Cross-Device Image Saliency Detection: Database and Comparative Analysis
While saliency detection for images has been extensively studied during the past decades, only a little work explores the influence of different viewing devices (i.e., tablet computer, mobile phone) towards human visual attention behavior. The lack of research in this field hinders the research prog...
Saved in:
Published in | Visual communications and image processing (Online) pp. 1 - 5 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
08.12.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | While saliency detection for images has been extensively studied during the past decades, only a little work explores the influence of different viewing devices (i.e., tablet computer, mobile phone) towards human visual attention behavior. The lack of research in this field hinders the research progress in cross-device image saliency detection. In this paper, we first establish a novel cross-device saliency detection (CDSD) database based on eye-tracking experiments and investigate subjects' visual attention behavior when using different viewing devices. Then, we evaluate several classic saliency detection models using the CDSD database and the evaluation results indicate that the cross-device performance of these models need further improvement. Finally, some meaningful discussions are provided which might enlighten the design of cross-device saliency detection model. The proposed CDSD database will be made publicly available. |
---|---|
AbstractList | While saliency detection for images has been extensively studied during the past decades, only a little work explores the influence of different viewing devices (i.e., tablet computer, mobile phone) towards human visual attention behavior. The lack of research in this field hinders the research progress in cross-device image saliency detection. In this paper, we first establish a novel cross-device saliency detection (CDSD) database based on eye-tracking experiments and investigate subjects' visual attention behavior when using different viewing devices. Then, we evaluate several classic saliency detection models using the CDSD database and the evaluation results indicate that the cross-device performance of these models need further improvement. Finally, some meaningful discussions are provided which might enlighten the design of cross-device saliency detection model. The proposed CDSD database will be made publicly available. |
Author | Ding, Xiaoying Zhang, Yingxue Yue, Guanghui |
Author_xml | – sequence: 1 givenname: Xiaoying surname: Ding fullname: Ding, Xiaoying email: dingxiaoying@zuel.edu.cn organization: Zhongnan University of Economics and Law,School of Information Engineering,Wuhan,China – sequence: 2 givenname: Guanghui surname: Yue fullname: Yue, Guanghui email: yueguanghui@szu.edu.cn organization: Shenzhen University Medical School, Shenzhen University,School of Biomedical Engineering,Shenzhen,China – sequence: 3 givenname: Yingxue surname: Zhang fullname: Zhang, Yingxue email: yxzhang@tust.edu.cn organization: Tianjin University of Science and Technology,College of Artificial Intelligence,Tianjin,China |
BookMark | eNo1j8tKw0AUQEdRsNb-geD8QOqduZN5uCtptYGCgo9tuUluZKRNSiYU-vcK6urszuFci4uu71iIOwVzpSDcfxTli0VlYa5Bm7kCb4Lz-kzMggseUeU65AbPxURbo7OAubsSs5S-AEDnCnXwE7Euhj6lbMnHWLMs9_TJ8pV2kbv6JJc8cj3GvnuQSxqposSSukYW_f5AA43xyHLR0e6UYroRly3tEs_-OBXvj6u3Yp1tnp_KYrHJogI7Zmh_4sq7xoaala-ogZZN3hrXIqvWMrgAuvEcnGLEGnLC1rB2XNUWfYVTcfvrjcy8PQxxT8Np-z-P34h6T8M |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/VCIP63160.2024.10849782 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISBN | 9798331529543 |
