Automatic epileptic seizure detection in a mixed generalized and focal seizure dataset

Detection of seizure periods in an epileptic patient is an important part of health care. However, due to the variety in types of seizures and location of them, real-time seizure detection is not straight forward. In this paper, we propose a method for seizure detection from EEG signals in datasets...

Full description

Saved in:
Bibliographic Details
Published in2019 26th National and 4th International Iranian Conference on Biomedical Engineering (ICBME) pp. 172 - 176
Main Authors Mozafari, Mohsen, Sardouie, Sepideh Hajipour
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.11.2019
Subjects
Online AccessGet full text
DOI10.1109/ICBME49163.2019.9030381

Cover

Abstract Detection of seizure periods in an epileptic patient is an important part of health care. However, due to the variety in types of seizures and location of them, real-time seizure detection is not straight forward. In this paper, we propose a method for seizure detection from EEG signals in datasets which have both generalized and focal seizures. The proposed method is useful in the situations that we have no prior knowledge about the location of the patient's seizure and the pattern of evolution of seizure location. In the proposed method, first, the artifacts are automatically reduced by Blind Source Separation (BSS) methods. Then, the channels are clustered into two clusters. After that, the channels of each cluster are classified into the seizure and non-seizure groups. The final decision is made based on voting in each cluster. If at least one cluster shows seizure behavior, we assign the corresponding epoch to seizure class. Results show that our method achieved 80.72% accuracy, 80% sensitivity, 81.08% specificity, and 67.55% precision in a mixed generalized and focal seizure dataset.
AbstractList Detection of seizure periods in an epileptic patient is an important part of health care. However, due to the variety in types of seizures and location of them, real-time seizure detection is not straight forward. In this paper, we propose a method for seizure detection from EEG signals in datasets which have both generalized and focal seizures. The proposed method is useful in the situations that we have no prior knowledge about the location of the patient's seizure and the pattern of evolution of seizure location. In the proposed method, first, the artifacts are automatically reduced by Blind Source Separation (BSS) methods. Then, the channels are clustered into two clusters. After that, the channels of each cluster are classified into the seizure and non-seizure groups. The final decision is made based on voting in each cluster. If at least one cluster shows seizure behavior, we assign the corresponding epoch to seizure class. Results show that our method achieved 80.72% accuracy, 80% sensitivity, 81.08% specificity, and 67.55% precision in a mixed generalized and focal seizure dataset.
Author Mozafari, Mohsen
Sardouie, Sepideh Hajipour
Author_xml – sequence: 1
  givenname: Mohsen
  surname: Mozafari
  fullname: Mozafari, Mohsen
  organization: Sharif University of Technology,Department of Electrical Engineering,Tehran,Iran
– sequence: 2
  givenname: Sepideh Hajipour
  surname: Sardouie
  fullname: Sardouie, Sepideh Hajipour
