Augmenting Deep Learning Models for Robust Detection and Localization of Image Forgeries

In the digital era, the proliferation of image manipulation tools has led to an alarming surge in the creation of spurious images capable of misguiding and deceiving viewers. These fabrications encompass a diverse spectrum of manipulations, encompassing techniques such as image splicing, copy-move o...

Full description

Saved in:
Bibliographic Details
Published in2024 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI) pp. 1 - 8
Main Authors Roobini, M.S., Marappan, Sibi, Roy, Shubham, Muneera, M.Nafees, Jayanthi, S.
Format Conference Proceeding
LanguageEnglish
Published IEEE 09.05.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the digital era, the proliferation of image manipulation tools has led to an alarming surge in the creation of spurious images capable of misguiding and deceiving viewers. These fabrications encompass a diverse spectrum of manipulations, encompassing techniques such as image splicing, copy-move operations, and facial modifications. To address this growing challenge, this research paper delves into the domain of deep learning, a cutting-edge technology renowned for its ability to decipher complex patterns in data. The primary objective is to improve underlying mechanisms of the existing techniques such as CNN, GAN, Transfer Learning and Edge Feature Utilization. By providing insights into the capabilities and limitations of deep learning techniques, this study lays the groundwork for the development of more precise and efficient approaches to address the challenges posed by counterfeit images. The experimental finding demonstrates that proposed modifications exhibited an average accuracy improvement of 6 \% and a 5 \% increase in F1-score when contrasted with existing methods.
AbstractList In the digital era, the proliferation of image manipulation tools has led to an alarming surge in the creation of spurious images capable of misguiding and deceiving viewers. These fabrications encompass a diverse spectrum of manipulations, encompassing techniques such as image splicing, copy-move operations, and facial modifications. To address this growing challenge, this research paper delves into the domain of deep learning, a cutting-edge technology renowned for its ability to decipher complex patterns in data. The primary objective is to improve underlying mechanisms of the existing techniques such as CNN, GAN, Transfer Learning and Edge Feature Utilization. By providing insights into the capabilities and limitations of deep learning techniques, this study lays the groundwork for the development of more precise and efficient approaches to address the challenges posed by counterfeit images. The experimental finding demonstrates that proposed modifications exhibited an average accuracy improvement of 6 \% and a 5 \% increase in F1-score when contrasted with existing methods.
Author Roy, Shubham
Jayanthi, S.
Muneera, M.Nafees
Roobini, M.S.
Marappan, Sibi
Author_xml – sequence: 1
  givenname: M.S.
  surname: Roobini
  fullname: Roobini, M.S.
  email: roobinms@gmail.com
  organization: Sathyabama Institute of Science and Technology,Department of Computer Science and Engineering,Chennai,600119
– sequence: 2
  givenname: Sibi
  surname: Marappan
  fullname: Marappan, Sibi
  email: msibi.mail@gmail.com
  organization: Sathyabama Institute of Science and Technology,Department of Computer Science and Engineering,Chennai,600119
– sequence: 3
  givenname: Shubham
  surname: Roy
  fullname: Roy, Shubham
  email: royshubham1305@gmail.com
  organization: Sathyabama Institute of Science and Technology,Department of Computer Science and Engineering,Chennai,600119
– sequence: 4
  givenname: M.Nafees
  surname: Muneera
  fullname: Muneera, M.Nafees
  email: nafeesmuneera.cse@sathyabama.ac.in
  organization: Sathyabama Institute of Science and Technology,Department of Computer Science and Engineering,Chennai,600119
– sequence: 5
  givenname: S.
  surname: Jayanthi
