A Univariate Morphometry Index for AD-induced Abnormal Cortical Surface Pattern Similarity Measurement

Impairments in cognition induced by Alzheimer's disease (AD) are closely related to the changes in cerebral cortex morphology. In order to observe AD development and evaluate the effectiveness of interventions in the early stages of AD, we proposed a AD-specific abnormal surface pattern similar...

Full description

Saved in:
Bibliographic Details
Published in2022 4th International Conference on Industrial Artificial Intelligence (IAI) pp. 1 - 6
Main Authors Qu, Zongshuai, Li, Nan, Wang, Gang
Format Conference Proceeding
LanguageEnglish
Published IEEE 24.08.2022
Subjects
Online AccessGet full text
DOI10.1109/IAI55780.2022.9976557

Cover

Loading…
Abstract Impairments in cognition induced by Alzheimer's disease (AD) are closely related to the changes in cerebral cortex morphology. In order to observe AD development and evaluate the effectiveness of interventions in the early stages of AD, we proposed a AD-specific abnormal surface pattern similarity measure capable of exploiting univariate neurodegeneration biomarkers (UNB) to reflect the morphological changes induced by AD-related diseases based on the structural magnetic resonance imaging (sMRI). First, registering the thickness information and anatomical regions of interest (ROIs) between individual cortical surfaces. Second, using the intrinsic thickness information of the \mathbf{A}\boldsymbol{\upbeta}+ AD and the \mathbf{A}\boldsymbol{\upbeta}- normal control (NC) groups via general linear model, we identified the top six ROIs with the most significant surface morphometry changes. Finally, a univariate morphometry index (UMI) of the individual subject was constructed by comparing the similarity between the individual morphological atrophy pattern and the atrophy pattern of the \mathbf{A}\boldsymbol{\upbeta}+ AD group on the identified ROIs. We validated our work in the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. With the computed UMIs, the estimated minimum sample sizes needed to detect a 25% reduction in the mean annual change with 80% power and two-tailed \mathbf{P}=\boldsymbol{0.05} were 156, 349 and 423 for the longitudinal \mathbf{A}pmb{\upbeta}+\boldsymbol{\text{AD}}, \mathbf{A}\boldsymbol{\upbeta}+ mild cognitive impairment (MCI) and \mathbf{A}\boldsymbol{\upbeta}+ NC groups, respectively. Our experimental results outperformed traditional volume measures and demonstrated that UMI could be used as potential UNB which could reflect the cerebral cortex morphological changes induced by AD-related diseases.
AbstractList Impairments in cognition induced by Alzheimer's disease (AD) are closely related to the changes in cerebral cortex morphology. In order to observe AD development and evaluate the effectiveness of interventions in the early stages of AD, we proposed a AD-specific abnormal surface pattern similarity measure capable of exploiting univariate neurodegeneration biomarkers (UNB) to reflect the morphological changes induced by AD-related diseases based on the structural magnetic resonance imaging (sMRI). First, registering the thickness information and anatomical regions of interest (ROIs) between individual cortical surfaces. Second, using the intrinsic thickness information of the \mathbf{A}\boldsymbol{\upbeta}+ AD and the \mathbf{A}\boldsymbol{\upbeta}- normal control (NC) groups via general linear model, we identified the top six ROIs with the most significant surface morphometry changes. Finally, a univariate morphometry index (UMI) of the individual subject was constructed by comparing the similarity between the individual morphological atrophy pattern and the atrophy pattern of the \mathbf{A}\boldsymbol{\upbeta}+ AD group on the identified ROIs. We validated our work in the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. With the computed UMIs, the estimated minimum sample sizes needed to detect a 25% reduction in the mean annual change with 80% power and two-tailed \mathbf{P}=\boldsymbol{0.05} were 156, 349 and 423 for the longitudinal \mathbf{A}pmb{\upbeta}+\boldsymbol{\text{AD}}, \mathbf{A}\boldsymbol{\upbeta}+ mild cognitive impairment (MCI) and \mathbf{A}\boldsymbol{\upbeta}+ NC groups, respectively. Our experimental results outperformed traditional volume measures and demonstrated that UMI could be used as potential UNB which could reflect the cerebral cortex morphological changes induced by AD-related diseases.
