learning and Deep Learning Approaches for Human Activity Recognition
Human-centered computing is an emerging research field that aims to understand human behavior and integrate users and their social context with computer systems. This research aimed to find the best algorithm for human activity recognition. We used Logistic Regression, SVM with RBF kernel; CNN, LSTM...
Saved in:
Published in | 2022 30th International Conference on Electrical Engineering (ICEE) pp. 592 - 596 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
17.05.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Human-centered computing is an emerging research field that aims to understand human behavior and integrate users and their social context with computer systems. This research aimed to find the best algorithm for human activity recognition. We used Logistic Regression, SVM with RBF kernel; CNN, LSTM, Bi-Directional LSTM, and CNNLSTM algorithms for analyzing the data. The data analysis measured and compared the accuracy and training time. The most accuracy belonged to the CNN-LSTM and Bi-Directional LSTM, and the least training time belonged to the SVM with RBF kernel |
---|---|
AbstractList | Human-centered computing is an emerging research field that aims to understand human behavior and integrate users and their social context with computer systems. This research aimed to find the best algorithm for human activity recognition. We used Logistic Regression, SVM with RBF kernel; CNN, LSTM, Bi-Directional LSTM, and CNNLSTM algorithms for analyzing the data. The data analysis measured and compared the accuracy and training time. The most accuracy belonged to the CNN-LSTM and Bi-Directional LSTM, and the least training time belonged to the SVM with RBF kernel |
Author | Aghapour, Mohammad Moradi, Babak Shirbandi, Afshin |
Author_xml | – sequence: 1 givenname: Babak surname: Moradi fullname: Moradi, Babak email: babak.moradi1988@gmail.com organization: Islamic Azad University,Kermanshah Branch,Department of Computer (Computer engineering),Kermanshah,Iran – sequence: 2 givenname: Mohammad surname: Aghapour fullname: Aghapour, Mohammad email: M_aghapour@aut.ac.ir organization: Amirkabir University of Technology (Tehran Polytechnic),Department of Electrical,Tehran,Iran – sequence: 3 givenname: Afshin surname: Shirbandi fullname: Shirbandi, Afshin email: Afshin_shirbandi@aut.ac.ir organization: Amirkabir University of Technology (Tehran Polytechnic),Robotic Research Center,Tehran,Iran |
BookMark | eNpFkNtKAzEURaMoWGu_QJD8wNTcL49lrLZQEUTxsZxJztSITYaZUejfK1jwacNisR72JTnLJSMhN5zNOWf-dl0vl1obZeaCCTH3Tlgp9QmZeeu4MVo55iw_JRNhlKi8FvaCzIbhgzEmuXPO6wl5q8u-gx5paekjhPeUkW4Q-pzyjkKO9A6x-yeLruvLr4YDbUtPV197yHQRxvSdxgN9xlB2OY2p5Cty3sLngLPjTsnr_fKlXlWbp4d1vdhUiXM3VqI1FrizrvGALQrPYnA-WhCsARlVqzyDRoLyKHSM0IQoGwioQ8OMckFOyfVfNyHituvTHvrD9niF_AHWuVZM |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICEE55646.2022.9827335 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9781665480871 1665480874 |
EISSN | 2642-9527 |
EndPage | 596 |
