Enhanced Potato Leaf Disease Detection through Multi-Modal Fusion of Graph Neural Networks and ResNet18

In agricultural technology, artificial intelligence is crucial for early detection and management of plant diseases, especially in potato crops. Diseases like early and late blight can cause significant yield losses if not dealt with promptly. Manual diagnosis of these diseases is often time-consumi...

Full description

Saved in:
Bibliographic Details
Published inProceedings (International Confernce on Computational Intelligence and Communication Networks) pp. 1498 - 1504
Main Authors Bajpai, Abhishek, Pal, Yogesh, Sahu, Shalinee, Srivastava, Vivek
Format Conference Proceeding
LanguageEnglish
Published IEEE 22.12.2024
Subjects
Online AccessGet full text
ISSN2472-7555
DOI10.1109/CICN63059.2024.10847571

Cover

Abstract In agricultural technology, artificial intelligence is crucial for early detection and management of plant diseases, especially in potato crops. Diseases like early and late blight can cause significant yield losses if not dealt with promptly. Manual diagnosis of these diseases is often time-consuming and laborious, highlighting the need for automated solutions to improve disease detection efficiency. A new study introduces an innovative approach that combines Graph Neural Network (GNN) and ResNet18 to identify potato leaf diseases accurately. This model uses deep learning and transfer learning techniques to extract relevant features from leaf images and ensure precise disease classification. The results show that this model can potentially revolutionize disease detection in potato crops, thus enhancing agricultural productivity through proactive disease management.
AbstractList In agricultural technology, artificial intelligence is crucial for early detection and management of plant diseases, especially in potato crops. Diseases like early and late blight can cause significant yield losses if not dealt with promptly. Manual diagnosis of these diseases is often time-consuming and laborious, highlighting the need for automated solutions to improve disease detection efficiency. A new study introduces an innovative approach that combines Graph Neural Network (GNN) and ResNet18 to identify potato leaf diseases accurately. This model uses deep learning and transfer learning techniques to extract relevant features from leaf images and ensure precise disease classification. The results show that this model can potentially revolutionize disease detection in potato crops, thus enhancing agricultural productivity through proactive disease management.
Author Pal, Yogesh
Bajpai, Abhishek
Sahu, Shalinee
Srivastava, Vivek
Author_xml – sequence: 1
  givenname: Abhishek
  surname: Bajpai
  fullname: Bajpai, Abhishek
  email: abhishek@reck.ac.in
  organization: Rajkiya Engineering College,Kannauj,India
– sequence: 2
  givenname: Yogesh
  surname: Pal
  fullname: Pal, Yogesh
  email: er.yogeshpal15@gmail.com
  organization: Bennett University,Greater Noida,India
– sequence: 3
  givenname: Shalinee
  surname: Sahu
  fullname: Sahu, Shalinee
  email: shalinee.cse.ra@reck.ac.in
  organization: Rajkiya Engineering College,Kannauj,India
– sequence: 4
  givenname: Vivek
  surname: Srivastava
  fullname: Srivastava, Vivek
  email: vivek@reck.ac.in
  organization: Rajkiya Engineering College,Kannauj,India
