Stabilization of nonlinear systems by neural Lyapunov approximators and Sontag's formula

This note describes a method to train a Neural Network so that it approximates a control Lyapunov function for a nonlinear system in affine form. The network is trained in a physics-informed fashion, as the training data are generated by enforcing the negativity of the orbital derivative of the clf...

Full description

Saved in:
Bibliographic Details
Published inInternational Conference on Control, Decision and Information Technologies (Online) pp. 284 - 288
Main Authors Mele, Adriano, Pironti, Alfredo
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.07.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This note describes a method to train a Neural Network so that it approximates a control Lyapunov function for a nonlinear system in affine form. The network is trained in a physics-informed fashion, as the training data are generated by enforcing the negativity of the orbital derivative of the clf along the system trajectories in a large set of collocation points. Positive-definiteness of the clf is guaranteed by the choice of the network structure. The network is then used to derive a stabilizing control law based on the well-known Sontag's formula. The validity of the proposed approach is illustrated through numerical examples.
AbstractList This note describes a method to train a Neural Network so that it approximates a control Lyapunov function for a nonlinear system in affine form. The network is trained in a physics-informed fashion, as the training data are generated by enforcing the negativity of the orbital derivative of the clf along the system trajectories in a large set of collocation points. Positive-definiteness of the clf is guaranteed by the choice of the network structure. The network is then used to derive a stabilizing control law based on the well-known Sontag's formula. The validity of the proposed approach is illustrated through numerical examples.
Author Pironti, Alfredo
Mele, Adriano
Author_xml – sequence: 1
  givenname: Adriano
  surname: Mele
  fullname: Mele, Adriano
  organization: École Polytechnique Fédérale de Lausanne,Swiss Plasma Center,Lausanne,Switzerland,CH-1015
– sequence: 2
  givenname: Alfredo
  surname: Pironti
  fullname: Pironti, Alfredo
  organization: Università Degli Studi di Napoli Federico II,CREATE,Napoli,Italy,80125
BookMark eNo1kD1PwzAURQ0CiVL6Dxi8MaU827Edj6h8VYrE0CKxVS-JjYxSO7JTRPj1VAKGq7ude3QvyVmIwRJCGSwZA3O7ivfrreKg1JIDL5cMNFSC8xOyMNpUQoLQwujylMy41KoQUsoLssj5AwAEMwCcz8jbZsTG9_4bRx8DjY4eZ3ofLCaapzzafabNRIM9JOxpPeFwCPGT4jCk-OX3OMaUKYaObmIY8f0mUxfT_tDjFTl32Ge7-Os5eX182K6ei_rlab26qwvPQI2FVEo61ioHtis7YTrHjnHOGIHAnKwMVropGwmybUqDLStVC7q1pmOdckLMyfUv11trd0M6OqVp93-G-AFct1gp
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CoDIT62066.2024.10708322
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL) - NZ
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9798350373974
EISSN 2576-3555
EndPage 288
ExternalDocumentID 10708322
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i106t-5665f1c6f0ed4d39df19dfff993a01f589a87b4b505cb49ac146c07ce9d1d6f33
IEDL.DBID RIE
IngestDate Wed Aug 27 03:08:26 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i106t-5665f1c6f0ed4d39df19dfff993a01f589a87b4b505cb49ac146c07ce9d1d6f33
PageCount 5
ParticipantIDs ieee_primary_10708322
PublicationCentury 2000
PublicationDate 2024-July-1
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-July-1
  day: 01
PublicationDecade 2020
PublicationTitle International Conference on Control, Decision and Information Technologies (Online)
PublicationTitleAbbrev CoDIT
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003190022
Score 1.8774981
Snippet This note describes a method to train a Neural Network so that it approximates a control Lyapunov function for a nonlinear system in affine form. The network...
SourceID ieee
SourceType Publisher
StartPage 284
SubjectTerms Convergence
Information technology
Knowledge engineering
Lyapunov
Lyapunov methods
neural control
Neural networks
Nonlinear systems
Orbits
Robustness
Sontag's formula
stabilization
Training data
Trajectory
universal approximation
Title Stabilization of nonlinear systems by neural Lyapunov approximators and Sontag's formula
URI https://ieeexplore.ieee.org/document/10708322
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwEA66J5_mj4m_yYPgU2u7pun6PB1TdAhusLeR5BIZznZsrTj_ei_NOlEQfCstgSOX9L5LvvuOkMsohE4CID3QRnmsrcFD3Bx6kVRtEAEzYXVd8Djg_RG7H8fjdbF6VQujta7IZ9q3j9VdPuSqtEdluMOTwK7AbbKNmZsr1tocqOBasgGpZusE6XU3v7kbcqtXjnlgm_n18B-NVKo40muSQW2Bo4-8-mUhffX5S5zx3ybuktZ3yR592gSjPbKls33SrHs20PUWPiBjRJeWD-uqL2luaObEMsSCOlXnJZUramUuxYw-rMS8zPJ3WkmPf0zfbIq-pCID-pxnhXi5WlKLesuZaJFR73bY7Xvr7greFNPAwkMcF5tQcRNoYBClgG4BYwwCFhGEJu6kopNIJhEiKclSofCfqoJE6RRC4CaKDkkDLdRHhDIu8JPkVmuOScScoBMFQkgemDiO-TFp2ZmazJ2AxqSepJM_3p-SHeswx4o9I41iUepzjP2FvKh8_gV427CK
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA86H_Rpfkz8Ng-CT639SNv1eTo23YbgBnsbSS4RcbZja8X513tp14mC4FtpIRy5pPe75He_I-TKd6EZAQgLlJYW8xRYiJtdyxfSA-4w7RbXBf1B2Bmx-3EwXhWrF7UwSqmCfKZs81jc5UMqc3NUhjs8cswK3CRbGPgDryzXWh-p4GoyIani6zjxTSu97Q5Do1iOmaDH7GqAH61UikjSrpNBZUNJIHm180zY8vOXPOO_jdwlje-iPfq4Dkd7ZEMl-6RedW2gq018QMaILw0jtqy_pKmmSSmXwee01HVeULGkRuiST2lvyWd5kr7TQnz84-XNJOkLyhOgT2mS8efrBTW4N5_yBhm174atjrXqr2C9YCKYWYjkAu3KUDsKGPgxoGNAa42QhTuuDpoxb0aCCQRJUrCYS_yrSieSKgYXQu37h6SGFqojQlnI8ZMIjdocE4g6QUUSOBeho4MgCI9Jw8zUZFZKaEyqSTr54_0l2e4M-71Jrzt4OCU7xnklR_aM1LJ5rs4RCWTiovD_F94Ts9Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Conference+on+Control%2C+Decision+and+Information+Technologies+%28Online%29&rft.atitle=Stabilization+of+nonlinear+systems+by+neural+Lyapunov+approximators+and+Sontag%27s+formula&rft.au=Mele%2C+Adriano&rft.au=Pironti%2C+Alfredo&rft.date=2024-07-01&rft.pub=IEEE&rft.eissn=2576-3555&rft.spage=284&rft.epage=288&rft_id=info:doi/10.1109%2FCoDIT62066.2024.10708322&rft.externalDocID=10708322