ExternalDocumentID | 9827335 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IK 6IL AAJGR ADZIZ ALMA_UNASSIGNED_HOLDINGS CBEJK CHZPO IPLJI OCL RIE RIL |
ID | FETCH-LOGICAL-i118t-2f67a1878b9aefe290dc89d7a20ba3d4f490ab3a49e25ddabcd3bace5cb0648c3 |
IEDL.DBID | RIE |
IngestDate | Wed Jun 26 19:25:01 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i118t-2f67a1878b9aefe290dc89d7a20ba3d4f490ab3a49e25ddabcd3bace5cb0648c3 |
PageCount | 5 |
ParticipantIDs | ieee_primary_9827335 |
PublicationCentury | 2000 |
PublicationDate | 2022-May-17 |
PublicationDateYYYYMMDD | 2022-05-17 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-May-17 day: 17 |
PublicationDecade | 2020 |
PublicationTitle | 2022 30th International Conference on Electrical Engineering (ICEE) |
PublicationTitleAbbrev | ICEE |
PublicationYear | 2022 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0003188895 |
Score | 1.8520123 |
Snippet | Human-centered computing is an emerging research field that aims to understand human behavior and integrate users and their social context with computer... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 592 |
SubjectTerms | Activity recognition Bi-Directional LSTM Bidirectional control CNN CNN-LSTM Electrical engineering Human activity recognition Human computer interaction Logistic Regression LSTM Machine learning algorithms Support vector machines SVM with RBF kernel Training |
Title | Compare of Machine Learning and Deep Learning Approaches for Human Activity Recognition |
URI | https://ieeexplore.ieee.org/document/9827335 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB7anvTioxXf5ODRbbebZJMcS22pQkXEYm8lj1kRYbfo9uKvN_toq-LB2xJ2ScgsfPkm3zcDcBUmMhaUmkAzQQPmITXwb3riSj0VkzpB5Qpz8vQ-nszY3ZzPG3C98cIgYik-w27xWN7lu8yuilRZT0kPtpQ3oSlUXHm1NvkU_29KqXhtAu6Hqnc7HI04j1khRIiibv3xjy4qJYiM92C6nr7Sjrx1V7np2s9flRn_u7596GzteuRhA0QH0MD0EHa_VRpsw_Ow0pqTLCHTUj-JpC6t-kJ06sgN4nI7MqgrjeMH8YdaUmb6ycBWnSbI41p0lKUdmI1HT8NJUPdUCF49lciDKImF7kshjdKYYKRCZ6VyQkeh0dSxhKlQG6qZwog7p4111GiL3Bp_eJGWHkErzVI8BuKpofbkkCehE4wxoWlokfrIWBM5xcQJtIstWiyrshmLendO_x4-g50iTMXFfF-cQyt_X-GFx_vcXJaB_gJaqqtC |
link.rule.ids | 309,310,780,784,789,790,796,27925,54758 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LTgIxFG0QF-rGBxjfduHSGYZpO22XBCGgDDEGIjvSxx1jTAaisPHr7TwANS7cNU0nadpJ7j2355yL0E2QiIgToj1FOfGoC6meW-mAK3FQTKgEpM3EyfEw6o3p_YRNKuh2rYUBgJx8Bn42zN_y7cwss1JZQwoXbAnbQtuMujy3UGutKyru7xRCslIG3Axko9_udBiLaEZFCEO__PxHH5U8jHT3UbzaQMEeefOXC-2bz1_ejP_d4QGqbwR7-HEdig5RBdIjtPfNa7CGntsF2xzPEhznDErApbnqC1apxXcA881Mq_Qahw_s0lqc1_pxyxS9JvDTinY0S-to3O2M2j2v7KrgvTowsfDCJOKqKbjQUkECoQysEdJyFQZaEUsTKgOliaISQmat0sYSrQwwo136Igw5RtV0lsIJwg4cKgcPWRJYTinligQGCJeR0aGVlJ-iWnZE03lhnDEtT-fs7-lrtNMbxYPpoD98OEe72ZVlz_RNfoGqi_clXLrov9BX-aV_AYxlrpU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+30th+International+Conference+on+Electrical+Engineering+%28ICEE%29&rft.atitle=Compare+of+Machine+Learning+and+Deep+Learning+Approaches+for+Human+Activity+Recognition&rft.au=Moradi%2C+Babak&rft.au=Aghapour%2C+Mohammad&rft.au=Shirbandi%2C+Afshin&rft.date=2022-05-17&rft.pub=IEEE&rft.eissn=2642-9527&rft.spage=592&rft.epage=596&rft_id=info:doi/10.1109%2FICEE55646.2022.9827335&rft.externalDocID=9827335 |