Stabilization of nonlinear systems by neural Lyapunov approximators and Sontag's formula
This note describes a method to train a Neural Network so that it approximates a control Lyapunov function for a nonlinear system in affine form. The network is trained in a physics-informed fashion, as the training data are generated by enforcing the negativity of the orbital derivative of the clf...
Saved in:
Published in | International Conference on Control, Decision and Information Technologies (Online) pp. 284 - 288 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.07.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This note describes a method to train a Neural Network so that it approximates a control Lyapunov function for a nonlinear system in affine form. The network is trained in a physics-informed fashion, as the training data are generated by enforcing the negativity of the orbital derivative of the clf along the system trajectories in a large set of collocation points. Positive-definiteness of the clf is guaranteed by the choice of the network structure. The network is then used to derive a stabilizing control law based on the well-known Sontag's formula. The validity of the proposed approach is illustrated through numerical examples. |
---|---|
AbstractList | This note describes a method to train a Neural Network so that it approximates a control Lyapunov function for a nonlinear system in affine form. The network is trained in a physics-informed fashion, as the training data are generated by enforcing the negativity of the orbital derivative of the clf along the system trajectories in a large set of collocation points. Positive-definiteness of the clf is guaranteed by the choice of the network structure. The network is then used to derive a stabilizing control law based on the well-known Sontag's formula. The validity of the proposed approach is illustrated through numerical examples. |
Author | Pironti, Alfredo Mele, Adriano |
Author_xml | – sequence: 1 givenname: Adriano surname: Mele fullname: Mele, Adriano organization: École Polytechnique Fédérale de Lausanne,Swiss Plasma Center,Lausanne,Switzerland,CH-1015 – sequence: 2 givenname: Alfredo surname: Pironti fullname: Pironti, Alfredo organization: Università Degli Studi di Napoli Federico II,CREATE,Napoli,Italy,80125 |
BookMark | eNo1kD1PwzAURQ0CiVL6Dxi8MaU827Edj6h8VYrE0CKxVS-JjYxSO7JTRPj1VAKGq7ude3QvyVmIwRJCGSwZA3O7ivfrreKg1JIDL5cMNFSC8xOyMNpUQoLQwujylMy41KoQUsoLssj5AwAEMwCcz8jbZsTG9_4bRx8DjY4eZ3ofLCaapzzafabNRIM9JOxpPeFwCPGT4jCk-OX3OMaUKYaObmIY8f0mUxfT_tDjFTl32Ge7-Os5eX182K6ei_rlab26qwvPQI2FVEo61ioHtis7YTrHjnHOGIHAnKwMVropGwmybUqDLStVC7q1pmOdckLMyfUv11trd0M6OqVp93-G-AFct1gp |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/CoDIT62066.2024.10708322 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) - NZ IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 9798350373974 |
EISSN | 2576-3555 |
EndPage | 288 |
ExternalDocumentID | 10708322 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
ID | FETCH-LOGICAL-i106t-5665f1c6f0ed4d39df19dfff993a01f589a87b4b505cb49ac146c07ce9d1d6f33 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 03:08:26 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i106t-5665f1c6f0ed4d39df19dfff993a01f589a87b4b505cb49ac146c07ce9d1d6f33 |
PageCount | 5 |
ParticipantIDs | ieee_primary_10708322 |
PublicationCentury | 2000 |
PublicationDate | 2024-July-1 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-July-1 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | International Conference on Control, Decision and Information Technologies (Online) |
PublicationTitleAbbrev | CoDIT |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0003190022 |
Score | 1.8774981 |
Snippet | This note describes a method to train a Neural Network so that it approximates a control Lyapunov function for a nonlinear system in affine form. The network... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 284 |
SubjectTerms | Convergence Information technology Knowledge engineering Lyapunov Lyapunov methods neural control Neural networks Nonlinear systems Orbits Robustness Sontag's formula stabilization Training data Trajectory universal approximation |
Title | Stabilization of nonlinear systems by neural Lyapunov approximators and Sontag's formula |
URI | https://ieeexplore.ieee.org/document/10708322 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwEA66J5_mj4m_yYPgU2u7pun6PB1TdAhusLeR5BIZznZsrTj_ei_NOlEQfCstgSOX9L5LvvuOkMsohE4CID3QRnmsrcFD3Bx6kVRtEAEzYXVd8Djg_RG7H8fjdbF6VQujta7IZ9q3j9VdPuSqtEdluMOTwK7AbbKNmZsr1tocqOBasgGpZusE6XU3v7kbcqtXjnlgm_n18B-NVKo40muSQW2Bo4-8-mUhffX5S5zx3ybuktZ3yR592gSjPbKls33SrHs20PUWPiBjRJeWD-uqL2luaObEMsSCOlXnJZUramUuxYw-rMS8zPJ3WkmPf0zfbIq-pCID-pxnhXi5WlKLesuZaJFR73bY7Xvr7greFNPAwkMcF5tQcRNoYBClgG4BYwwCFhGEJu6kopNIJhEiKclSofCfqoJE6RRC4CaKDkkDLdRHhDIu8JPkVmuOScScoBMFQkgemDiO-TFp2ZmazJ2AxqSepJM_3p-SHeswx4o9I41iUepzjP2FvKh8_gV427CK |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA86H_Rpfkz8Ng-CT639SNv1eTo23YbgBnsbSS4RcbZja8X513tp14mC4FtpIRy5pPe75He_I-TKd6EZAQgLlJYW8xRYiJtdyxfSA-4w7RbXBf1B2Bmx-3EwXhWrF7UwSqmCfKZs81jc5UMqc3NUhjs8cswK3CRbGPgDryzXWh-p4GoyIani6zjxTSu97Q5Do1iOmaDH7GqAH61UikjSrpNBZUNJIHm180zY8vOXPOO_jdwlje-iPfq4Dkd7ZEMl-6RedW2gq018QMaILw0jtqy_pKmmSSmXwee01HVeULGkRuiST2lvyWd5kr7TQnz84-XNJOkLyhOgT2mS8efrBTW4N5_yBhm174atjrXqr2C9YCKYWYjkAu3KUDsKGPgxoGNAa42QhTuuDpoxb0aCCQRJUrCYS_yrSieSKgYXQu37h6SGFqojQlnI8ZMIjdocE4g6QUUSOBeho4MgCI9Jw8zUZFZKaEyqSTr54_0l2e4M-71Jrzt4OCU7xnklR_aM1LJ5rs4RCWTiovD_F94Ts9Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Conference+on+Control%2C+Decision+and+Information+Technologies+%28Online%29&rft.atitle=Stabilization+of+nonlinear+systems+by+neural+Lyapunov+approximators+and+Sontag%27s+formula&rft.au=Mele%2C+Adriano&rft.au=Pironti%2C+Alfredo&rft.date=2024-07-01&rft.pub=IEEE&rft.eissn=2576-3555&rft.spage=284&rft.epage=288&rft_id=info:doi/10.1109%2FCoDIT62066.2024.10708322&rft.externalDocID=10708322 |