Prediction of reservoir damage caused by fracturing fluid based on BP neural network

Low permeability reservoirs need fracturing to obtain productivity. The damage of fracturing fluid to reservoir is an important factor affecting productivity. Obtaining reservoir sensitivity data is an important task for optimizing fracturing fluid. At present, data is still obtained from reservoir...

Full description

Saved in:
Bibliographic Details
Published in2021 International Conference on Artificial Intelligence and Electromechanical Automation (AIEA) pp. 298 - 301
Main Authors Chen, Fei, Bai, Bo, Wang, Zu-Wen, Zhou, Lu, Xu, Ying-Xin, An, Chong-Qing
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.05.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Low permeability reservoirs need fracturing to obtain productivity. The damage of fracturing fluid to reservoir is an important factor affecting productivity. Obtaining reservoir sensitivity data is an important task for optimizing fracturing fluid. At present, data is still obtained from reservoir sensitivity experiments in China. This traditional method has relatively high veracity, but it costs a lot of manpower and it is often behind the project. Thus, a prediction model which BP neural network is put forward. The success rate is 100% when this method is applied to the two wells of changqing Oil field. The experimental result indicates that BP network, good prediction results can be obtained.
AbstractList Low permeability reservoirs need fracturing to obtain productivity. The damage of fracturing fluid to reservoir is an important factor affecting productivity. Obtaining reservoir sensitivity data is an important task for optimizing fracturing fluid. At present, data is still obtained from reservoir sensitivity experiments in China. This traditional method has relatively high veracity, but it costs a lot of manpower and it is often behind the project. Thus, a prediction model which BP neural network is put forward. The success rate is 100% when this method is applied to the two wells of changqing Oil field. The experimental result indicates that BP network, good prediction results can be obtained.
Author Zhou, Lu
Chen, Fei
An, Chong-Qing
Xu, Ying-Xin
Bai, Bo
Wang, Zu-Wen
Author_xml – sequence: 1
  givenname: Fei
  surname: Chen
  fullname: Chen, Fei
  email: 5430053@qq.com
  organization: Changqing Downhole Technology Company CNPC Chuanqing Drilling Engineering Company Limited,Shaanxi,Xi’an,China,710018
– sequence: 2
  givenname: Bo
  surname: Bai
  fullname: Bai, Bo
  email: cqjx_baibo@cnpc.com.cn
  organization: Changqing Downhole Technology Company CNPC Chuanqing Drilling Engineering Company Limited,Shaanxi,Xi’an,China,710018
– sequence: 3
  givenname: Zu-Wen
  surname: Wang
  fullname: Wang, Zu-Wen
  email: caoxin@cnpc.com.cn
  organization: Changqing Downhole Technology Company CNPC Chuanqing Drilling Engineering Company Limited,Shaanxi,Xi’an,China,710018
– sequence: 4
  givenname: Lu
  surname: Zhou
  fullname: Zhou, Lu
  email: Zhoulu@cnpc.com.cn
  organization: Changqing Downhole Technology Company CNPC Chuanqing Drilling Engineering Company Limited,Shaanxi,Xi’an,China,710018
– sequence: 5
  givenname: Ying-Xin
  surname: Xu
  fullname: Xu, Ying-Xin
  email: xuyingx@cnpc.com.cn
  organization: Changqing Downhole Technology Company CNPC Chuanqing Drilling Engineering Company Limited,Shaanxi,Xi’an,China,710018
– sequence: 6
  givenname: Chong-Qing
  surname: An
  fullname: An, Chong-Qing
