European Women In Mathematics - Proceedings Of The 13th General Meeting

Saved in:
Bibliographic Details
Main Author Sylvie Paycha, Catherine Hobbs
Format eBook
LanguageEnglish
Published Singapore World Scientific Publishing Company 2009
Edition1
Subjects
Online AccessGet full text
ISBN9814277681
9789814277686
9814277673
9789814277679

Cover

Table of Contents:
  • Intro -- CONTENTS -- Preface -- Organizing Committees -- Part A Invited Talks -- Deformation Quantisation and Connections S. Gutt -- 1. Quantization -- 2. Basic definitions -- 3. Symplectic case: star products and symplectic connections -- 3.1. Fedosov's construction -- 4. Star products on Poisson manifolds -- 4.1. Star products on Poisson manifolds and formality -- 4.2. Kontsevich's formality for Rd -- 4.3. Universal star product and universal formality -- Universal star product -- Universal formality -- References -- What is Symplectic Geometry? D. McDu -- 1. First notions -- 2. Symplectomorphisms -- 3. Almost complex structures and J-holomorphic curves -- 3.1. Sketch proof of the nonsqueezing theorem -- Acknowledgements -- References -- Regular Permutation Groups and Cayley Graphs C. E. Praeger -- 1. Introduction -- 1.1. Permutation groups and regularity -- 1.2. Cayley graphs -- 2. A recognition problem for Cayley graphs -- 3. Cayley graphs and B-groups -- 4. A fascinating density result -- 5. Exact factorisations of groups -- 6. Primitive Cayley graphs for various groups G -- 7. Types of finite primitive groups -- 8. Exact factorisations of finite classical groups -- References -- Arithmetic of Elliptic Curves through the Ages R. Sujatha -- 1. Introduction -- 2. Elliptic curves and number theory -- 3. Iwasawa theory -- 4. Iwasawa algebras -- 5. Main conjectures -- 6. Applications and examples -- References -- Part B Contributed Short Talks -- Tricritical Points and Liquid-Solid Critical Lines A. Aitta -- 1. Introduction -- 2. Landau theory -- 3. Experimental evidence for iron -- 4. Conclusions -- References -- Elastic Waves in Rods of Rectangular Cross Section A. A. Bondarenko -- 1. Introduction -- 2. Formulation of the problem -- 3. Method of solution -- 4. Results and discussion -- 5. Conclusion -- Acknowledgement -- References
  • 3.3. History and philosophy of mathematics -- 3.4. Gender meets Mathematics -- 3.5. The scientific community in mathematics -- 3.6. What is mathematics? -- References
  • Natural Extensions for the Golden Mean K. Dajani &amp -- C. Kalle -- 1. Introduction -- 2. Expansions and fundamental intervals -- 3. Two rows of rectangles -- 4. Towering the orbits -- References -- An Equivariant Tietze Extension Theorem for Proper Actions of Locally Compact Groups A. Feragen -- 1. Introduction -- 2. Prerequisites -- 3. The equivariant Tietze extension theorem -- References -- On Uniform Tangential Approximation by Lacunary Power Series G. Harutyunyan -- Notation and Introduction -- 1. Uniform and tangential approximation by holomorphic functions -- 2. Lacunary approximation -- 2.1. Uniform approximation by lacunary polynomials -- 2.2. Auxiliary Proposition -- 2.3. The main result -- References -- Cyclic Division Algebras in Space-Time Coding: A Brief Overview C. Hollanti -- 1. Space-time coding: Idea and design criteria -- 2. Cyclic division algebras and orders -- 3. The discriminant bound -- References -- Part C Women in Mathematics -- And What Became of the Women? C. Series -- Introduction -- At Cambridge -- What did these three women do afterwards? -- Postscript -- Sources -- References -- Three Great Girton Mathematicians R. M. Williams -- Dame Mary Cartwright, F.R.S. -- Bertha Swirles, Lady Je reys -- Olga Taussky-Todd -- Conclusion -- Acknowledgment -- References -- What About the Women Now? R. M. Williams -- Introduction -- Women in DAMTP report -- Women and the Mathematical Tripos: Myth and Reality -- the Salter Report -- Indicators of Academic Performance -- Conclusions -- Acknowledgment -- References -- Mathematics in Society (Taking into Account Gender- Aspects) - A One-Semester Course (BSc) C. Scharlach -- 1. Introduction -- 2. Studying math at German universities - the current situation -- 3. The one-semester course at HU Berlin -- 3.1. Mathematics as a profession -- 3.2. Interviews with mathematicians