Prediction of reservoir damage caused by fracturing fluid based on BP neural network
Low permeability reservoirs need fracturing to obtain productivity. The damage of fracturing fluid to reservoir is an important factor affecting productivity. Obtaining reservoir sensitivity data is an important task for optimizing fracturing fluid. At present, data is still obtained from reservoir...
Saved in:
Published in | 2021 International Conference on Artificial Intelligence and Electromechanical Automation (AIEA) pp. 298 - 301 |
---|---|
Main Authors | , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.05.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Low permeability reservoirs need fracturing to obtain productivity. The damage of fracturing fluid to reservoir is an important factor affecting productivity. Obtaining reservoir sensitivity data is an important task for optimizing fracturing fluid. At present, data is still obtained from reservoir sensitivity experiments in China. This traditional method has relatively high veracity, but it costs a lot of manpower and it is often behind the project. Thus, a prediction model which BP neural network is put forward. The success rate is 100% when this method is applied to the two wells of changqing Oil field. The experimental result indicates that BP network, good prediction results can be obtained. |
---|---|
AbstractList | Low permeability reservoirs need fracturing to obtain productivity. The damage of fracturing fluid to reservoir is an important factor affecting productivity. Obtaining reservoir sensitivity data is an important task for optimizing fracturing fluid. At present, data is still obtained from reservoir sensitivity experiments in China. This traditional method has relatively high veracity, but it costs a lot of manpower and it is often behind the project. Thus, a prediction model which BP neural network is put forward. The success rate is 100% when this method is applied to the two wells of changqing Oil field. The experimental result indicates that BP network, good prediction results can be obtained. |
Author | Zhou, Lu Chen, Fei An, Chong-Qing Xu, Ying-Xin Bai, Bo Wang, Zu-Wen |
Author_xml | – sequence: 1 givenname: Fei surname: Chen fullname: Chen, Fei email: 5430053@qq.com organization: Changqing Downhole Technology Company CNPC Chuanqing Drilling Engineering Company Limited,Shaanxi,Xi’an,China,710018 – sequence: 2 givenname: Bo surname: Bai fullname: Bai, Bo email: cqjx_baibo@cnpc.com.cn organization: Changqing Downhole Technology Company CNPC Chuanqing Drilling Engineering Company Limited,Shaanxi,Xi’an,China,710018 – sequence: 3 givenname: Zu-Wen surname: Wang fullname: Wang, Zu-Wen email: caoxin@cnpc.com.cn organization: Changqing Downhole Technology Company CNPC Chuanqing Drilling Engineering Company Limited,Shaanxi,Xi’an,China,710018 – sequence: 4 givenname: Lu surname: Zhou fullname: Zhou, Lu email: Zhoulu@cnpc.com.cn organization: Changqing Downhole Technology Company CNPC Chuanqing Drilling Engineering Company Limited,Shaanxi,Xi’an,China,710018 – sequence: 5 givenname: Ying-Xin surname: Xu fullname: Xu, Ying-Xin email: xuyingx@cnpc.com.cn organization: Changqing Downhole Technology Company CNPC Chuanqing Drilling Engineering Company Limited,Shaanxi,Xi’an,China,710018 – sequence: 6 givenname: Chong-Qing surname: An fullname: An, Chong-Qing email: cqjx_baibo@cnpc.com.cn organization: Changqing Downhole Technology Company CNPC Chuanqing Drilling Engineering Company Limited,Shaanxi,Xi’an,China,710018 |