  fullname: Jayanthi, S.
  email: jayanthi.cse@sathyabama.ac.in
  organization: Sathyabama Institute of Science and Technology,Department of Computer Science and Engineering,Chennai,600119
BookMark eNpVUM1OhDAQrlEPuu4beOgLgC1ToD0SdJUEY2I08bYpdEqaQLsp7EGfXvw7eJr5_iZf5pKc-eCREMpZyjlTN1VdV03BWcHTjGUiXTfGy0KekK0qlYScgVRCqNN_GLIL8lYdhwn94vxAbxEPtEUd_Rd6DAbHmdoQ6XPojvOy6gv2iwueam9oG3o9ug_9TQRLm0kPSHchDhgdzlfk3Opxxu3v3JDX3d1L_ZC0T_dNXbWJW0suiTKyhw64LE2fYwmZAcEtxxytFqVcy1oo0HAtlOkzQJAgdA55t_pBrYENuf656xBxf4hu0vF9__cA-AQD3FOA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ACCAI61061.2024.10601768
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEL
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEL
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350389449
EndPage 8
ExternalDocumentID 10601768
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i106t-9d8c3b3187dc5e732d341f1e5efa478798f36ed1a49dc23e3834a535b7dc39e73
IEDL.DBID RIE
ISBN 9798350389432
IngestDate Wed Jul 31 06:01:59 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i106t-9d8c3b3187dc5e732d341f1e5efa478798f36ed1a49dc23e3834a535b7dc39e73
PageCount 8
ParticipantIDs ieee_primary_10601768
PublicationCentury 2000
PublicationDate 2024-May-9
PublicationDateYYYYMMDD 2024-05-09
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-May-9
  day: 09
PublicationDecade 2020
PublicationTitle 2024 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI)
PublicationTitleAbbrev ACCAI
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.9222219
Snippet In the digital era, the proliferation of image manipulation tools has led to an alarming surge in the creation of spurious images capable of misguiding and...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Accuracy
Convolutional Neural Networks (CNN)
Copy-Move Operation
Deep learning
Digital images
Edge Feature Utilization
Generative Adversarial Networks (GAN)
Image Splicing
Location awareness
Neural networks
Splicing
Transfer learning
Title Augmenting Deep Learning Models for Robust Detection and Localization of Image Forgeries
URI https://ieeexplore.ieee.org/document/10601768
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwEA5uT4Kg4sTf5MHX1rZJluZxTIcTHSIO9jaS5jpEbYdrX_zrvWTtREHwrbQJHAmXu0u_7ztCLo3TRLNYneRSioAnGs9BYZPAJpEyUS4YeMj_w6R_O-V3MzFryOqeCwMAHnwGoXv0__JtmdXuqgw9HMsHzI87pCOVaslaO0oqzCOcUhxnG7ROpK4Gw-Fg3Hc1D9aBCQ_b6T8aqfg4Mtolk9aCNXzkNawrE2afv8QZ_23iHul9U_bo4yYY7ZMtKA7IbFAvPByoWNBrgCVt1FQX1LVAe1tRzFjpU2nqVYXfK4_KKqguLL13Ia6haNIyp-N3PHfoyN2fu9q6R6ajm-fhbdC0Ughe0KIqUDbNmEH_lTYTIFliMXrlMQjItZPnUWnO-mBjzZXNEgZYt3ItmDA4nimccEi6RVnAEaEyzh0bVsUGXTnugwZI0tzwSEuuLU-PSc8ty3y5VsuYtyty8sf7U7LtdseDCNUZ6VYfNZxjoK_Mhd_gL1gtpm4
link.rule.ids 310,311,783,787,792,793,799,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA86HxQEFSd-mwdfW_uRtM3jmI5NtyEyYW8jaa5D1Ha49sW_3kvWThQE30q_OBIud5f8fr8j5FoZTTSN1UkWx9xhgcR1kOvA0YEnlJfxECzkfzSO-s_sfsqnNVndcmEAwILPwDWX9ixfF2lltsrQw7F8wPx4k2xhYp1EDV1rV8QCMwmjFcfCNV7HEzedbrcziEzVg5VgwNzmBz9aqdhI0tsj48aGFYDk1a1K5aafv-QZ_23kPml_k_bo4zocHZANyA_JtFPNLSAon9NbgAWt9VTn1DRBe1tSzFnpU6GqZYnPS4vLyqnMNR2aIFeTNGmR0cE7rjy0Z3bQTXXdJs-9u0m379TNFJwXtKh0hE7SUKEHxzrlEIeBxviV-cAhk0agRyRZGIH2JRM6DULAypVJHnKF74cCPzgirbzI4ZjQ2M8MH1b4Cp3Zj0ACBEmmmCdjJjVLTkjbDMtssdLLmDUjcvrH_Suy3Z-MhrPhYPxwRnbMTFlIoTgnrfKjggsM-6W6tJP9BTyiqbk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+International+Conference+on+Advances+in+Computing%2C+Communication+and+Applied+Informatics+%28ACCAI%29&rft.atitle=Augmenting+Deep+Learning+Models+for+Robust+Detection+and+Localization+of+Image+Forgeries&rft.au=Roobini%2C+M.S.&rft.au=Marappan%2C+Sibi&rft.au=Roy%2C+Shubham&rft.au=Muneera%2C+M.Nafees&rft.date=2024-05-09&rft.pub=IEEE&rft.isbn=9798350389432&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FACCAI61061.2024.10601768&rft.externalDocID=10601768
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9798350389432/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9798350389432/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9798350389432/sc.gif&client=summon&freeimage=true