The effect of training data on hyperspectral classification algorithms
In this study, the performance of different hyperspectral classification algorithms with the same training set is investigated. In addition, the effect of the dimension and sampling strategy for the training set selection is demonstrated. Support Vector Machines (SVM), K- Nearest Neighbor (K-NN) and...
Saved in:
Published in | 2013 21st Signal Processing and Communications Applications Conference (SIU) pp. 1 - 4 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English Turkish |
Published |
IEEE
01.04.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this study, the performance of different hyperspectral classification algorithms with the same training set is investigated. In addition, the effect of the dimension and sampling strategy for the training set selection is demonstrated. Support Vector Machines (SVM), K- Nearest Neighbor (K-NN) and Maximum Likelihood (ML) methods are used. The contribution of using spatial information with spectral information is observed. Meanshift segmentation and window weighting methods are used for spatial information. High resolution Pavia University hyperspectral data and Indian Pines data are used in this study. |
---|---|
AbstractList | In this study, the performance of different hyperspectral classification algorithms with the same training set is investigated. In addition, the effect of the dimension and sampling strategy for the training set selection is demonstrated. Support Vector Machines (SVM), K- Nearest Neighbor (K-NN) and Maximum Likelihood (ML) methods are used. The contribution of using spatial information with spectral information is observed. Meanshift segmentation and window weighting methods are used for spatial information. High resolution Pavia University hyperspectral data and Indian Pines data are used in this study. |
Author | Ozdemir, Okan Bilge Cetin, Y. Y. |
Author_xml | – sequence: 1 givenname: Okan Bilge surname: Ozdemir fullname: Ozdemir, Okan Bilge email: oozdemir@metu.edu.tr organization: Enformatik Enstitusu, Orta Dogu Teknik Univ., Ankara, Turkey – sequence: 2 givenname: Y. Y. surname: Cetin fullname: Cetin, Y. Y. email: yyardim@metu.edu.tr organization: Enformatik Enstitusu, Orta Dogu Teknik Univ., Ankara, Turkey |
BookMark | eNpVj8FKAzEURSMqqHX2gpv8QOtLMkkmSylWCwUX1nV5k3mvjUxnhsls-vcW7MbV5XI4F-6DuOn6joR4UrBQCsLL1_p7oUGZhbNGGW2uRBF8pUrnjbXOuOt_XYc7UeT8AwBn24XK3YvV9kCSmClOsmc5jZi61O1lgxPKvpOH00BjHs54xFbGFnNOnCJO6Qyx3fdjmg7H_ChuGdtMxSVnYrt62y4_5pvP9_XydTNPCuw0Z0SrfMXaBCpdLFnV7JpoLVgkdkHXoL1qNIKPDkFzaLgpS649RQIwM_H8N5uIaDeM6YjjaXc5b34BWTlPvA |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/SIU.2013.6531323 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781467355636 1467355631 1467355615 9781467355612 |
EndPage | 4 |
ExternalDocumentID | 6531323 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK IERZE OCL RIE RIL |
ID | FETCH-LOGICAL-i105t-faa5178f239e46c4f1bf6dc5505aef692b0271d2a07c6a02f9dfd44fb7ece003 |
IEDL.DBID | RIE |
ISBN | 9781467355629 1467355623 |
IngestDate | Wed Jun 26 19:24:39 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English Turkish |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i105t-faa5178f239e46c4f1bf6dc5505aef692b0271d2a07c6a02f9dfd44fb7ece003 |
PageCount | 4 |
ParticipantIDs | ieee_primary_6531323 |
PublicationCentury | 2000 |
PublicationDate | 2013-April |
PublicationDateYYYYMMDD | 2013-04-01 |
PublicationDate_xml | – month: 04 year: 2013 text: 2013-April |
PublicationDecade | 2010 |
PublicationTitle | 2013 21st Signal Processing and Communications Applications Conference (SIU) |
PublicationTitleAbbrev | SIU |
PublicationYear | 2013 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001106986 |
Score | 1.5401888 |
Snippet | In this study, the performance of different hyperspectral classification algorithms with the same training set is investigated. In addition, the effect of the... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Classification algorithms Hyperspectral Classification Hyperspectral imaging K-Nearest Neighbor Kernel Maximum Likelihood Support vector machines Training |
Title | The effect of training data on hyperspectral classification algorithms |
URI | https://ieeexplore.ieee.org/document/6531323 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELbaTkyAWsRbHhhJ2sSOHzOiKkhFSLRSt8pxbFpREhTShV_P2UlagRiQMuQ8RH5Fd5_9fXcI3SglSEozGwihZUCV4oGkBMyMW2HhYV5fMX1ikzl9XCSLDrrdaWGMMZ58ZkL36u_ys0Jv3VHZkCUu0SDpoi6XstZq7c9TANtIwbx2i3HwouDX25ROjS3ba8qRHL48zB2vi4TNN38UV_G-ZXyIpm2vakrJW7it0lB__UrY-N9uH6HBXsWHn3f-6Rh1TN5HY9gXuCZx4MLitkIEdkxRXOR4Bbi0ll-WaoO1i60dmcivH1ab16JcV6v3zwGaje9nd5OgqaUQrCGCqgKrVBJxYWMiDWWa2ii1LNMOnyhjmYxTwKdRFqsR10yNYiszm1FqU260gT__BPXyIjenCHOXpBDiBKJtSi2gFRIlYMMgNSWCRmeo76Zg-VFny1g2oz__u_kCHcS-wITjwlyiXlVuzRW4-Sq99uv7DdVZo98 |
link.rule.ids | 310,311,783,787,792,793,799,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKGWAC1CK-8cBI0iZ2HHtGVAXaColW6lY5jk0rSoJKuvDrOTtJKxADUoach8hf0d2z37tD6EZKThKaGo9zJTwqZewJSsBMY8MNPMzpK4Yj1p_Qx2k0baDbjRZGa-3IZ9q3r-4uP83V2h6VdVhkEw2SHbQLcTVnpVpre6IC6EZw5tRbLAY_Cp69TupU2aK-qOyKzsvDxDK7iF999Ud5FeddegdoWPerJJW8-esi8dXXr5SN_-34IWpvdXz4eeOhjlBDZy3Ug52BSxoHzg2ua0RgyxXFeYbngExLAeZKLrGy0bWlE7kVxHL5mq8Wxfz9s43GvfvxXd-rqil4C4ihCs9IGQUxNyERmjJFTZAYliqLUKQ2TIQJINQgDWU3Vkx2QyNSk1JqklgrDf_-MWpmeaZPEI5tmkKIFIgyCTWAV0gQgQ2DVJRwGpyilp2C2UeZL2NWjf7s7-ZrtNcfDwezwcPo6Rzth67chGXGXKBmsVrrS3D6RXLl1vobnMGnKg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+21st+Signal+Processing+and+Communications+Applications+Conference+%28SIU%29&rft.atitle=The+effect+of+training+data+on+hyperspectral+classification+algorithms&rft.au=Ozdemir%2C+Okan+Bilge&rft.au=Cetin%2C+Y.+Y.&rft.date=2013-04-01&rft.pub=IEEE&rft.isbn=9781467355629&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FSIU.2013.6531323&rft.externalDocID=6531323 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467355629/lc.gif&client=summon&freeimage=true |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467355629/mc.gif&client=summon&freeimage=true |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467355629/sc.gif&client=summon&freeimage=true |