BookMark eNo1kF1LwzAYhaMoOOf-gWD-QGfepPnopXQfDrYpotcjbd6s1dmMJkX89yrq1eE8B56Lc0nOutAhITfApgCsuC1X5VYJJospZzyfAjO5lhpOyKTQhRECJJNc5adkxHPNMy2lvCCTGF8ZY6BAGs1HZD_vGtvV6OhjSDYFukbr6ayNaCPSGSasUxs6mpo-DPuGboZDarNNcPZAF0P8mYKny94eG7rFof_GW0wfoX-L1HaOPmH87mCuyLm3h4iTvxyTl8X8ubzP1g_LVXm3zlpgKmWV0gY0dzavlGTgNUhhKwGudqCEZ7k21kGlfO0LyWoN2kvJOMqqFsb5SozJ9a-3RcTdsW_fbf-5-_9GfAEWYFqQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CICN63059.2024.10847571
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9798331505264
EISSN 2472-7555
EndPage 1504
ExternalDocumentID 10847571
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i106t-b678172da4b6501f7153ab31dcd163f0478ad1b6fcf950c717f5502e5bc38dfb3
IEDL.DBID RIE
IngestDate Wed Feb 12 06:22:46 EST 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i106t-b678172da4b6501f7153ab31dcd163f0478ad1b6fcf950c717f5502e5bc38dfb3
PageCount 7
ParticipantIDs ieee_primary_10847571
PublicationCentury 2000
PublicationDate 2024-Dec.-22
PublicationDateYYYYMMDD 2024-12-22
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-Dec.-22
  day: 22
PublicationDecade 2020
PublicationTitle Proceedings (International Confernce on Computational Intelligence and Communication Networks)
PublicationTitleAbbrev CICN
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001615872
Score 1.8952419
Snippet In agricultural technology, artificial intelligence is crucial for early detection and management of plant diseases, especially in potato crops. Diseases like...
SourceID ieee
SourceType Publisher
StartPage 1498
SubjectTerms Computational modeling
Crops
Deep learning
Disease detection
Diseases
Feature extraction
Graph Neural Network
Graph neural networks
Manuals
Plant diseases
Potato leaf diseases
Productivity
ResNet18
Transfer learning
Title Enhanced Potato Leaf Disease Detection through Multi-Modal Fusion of Graph Neural Networks and ResNet18
URI https://ieeexplore.ieee.org/document/10847571
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA-6k6f5MfGbd_CauiZr15334RRXhjjYbTTJi4rSimsv_vW-pJ2iIHhrA6Uhecn7_P0eY5cojSRXNuRkCmScNITiSsaWO2q6SDjKL98OaJbG00XvdhktG7C6x8Igoi8-w8A9-ly-KXTlQmV0wukujRxifJvkrAZrfQdUSDcnfdHUcIXdwdXwZpjGJM8OjyJ6webrH31UvBqZtFm6mUBdPfISVKUK9McvbsZ_z3CXdb4RezD_0kV7bAvzfdbetGyA5gQfsMdx_uRz_jAvyMws4A4zC6M6SwMjLH1lVg5N-x7w-Fw-K0z2CpPKRdagsHDtWK7B8XrQcFoXkq8hyw3c45rew6TDFpPxw3DKm14L_JmcwpIrUlpky5isp8hmC22fbsJMydBoQxabdRw-mQkdMsgOoq4mJ9CSbyMwUlomxip5yFp5keMRg1Aoa2ORoLLkrWlMJA4MGhFr-onU9ph13MKt3mo6jdVmzU7-GD9lO27_XA2JEGesVb5XeE6WQKkuvAR8Amznskc
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVQOcCpLEXs-MDVpbGTND13oUAbVaiVeqtiewwIlCCaXPh6xk5CBRISt8RSFMvbm_HMe0PINQgt0JX1GJoCCUOEkEyK0DArTRdwK_nlygFN43C88O-XwbIiqzsuDAC45DNo20cXy9eZKuxVGe5wPEsDyxjfRuD3g5KutblSQXSOurzK4vI6vZv-XT8OcUVbRgr32_X3PyqpOCAZNUlcd6HMH3ltF7lsq89f6oz_7uMeaW04e3T2jUb7ZAvSA9KsizbQag8fkqdh-uyi_nSWoaGZ0Qkkhg7KOA0dQO5ys1JaFfChjqHLpplO3uiosHdrNDP01upcU6vsgc1xmUq-pkmq6SOs8d2LWmQxGs77Y1ZVW2Av6BbmTCJsoTWjE1-i1eaZLp6FiRSeVhptNmNVfBLtWW6Q6QUdhW6gQe-GQyCViLSR4og00iyFY0I9Lo0JeQTSoL-mIBLQ06B5qPAnQpkT0rIDt3ovBTVW9Zid_tF-RXbG8-lkNbmLH87Irp1Lm1HC-Tlp5B8FXKBdkMtLtxq-AO9ltZQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28International+Confernce+on+Computational+Intelligence+and+Communication+Networks%29&rft.atitle=Enhanced+Potato+Leaf+Disease+Detection+through+Multi-Modal+Fusion+of+Graph+Neural+Networks+and+ResNet18&rft.au=Bajpai%2C+Abhishek&rft.au=Pal%2C+Yogesh&rft.au=Sahu%2C+Shalinee&rft.au=Srivastava%2C+Vivek&rft.date=2024-12-22&rft.pub=IEEE&rft.eissn=2472-7555&rft.spage=1498&rft.epage=1504&rft_id=info:doi/10.1109%2FCICN63059.2024.10847571&rft.externalDocID=10847571