Cross-Device Image Saliency Detection: Database and Comparative Analysis

While saliency detection for images has been extensively studied during the past decades, only a little work explores the influence of different viewing devices (i.e., tablet computer, mobile phone) towards human visual attention behavior. The lack of research in this field hinders the research prog...

Full description

Saved in:
Bibliographic Details
Published inVisual communications and image processing (Online) pp. 1 - 5
Main Authors Ding, Xiaoying, Yue, Guanghui, Zhang, Yingxue
Format Conference Proceeding
LanguageEnglish
Published IEEE 08.12.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract While saliency detection for images has been extensively studied during the past decades, only a little work explores the influence of different viewing devices (i.e., tablet computer, mobile phone) towards human visual attention behavior. The lack of research in this field hinders the research progress in cross-device image saliency detection. In this paper, we first establish a novel cross-device saliency detection (CDSD) database based on eye-tracking experiments and investigate subjects' visual attention behavior when using different viewing devices. Then, we evaluate several classic saliency detection models using the CDSD database and the evaluation results indicate that the cross-device performance of these models need further improvement. Finally, some meaningful discussions are provided which might enlighten the design of cross-device saliency detection model. The proposed CDSD database will be made publicly available.
AbstractList While saliency detection for images has been extensively studied during the past decades, only a little work explores the influence of different viewing devices (i.e., tablet computer, mobile phone) towards human visual attention behavior. The lack of research in this field hinders the research progress in cross-device image saliency detection. In this paper, we first establish a novel cross-device saliency detection (CDSD) database based on eye-tracking experiments and investigate subjects' visual attention behavior when using different viewing devices. Then, we evaluate several classic saliency detection models using the CDSD database and the evaluation results indicate that the cross-device performance of these models need further improvement. Finally, some meaningful discussions are provided which might enlighten the design of cross-device saliency detection model. The proposed CDSD database will be made publicly available.
Author Ding, Xiaoying
Zhang, Yingxue
Yue, Guanghui
Author_xml – sequence: 1
  givenname: Xiaoying
  surname: Ding
  fullname: Ding, Xiaoying
  email: dingxiaoying@zuel.edu.cn
  organization: Zhongnan University of Economics and Law,School of Information Engineering,Wuhan,China
– sequence: 2
  givenname: Guanghui
  surname: Yue
  fullname: Yue, Guanghui
  email: yueguanghui@szu.edu.cn
  organization: Shenzhen University Medical School, Shenzhen University,School of Biomedical Engineering,Shenzhen,China
– sequence: 3
  givenname: Yingxue
  surname: Zhang
  fullname: Zhang, Yingxue
  email: yxzhang@tust.edu.cn
  organization: Tianjin University of Science and Technology,College of Artificial Intelligence,Tianjin,China
BookMark eNo1j8tKw0AUQEdRsNb-geD8QOqduZN5uCtptYGCgo9tuUluZKRNSiYU-vcK6urszuFci4uu71iIOwVzpSDcfxTli0VlYa5Bm7kCb4Lz-kzMggseUeU65AbPxURbo7OAubsSs5S-AEDnCnXwE7Euhj6lbMnHWLMs9_TJ8pV2kbv6JJc8cj3GvnuQSxqposSSukYW_f5AA43xyHLR0e6UYroRly3tEs_-OBXvj6u3Yp1tnp_KYrHJogI7Zmh_4sq7xoaala-ogZZN3hrXIqvWMrgAuvEcnGLEGnLC1rB2XNUWfYVTcfvrjcy8PQxxT8Np-z-P34h6T8M