  email: cqjx_baibo@cnpc.com.cn
  organization: Changqing Downhole Technology Company CNPC Chuanqing Drilling Engineering Company Limited,Shaanxi,Xi’an,China,710018
BookMark eNotjMtOwzAUBY0ECyj9Alj4BxKu384yVAUqVaKLsq4c57qySB3kJKD-PUF0NdIZzbkj16lPSMgjg5IxqJ7qzbpWgmsoOXBWAoCBK7KsjGVaKzkbZW_JfpexjX6MfaJ9oBkHzN99zLR1J3dE6t00YEubMw3Z-XHKMR1p6KY4b-7PzN3zjiacsutmjD99_rwnN8F1Ay4vXJCPl_V-9VZs3183q3pbRMbsWHAppQvMaBTSG6abNvBggDfBaVAqKGG9RRAeWwHKWoYCtPZcBKO9sUIsyMP_b0TEw1eOJ5fPh0pxJSslfgEkBk3T
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/AIEA53260.2021.00070
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665432658
1665432659
EndPage 301
ExternalDocumentID 9525495
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i118t-2444af176e34c716bdf2f702bfa6055f538c8e03ced305881e3066c23f76c7833
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:49 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-2444af176e34c716bdf2f702bfa6055f538c8e03ced305881e3066c23f76c7833
PageCount 4
ParticipantIDs ieee_primary_9525495
PublicationCentury 2000
PublicationDate 2021-May
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-May
PublicationDecade 2020
PublicationTitle 2021 International Conference on Artificial Intelligence and Electromechanical Automation (AIEA)
PublicationTitleAbbrev AIEA
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7660848
Snippet Low permeability reservoirs need fracturing to obtain productivity. The damage of fracturing fluid to reservoir is an important factor affecting productivity....
SourceID ieee
SourceType Publisher
StartPage 298
SubjectTerms BP Neural Network
Costs
Fluids
formation damage
fracturing fluid
Neural networks
Oils
Predictive models
Productivity
reservoir sensitivity
Sensitivity
Title Prediction of reservoir damage caused by fracturing fluid based on BP neural network
URI https://ieeexplore.ieee.org/document/9525495
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA61J08qrfgmB49uu5vsIzlWaalCpYcWeit5DRRrV9ZdQX-9k91aRTx4SkgIGyYkX77NfDOEXAuttAPJA2AyDmJhIJAMWBCCsokxDEB4vfPkMR3P44dFsmiRm50WxjlXO5-5nq_Wb_k2N5X_VdaXiaczyR7ZQ-LWaLW2argolP3B_XCQ4G0kRNbHIh-Y0Gcg_pEzpYaM0QGZfH2s8RR56lWl7pmPX3EY_zubQ9L9FufR6Q52jkjLbTpkNi38i4u3Ms2Bek1R8ZavCmrVM54Y1Kjq1Vmq3yl4WVStTaSwrlbYpnwPjrudUh_dUq2xqH3Du2Q-Gs7uxsE2YUKwQp5QBgjVsYIoSx2PDRIhbYFBFjINCllLAni4GeFCbpzFbS5E5JAwpIZxyFKTCc6PSXuTb9wJoYpHkY1YBsKDuLMCNBrVSstdLK2JT0nHW2T50sTEWG6NcfZ38znZ92vSOApekHZZVO4SwbzUV_UqfgJvwaHO
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LTwIxEG6IHvSkBoxve9Djwm731T14QIWAPMIBEm7YbTsJEcEsrAZ_i3_F_-Z0eWiMVxJP23TTw-zMdr5p55sh5IrHItYQuRawyLM8LsGKGDDLBqF8KRkAN3znVjuo9byHvt_PkY81F0ZrnSWf6aIZZnf5aiJTc1RWinwTzqxSKBt6_oYB2vSmfo_avGasWune1axlDwFriNB5ZqH38gQ4YaBdT2JsECtgENosBoFA3gf83yXXtiu1Qsvn3NGIoQPJXAgDGXJz3Ikb_DbiDJ8t2GFL_p1jR6VyvVL2Ef_YGGcyx5RCND2Pf3RpyZxUdY98rsRb5KY8FdNZXJTvvyo__lf590nhm35IO2vHekByepwn3U5i7pSMHdEJUMOaSl4nw4Qq8Yx7IpUinWpF4zkFQ_zK2JcURukQ54R5g-tuO9TU7xQjfGTZ7wXS24g4h2RrPBnrI0KF6zjKYSFwA1O04hCjElWkXO1FSnrHJG80MHhZVP0YLD_-yd_Tl2Sn1m01B816u3FKdo09LNIiz8jWLEn1OUKXWXyRWRAlj5tW2RfIGv1e
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+International+Conference+on+Artificial+Intelligence+and+Electromechanical+Automation+%28AIEA%29&rft.atitle=Prediction+of+reservoir+damage+caused+by+fracturing+fluid+based+on+BP+neural+network&rft.au=Chen%2C+Fei&rft.au=Bai%2C+Bo&rft.au=Wang%2C+Zu-Wen&rft.au=Zhou%2C+Lu&rft.date=2021-05-01&rft.pub=IEEE&rft.spage=298&rft.epage=301&rft_id=info:doi/10.1109%2FAIEA53260.2021.00070&rft.externalDocID=9525495