Author Qu, Zongshuai
Li, Nan
Wang, Gang
Author_xml – sequence: 1
  givenname: Zongshuai
  surname: Qu
  fullname: Qu, Zongshuai
  email: zongshuaiqu@163.com
  organization: Ludong University,School of Information and Electrical Engineering,Yantai,China,264025
– sequence: 2
  givenname: Nan
  surname: Li
  fullname: Li, Nan
  email: linansname@163.com
  organization: Ludong University,School of Information and Electrical Engineering,Yantai,China,264025
– sequence: 3
  givenname: Gang
  surname: Wang
  fullname: Wang, Gang
  email: gangwang1970@ldu.edu.cn
  organization: Ludong University,School of Information and Electrical Engineering,Yantai,China,264025
BookMark eNotj11LwzAYRiPohZv-AhHyB1rzNk3SXJb6VdhQmLseWfoGA206slTsv7fgrp5zbg48K3IdxoCEPALLAZh-autWCFWxvGBFkWut5KJXZAVSilJAwfgtcTXdB_9jojcJ6XaMp-9xwBRn2oYOf6kbI62fMx-6yWJH62MY42B62owxebvAborOWKSfJiWMge784Psll2a6RXOeIg4Y0h25caY_4_1l12T_-vLVvGebj7e2qTeZB6hSBmDBoq6wFK5AW4A10mmjUFmlK6WERgmyFKwEMMgFCsWPisvOSMGZlXxNHv67HhEPp-gHE-fD5Tr_A1F_VDk
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/IAI55780.2022.9976557
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1665451203
9781665451208
EndPage 6
ExternalDocumentID 9976557
Genre orig-research
GrantInformation_xml – fundername: Liaoning Province Natural Science Foundation
  grantid: 2019-KF-23-08
  funderid: 10.13039/501100005047
– fundername: National Natural Science Foundation of China
  grantid: 62171209
  funderid: 10.13039/501100001807
– fundername: Key Research and Development program of Shandong Province
  grantid: 2020CXGC010701
  funderid: 10.13039/100014103
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i118t-11c1ce98e45f2ec21ca6f9a7e7c7987759e616450411ae35e573b736da6530c63
IEDL.DBID RIE
IngestDate Wed Aug 27 02:51:04 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i118t-11c1ce98e45f2ec21ca6f9a7e7c7987759e616450411ae35e573b736da6530c63
PageCount 6
ParticipantIDs ieee_primary_9976557
PublicationCentury 2000
PublicationDate 2022-Aug.-24
PublicationDateYYYYMMDD 2022-08-24
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-Aug.-24
  day: 24
PublicationDecade 2020
PublicationTitle 2022 4th International Conference on Industrial Artificial Intelligence (IAI)
PublicationTitleAbbrev IAI
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8077435
Snippet Impairments in cognition induced by Alzheimer's disease (AD) are closely related to the changes in cerebral cortex morphology. In order to observe AD...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Atrophy
Cerebral cortex
Magnetic resonance imaging
Morphology
Neuroimaging
Surface morphology
Volume measurement
Title A Univariate Morphometry Index for AD-induced Abnormal Cortical Surface Pattern Similarity Measurement
URI https://ieeexplore.ieee.org/document/9976557
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA7bTp5UNvE3OXi0XdM0TXMs07EJE2EOdhtt8gJD10rpDvrX-9LVieLBW2hCG96Dfu97ee8LITdac8FVbLwE0cyLuNb4H8zBczolEgRIkzVqn4_xZBE9LMWyQ273vTAA0BSfge-GzVm-KfXWpcqGCrFTCNklXSRuu16ttimHBWo4Tac4mQRI-sLQb9f-uDSlwYzxIZl9fW1XKvLib-vc1x-_hBj_u50jMvjuzqNPe9w5Jh0o-sSm1NVYIPPF4JHOSjRfuYG6eqdTp4dIMTal6Z2HDBx9aWiaFy5YfaWjsmqy2XS-rWzm3twIbhZ0vt6skfVikE5n33nEAVmM759HE6-9Q8FbI3WoPcY006ASiIQNQYdMZ7FVmQSppUqkFApiZEwiiBjLgAsQkueSx-giwQMd8xPSK8oCTgkFkwnLpdGc2QiQtlhuRGgNKG6NUPaM9J2NVm87mYxVa57zvx9fkAPnJ5eeDaNL0qurLVwhvtf5dePYT0gcqMU
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4QD3pSA8bf9uDRAVvXlR4XlDBlxARIuJGtfU2IshkyDvrX-zomROPBW7M2W_Nesu99r-99JeROKcaZDLTTRTRzfKYU_gdTcKxOiQAOQiel2ucoGEz9pxmf1cj9thcGAMriM2jZYXmWr3O1tqmytkTs5FzskX3EfV9uurWqthy3I9tRGOF0t4O0z_Na1eof16aUqNE_IvH39zbFIq-tdZG21OcvKcb_buiYNHf9efRlizwnpAZZg5iQ2ioL5L4YPtI4RwPmSyhWHzSyiogUo1MaPjjIwdGbmoZpZsPVN9rLV2U-m47XK5PYN5eSmxkdL5YL5L0YptN4l0lskmn_cdIbONUtCs4CyUPhuK5yFcgu-Nx4oDxXJYGRiQChhOwKwSUEyJl4x3fdBBgHLlgqWIBO4qyjAnZK6lmewRmhoBNumNCKucYHJC6Gae4ZDZIZzaU5Jw1ro_n7RihjXpnn4u_Ht-RgMImH82E0er4kh9ZnNlnr-VekXqzWcI1oX6Q3pZO_AE-7rBU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+4th+International+Conference+on+Industrial+Artificial+Intelligence+%28IAI%29&rft.atitle=A+Univariate+Morphometry+Index+for+AD-induced+Abnormal+Cortical+Surface+Pattern+Similarity+Measurement&rft.au=Qu%2C+Zongshuai&rft.au=Li%2C+Nan&rft.au=Wang%2C+Gang&rft.date=2022-08-24&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FIAI55780.2022.9976557&rft.externalDocID=9976557