EISSN | 2642-9357 |
EndPage | 5 |
ExternalDocumentID | 10849782 |
Genre | orig-research |
GrantInformation_xml | – fundername: China Postdoctoral Science Foundation funderid: 10.13039/501100002858 – fundername: National Natural Science Foundation of China funderid: 10.13039/501100001809 – fundername: Natural Science Foundation of Hubei Province funderid: 10.13039/501100003819 |
GroupedDBID | 6IE 6IF 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK M43 OCL RIE RIL |
ID | FETCH-LOGICAL-i106t-36002187d69ce18bad0fe45f47f3e1f6e07902d8e971e33c05a3f4e27ebc638b3 |
IEDL.DBID | RIE |
IngestDate | Wed Feb 12 06:22:40 EST 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i106t-36002187d69ce18bad0fe45f47f3e1f6e07902d8e971e33c05a3f4e27ebc638b3 |
PageCount | 5 |
ParticipantIDs | ieee_primary_10849782 |
PublicationCentury | 2000 |
PublicationDate | 2024-Dec.-8 |
PublicationDateYYYYMMDD | 2024-12-08 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-Dec.-8 day: 08 |
PublicationDecade | 2020 |
PublicationTitle | Visual communications and image processing (Online) |
PublicationTitleAbbrev | VCIP |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0002513298 |
Score | 2.2765558 |
Snippet | While saliency detection for images has been extensively studied during the past decades, only a little work explores the influence of different viewing... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Behavioral sciences cross-device eye-tracking Gaze tracking Mobile handsets Performance evaluation Saliency detection saliency detecton Stability analysis Tablet computers visual attention Visual communication Visual databases Visualization |
Title | Cross-Device Image Saliency Detection: Database and Comparative Analysis |
URI | https://ieeexplore.ieee.org/document/10849782 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA-6k6f5MfGbHLymtk3bJF47xyY4BjrZbeTjBUTsRNuLf71J1m4oCN5KoBCSvvd77_X3ew-haxclOBw2mnAwKcmMtERmsSZgQEBaSGO5Fwo_TIvxPLtf5ItWrB60MAAQyGcQ-cfwL9-sdONLZc7CuR-I5jzursvc1mKtTUHFATVNBW85XEksbp7LyaygvnziMvws6t7-MUclwMioj6bdBtbskdeoqVWkv371Zvz3DvfRYKvYw7MNFh2gHagOUb8NMXFrwJ9HaFx6VCRD8A4CT96cN8GPLhT3Akw8hDoQs6pbPJS19ACHZWVwue0QjrsmJgM0H909lWPSDlMgLy7rqwktApwzUwgNCVfSxBay3GbMUkhsATETcWo4CJYApTrOJbUZpAyUdjaq6DHqVasKThBmmlsXeaVprFz8YYQwVLkPgTPIC8UUnKKBP5nl-7pfxrI7lLM_1s_Rnr-gQBLhF6hXfzRw6aC-Vlfhir8Bhwuo3Q |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA-iBz3Nj4nf5uA1tW3aJvHaOTbdxsBNdhv5eAURO9Hu4l9vkrUbCoK3EiiEJO_9Xl5-v_cQurFRgsVhowkHE5PEyILIJNQEDAiIM2kK7oTCw1HWmyYPs3RWi9W9FgYAPPkMAvfp3_LNQi9dqsxaOHcN0azH3bHAn0YrudY6pWKhmsaC1yyuKBS3z3l_nFGXQLF3_CRo_v_RScUDSbeFRs0UVvyR12BZqUB__arO-O857qP2RrOHx2s0OkBbUB6iVh1k4tqEP49QL3e4SDrgXATuv1l_gp9sMO4kmLgDladmlXe4IyvpIA7L0uB8UyMcN2VM2mjavZ_kPVK3UyAv9t5XEZp5QGcmExoirqQJC0jSImEFhajIIGQijA0HwSKgVIeppEUCMQOlrZUqeoy2y0UJJwgzzQsbe8VxqGwEYoQwVNmjwBmkmWIKTlHbrcz8fVUxY94sytkf49dotzcZDuaD_ujxHO25zfKUEX6BtquPJVxa4K_Uld_ub4iZrCY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Visual+communications+and+image+processing+%28Online%29&rft.atitle=Cross-Device+Image+Saliency+Detection%3A+Database+and+Comparative+Analysis&rft.au=Ding%2C+Xiaoying&rft.au=Yue%2C+Guanghui&rft.au=Zhang%2C+Yingxue&rft.date=2024-12-08&rft.pub=IEEE&rft.eissn=2642-9357&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FVCIP63160.2024.10849782&rft.externalDocID=10849782 |