  organization: Sharif University of Technology,Department of Electrical Engineering,Tehran,Iran
BookMark eNpFj81KAzEUhSPoQmufwIV5gY7J5H9Zh2oLFTfqttwmNxKYyQwzKWif3ooFV-dbnO_AuSGXuc9IyD1nFefMPWyax5eVdFyLqmbcVY4JJiy_IHNnLDe15Urrml2Tj-Wh9B2U5CkOqcXhlyZMx8OINGBBX1KfacoUaJe-MNBPzDhCm44nhhxo7D20_woUmLDckqsI7YTzc87I-9PqrVkvtq_Pm2a5XSTObVlwEMpFjIpp4WtpJERVe9yD0_ugXIhWGubQWiWDEEaeysJLYwILQhsVxIzc_e0mRNwNY-pg_N6d34ofLJVQLA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICBME49163.2019.9030381
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781728156620
1728156629
9781728156637
1728156637
EndPage 176
ExternalDocumentID 9030381
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i118t-1a359fef5063c2474af52ceba96bd59df84709e8854d337459f3c477d0d3675d3
IEDL.DBID RIE
IngestDate Wed Aug 27 06:30:22 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-1a359fef5063c2474af52ceba96bd59df84709e8854d337459f3c477d0d3675d3
PageCount 5
ParticipantIDs ieee_primary_9030381
PublicationCentury 2000
PublicationDate 2019-Nov.
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-Nov.
PublicationDecade 2010
PublicationTitle 2019 26th National and 4th International Iranian Conference on Biomedical Engineering (ICBME)
PublicationTitleAbbrev ICBME
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7131225
Snippet Detection of seizure periods in an epileptic patient is an important part of health care. However, due to the variety in types of seizures and location of...
SourceID ieee
SourceType Publisher
StartPage 172
SubjectTerms Blind Source Separation (BSS)
Clustering
Epilepsy
Leave One Subject Out (LOSO)
Linear Discriminant Analysis (LDA)
Seizure
Title Automatic epileptic seizure detection in a mixed generalized and focal seizure dataset
URI https://ieeexplore.ieee.org/document/9030381
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5zJ08qm_ibHDzarmuStTnq2JjCxIOT3UZ-vEoRuzFTkP31vrR1Q_Hg7RESmr6kfO813_dCyDXPMAg1ygSZzWzAUw2BTGw_UCKNDTcJGO1PdKePg8mMP8zFvEVutloYAKjIZxB6szrLt0tT-l9lPYk7knmd9R5us1qr1VC2-pHs3Q_vpiOO4Q7zjC0ZNr1_XJtSocb4gEy_n1eTRd7C0unQbH6VYvzvhA5Jd6fPo09b5DkiLSg65OW2dMuqACuFFX7rK299QL4p10AtuIpzVdC8oIq-559g6WtdcjrfoK0KSzOPa7shyiHCuS6ZjUfPw0nQ3JoQ5JgsuKCvmJAZZAKDDxPzhKtMxAa0kgNthbQZ4lEkIU0Ft4wlHDszw5PERpZh9mDZMWkXywJOCPW5WIwOtYhvXOsUQynJRYwvFxkjeXpKOt4ni1VdGGPRuOPs7-Zzsu_XpRbyXZC2W5dwiYju9FW1lF8JMaNv
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4IHvSkBoy_7cGjG7C1bD0qgYAy4gEMN7K2b2YxDoJdYvjrfd0mROPB28vSZutrl--99vteCbllCQahKlZOohPtsFCCIwLdcWIeeoqpAJS0J7rRpDucscc5n9fI3VYLAwAF-QxcaxZn-XqpcrtV1hK4In2rs95D3Ge8VGtVpK1OW7RGvYeozzDg8S1nS7hV-x8XpxS4MTgk0fcbS7rIm5sb6arNr2KM__2kI9LcKfTo8xZ7jkkNsgZ5uc_NsijBSmGFf_vKWh-QbvI1UA2mYF1lNM1oTN_TT9D0tSw6nW7QjjNNE4tsuy6xQYwzTTIb9Ke9oVPdm-CkmC4YpxP7XCSQcAw_lMcCFifcUyBj0ZWaC50gIrUFhCFn2vcDho19xYJAt7WP-YP2T0g9W2ZwSqjNxjx0qEaEY1KGGEwJxj0cXFspwcIz0rA-WazK0hiLyh3nfz--IfvDaTRejEeTpwtyYOeolPVdkrpZ53CF-G7kdTGtX8ftprw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2019+26th+National+and+4th+International+Iranian+Conference+on+Biomedical+Engineering+%28ICBME%29&rft.atitle=Automatic+epileptic+seizure+detection+in+a+mixed+generalized+and+focal+seizure+dataset&rft.au=Mozafari%2C+Mohsen&rft.au=Sardouie%2C+Sepideh+Hajipour&rft.date=2019-11-01&rft.pub=IEEE&rft.spage=172&rft.epage=176&rft_id=info:doi/10.1109%2FICBME49163.2019.9030381&rft.externalDocID=9030381