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/VCIP63160.2024.10849782
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9798331529543
EISSN 2642-9357
EndPage 5
ExternalDocumentID 10849782
Genre orig-research
GrantInformation_xml – fundername: China Postdoctoral Science Foundation
  funderid: 10.13039/501100002858
– fundername: National Natural Science Foundation of China
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of Hubei Province
  funderid: 10.13039/501100003819
GroupedDBID 6IE
6IF
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i106t-36002187d69ce18bad0fe45f47f3e1f6e07902d8e971e33c05a3f4e27ebc638b3
IEDL.DBID RIE
IngestDate Wed Feb 12 06:22:40 EST 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i106t-36002187d69ce18bad0fe45f47f3e1f6e07902d8e971e33c05a3f4e27ebc638b3
PageCount 5
ParticipantIDs ieee_primary_10849782
PublicationCentury 2000
PublicationDate 2024-Dec.-8
PublicationDateYYYYMMDD 2024-12-08
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-Dec.-8
  day: 08
PublicationDecade 2020
PublicationTitle Visual communications and image processing (Online)
PublicationTitleAbbrev VCIP
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002513298
Score 2.2765558
Snippet While saliency detection for images has been extensively studied during the past decades, only a little work explores the influence of different viewing...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Behavioral sciences
cross-device
eye-tracking
Gaze tracking
Mobile handsets
Performance evaluation
Saliency detection
saliency detecton
Stability analysis
Tablet computers
visual attention
Visual communication
Visual databases
Visualization
Title Cross-Device Image Saliency Detection: Database and Comparative Analysis
URI https://ieeexplore.ieee.org/document/10849782
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA-6k6f5MfGbHLymtk3bJF47xyY4BjrZbeTjBUTsRNuLf71J1m4oCN5KoBCSvvd77_X3ew-haxclOBw2mnAwKcmMtERmsSZgQEBaSGO5Fwo_TIvxPLtf5ItWrB60MAAQyGcQ-cfwL9-sdONLZc7CuR-I5jzursvc1mKtTUHFATVNBW85XEksbp7LyaygvnziMvws6t7-MUclwMioj6bdBtbskdeoqVWkv371Zvz3DvfRYKvYw7MNFh2gHagOUb8NMXFrwJ9HaFx6VCRD8A4CT96cN8GPLhT3Akw8hDoQs6pbPJS19ACHZWVwue0QjrsmJgM0H909lWPSDlMgLy7rqwktApwzUwgNCVfSxBay3GbMUkhsATETcWo4CJYApTrOJbUZpAyUdjaq6DHqVasKThBmmlsXeaVprFz8YYQwVLkPgTPIC8UUnKKBP5nl-7pfxrI7lLM_1s_Rnr-gQBLhF6hXfzRw6aC-Vlfhir8Bhwuo3Q
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA-iBz3Nj4nf5uA1tW3aJvHaOTbdxsBNdhv5eAURO9Hu4l9vkrUbCoK3EiiEJO_9Xl5-v_cQurFRgsVhowkHE5PEyILIJNQEDAiIM2kK7oTCw1HWmyYPs3RWi9W9FgYAPPkMAvfp3_LNQi9dqsxaOHcN0azH3bHAn0YrudY6pWKhmsaC1yyuKBS3z3l_nFGXQLF3_CRo_v_RScUDSbeFRs0UVvyR12BZqUB__arO-O857qP2RrOHx2s0OkBbUB6iVh1k4tqEP49QL3e4SDrgXATuv1l_gp9sMO4kmLgDladmlXe4IyvpIA7L0uB8UyMcN2VM2mjavZ_kPVK3UyAv9t5XEZp5QGcmExoirqQJC0jSImEFhajIIGQijA0HwSKgVIeppEUCMQOlrZUqeoy2y0UJJwgzzQsbe8VxqGwEYoQwVNmjwBmkmWIKTlHbrcz8fVUxY94sytkf49dotzcZDuaD_ujxHO25zfKUEX6BtquPJVxa4K_Uld_ub4iZrCY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Visual+communications+and+image+processing+%28Online%29&rft.atitle=Cross-Device+Image+Saliency+Detection%3A+Database+and+Comparative+Analysis&rft.au=Ding%2C+Xiaoying&rft.au=Yue%2C+Guanghui&rft.au=Zhang%2C+Yingxue&rft.date=2024-12-08&rft.pub=IEEE&rft.eissn=2642-9357&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FVCIP63160.2024.10849782&rft.externalDocID=10849782