BookMark | eNotjMtOwzAUBY0ECyj9Alj4BxKu384yVAUqVaKLsq4c57qySB3kJKD-PUF0NdIZzbkj16lPSMgjg5IxqJ7qzbpWgmsoOXBWAoCBK7KsjGVaKzkbZW_JfpexjX6MfaJ9oBkHzN99zLR1J3dE6t00YEubMw3Z-XHKMR1p6KY4b-7PzN3zjiacsutmjD99_rwnN8F1Ay4vXJCPl_V-9VZs3183q3pbRMbsWHAppQvMaBTSG6abNvBggDfBaVAqKGG9RRAeWwHKWoYCtPZcBKO9sUIsyMP_b0TEw1eOJ5fPh0pxJSslfgEkBk3T |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/AIEA53260.2021.00070 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781665432658 1665432659 |
EndPage | 301 |
ExternalDocumentID | 9525495 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i118t-2444af176e34c716bdf2f702bfa6055f538c8e03ced305881e3066c23f76c7833 |
IEDL.DBID | RIE |
IngestDate | Thu Jun 29 18:37:49 EDT 2023 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i118t-2444af176e34c716bdf2f702bfa6055f538c8e03ced305881e3066c23f76c7833 |
PageCount | 4 |
ParticipantIDs | ieee_primary_9525495 |
PublicationCentury | 2000 |
PublicationDate | 2021-May |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-May |
PublicationDecade | 2020 |
PublicationTitle | 2021 International Conference on Artificial Intelligence and Electromechanical Automation (AIEA) |
PublicationTitleAbbrev | AIEA |
PublicationYear | 2021 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.7660848 |
Snippet | Low permeability reservoirs need fracturing to obtain productivity. The damage of fracturing fluid to reservoir is an important factor affecting productivity.... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 298 |
SubjectTerms | BP Neural Network Costs Fluids formation damage fracturing fluid Neural networks Oils Predictive models Productivity reservoir sensitivity Sensitivity |
Title | Prediction of reservoir damage caused by fracturing fluid based on BP neural network |
URI | https://ieeexplore.ieee.org/document/9525495 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA61J08qrfgmB49uu5vsIzlWaalCpYcWeit5DRRrV9ZdQX-9k91aRTx4SkgIGyYkX77NfDOEXAuttAPJA2AyDmJhIJAMWBCCsokxDEB4vfPkMR3P44dFsmiRm50WxjlXO5-5nq_Wb_k2N5X_VdaXiaczyR7ZQ-LWaLW2argolP3B_XCQ4G0kRNbHIh-Y0Gcg_pEzpYaM0QGZfH2s8RR56lWl7pmPX3EY_zubQ9L9FufR6Q52jkjLbTpkNi38i4u3Ms2Bek1R8ZavCmrVM54Y1Kjq1Vmq3yl4WVStTaSwrlbYpnwPjrudUh_dUq2xqH3Du2Q-Gs7uxsE2YUKwQp5QBgjVsYIoSx2PDRIhbYFBFjINCllLAni4GeFCbpzFbS5E5JAwpIZxyFKTCc6PSXuTb9wJoYpHkY1YBsKDuLMCNBrVSstdLK2JT0nHW2T50sTEWG6NcfZ38znZ92vSOApekHZZVO4SwbzUV_UqfgJvwaHO |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LTwIxEG6IHvSkBoxve9Djwm731T14QIWAPMIBEm7YbTsJEcEsrAZ_i3_F_-Z0eWiMVxJP23TTw-zMdr5p55sh5IrHItYQuRawyLM8LsGKGDDLBqF8KRkAN3znVjuo9byHvt_PkY81F0ZrnSWf6aIZZnf5aiJTc1RWinwTzqxSKBt6_oYB2vSmfo_avGasWune1axlDwFriNB5ZqH38gQ4YaBdT2JsECtgENosBoFA3gf83yXXtiu1Qsvn3NGIoQPJXAgDGXJz3Ikb_DbiDJ8t2GFL_p1jR6VyvVL2Ef_YGGcyx5RCND2Pf3RpyZxUdY98rsRb5KY8FdNZXJTvvyo__lf590nhm35IO2vHekByepwn3U5i7pSMHdEJUMOaSl4nw4Qq8Yx7IpUinWpF4zkFQ_zK2JcURukQ54R5g-tuO9TU7xQjfGTZ7wXS24g4h2RrPBnrI0KF6zjKYSFwA1O04hCjElWkXO1FSnrHJG80MHhZVP0YLD_-yd_Tl2Sn1m01B816u3FKdo09LNIiz8jWLEn1OUKXWXyRWRAlj5tW2RfIGv1e |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+International+Conference+on+Artificial+Intelligence+and+Electromechanical+Automation+%28AIEA%29&rft.atitle=Prediction+of+reservoir+damage+caused+by+fracturing+fluid+based+on+BP+neural+network&rft.au=Chen%2C+Fei&rft.au=Bai%2C+Bo&rft.au=Wang%2C+Zu-Wen&rft.au=Zhou%2C+Lu&rft.date=2021-05-01&rft.pub=IEEE&rft.spage=298&rft.epage=301&rft_id=info:doi/10.1109%2FAIEA53260.2021.00070&rft.externalDocID=9525495 |