Minimizing sparse higher order energy functions of discrete variables

Higher order energy functions have the ability to encode high level structural dependencies between pixels, which have been shown to be extremely powerful for image labeling problems. Their use, however, is severely hampered in practice by the intractable complexity of representing and minimizing su...

Full description

Saved in:
Bibliographic Details
Published in2009 IEEE Conference on Computer Vision and Pattern Recognition pp. 1382 - 1389
Main Authors Rother, Carsten, Kohli, Pushmeet, Wei Feng, Jiaya Jia
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2009
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Higher order energy functions have the ability to encode high level structural dependencies between pixels, which have been shown to be extremely powerful for image labeling problems. Their use, however, is severely hampered in practice by the intractable complexity of representing and minimizing such functions. We observed that higher order functions encountered in computer vision are very often "sparse", i.e. many labelings of a higher order clique are equally unlikely and hence have the same high cost. In this paper, we address the problem of minimizing such sparse higher order energy functions. Our method works by transforming the problem into an equivalent quadratic function minimization problem. The resulting quadratic function can be minimized using popular message passing or graph cut based algorithms for MAP inference. Although this is primarily a theoretical paper, it also shows how higher order functions can be used to obtain impressive results for the binary texture restoration problem.
AbstractList Higher order energy functions have the ability to encode high level structural dependencies between pixels, which have been shown to be extremely powerful for image labeling problems. Their use, however, is severely hampered in practice by the intractable complexity of representing and minimizing such functions. We observed that higher order functions encountered in computer vision are very often "sparse", i.e. many labelings of a higher order clique are equally unlikely and hence have the same high cost. In this paper, we address the problem of minimizing such sparse higher order energy functions. Our method works by transforming the problem into an equivalent quadratic function minimization problem. The resulting quadratic function can be minimized using popular message passing or graph cut based algorithms for MAP inference. Although this is primarily a theoretical paper, it also shows how higher order functions can be used to obtain impressive results for the binary texture restoration problem.
Author Wei Feng
Rother, Carsten
Kohli, Pushmeet
Jiaya Jia
Author_xml – sequence: 1
  givenname: Carsten
  surname: Rother
  fullname: Rother, Carsten
  email: carrot@microsoft.com
  organization: Microsoft Res., Cambridge, UK
– sequence: 2
  givenname: Pushmeet
  surname: Kohli
  fullname: Kohli, Pushmeet
  email: pkohli@microsoft.com
  organization: Microsoft Res., Cambridge, UK
– sequence: 3
  surname: Wei Feng
  fullname: Wei Feng
  email: wfeng@cse.cuhk.edu.hk
  organization: Chinese Univ. of Hong Kong, Hong Kong, China
– sequence: 4
  surname: Jiaya Jia
  fullname: Jiaya Jia
  email: leojia@cse.cuhk.edu.hk
  organization: Chinese Univ. of Hong Kong, Hong Kong, China
BookMark eNpN0MFKAzEUBdCoFWxrP0Dc5AemvrxkJpOlDK0KFUXUbUlnXqaRNlOSUahfb8EKbu5dHLiLO2KD0AVi7ErAVAgwN9X788sUAcw0Ryi0NCdsYnQpFColjRHilA0FFDIrjDBnbPQHiIN_cMFGKX0AoNQIQzZ79MFv_bcPLU87GxPxtW_XFHkXm0NSoNjuufsMde-7kHjneONTHakn_mWjt6sNpUt27uwm0eTYY_Y2n71W99ni6e6hul1kXkDeZ6uV0Vg4R9BYU6OzRS5rbBQ6VVNJ0tDBBWmhQMsSVW6tpgKhwQaVkSjH7Pp31xPRchf91sb98niH_AG9h1GI
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2009.5206739
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 9781424439911
1424439914
EISSN 1063-6919
EndPage 1389
ExternalDocumentID 5206739
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-i105t-bb9726ffe0da9c2fa653c2d42f4ce8e39e9721e7140738245aa7e620d2d249323
IEDL.DBID RIE
ISBN 1424439922
9781424439928
ISSN 1063-6919
IngestDate Wed Aug 27 02:43:41 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i105t-bb9726ffe0da9c2fa653c2d42f4ce8e39e9721e7140738245aa7e620d2d249323
PageCount 8
ParticipantIDs ieee_primary_5206739
PublicationCentury 2000
PublicationDate 2009-June
PublicationDateYYYYMMDD 2009-06-01
PublicationDate_xml – month: 06
  year: 2009
  text: 2009-June
PublicationDecade 2000
PublicationTitle 2009 IEEE Conference on Computer Vision and Pattern Recognition
PublicationTitleAbbrev CVPR
PublicationYear 2009
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0023720
ssj0000453166
ssj0003211698
Score 2.0027335
Snippet Higher order energy functions have the ability to encode high level structural dependencies between pixels, which have been shown to be extremely powerful for...
SourceID ieee
SourceType Publisher
StartPage 1382
SubjectTerms Computer vision
Cost function
Image restoration
Inference algorithms
Labeling
Message passing
Minimization methods
Object segmentation
Pixel
Random variables
Title Minimizing sparse higher order energy functions of discrete variables
URI https://ieeexplore.ieee.org/document/5206739
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG6AkydUMP5ODx4dbG3XrWcCISYYYsRwI936GolxGBge-Ottu25G48Hb-pJmW9Ptfe-9ft9D6I6CUErHKlAZpAFTaRaIRMhAGrtMGOTEyTHMHvl0wR6W8bKF7hsuDAC4w2cwsJeulq82-d6myoax1Rqnoo3aJnCruFpNPsVAExp5aGLH1EQ2XDQVBWK7sbjKJ6cBF5GoSV5OmLXWfvLj1Jc_o1AMRy_zp0rW0t_9RxsW54UmXTSrn786fPI22JfZID_8knb87wseo_433w_PG092glpQnKKuB6jYf_47Y6p7QNS2HhrP1sX6fX0w87D5OW13gF_d0RHsRD0xOG4htu7T7XC80dgygbcGrONPE6hb6taujxaT8fNoGvjWDMHaALIyyDKREK41hEqKnGjJY5oTxYhmOaRABVhVILBqgAlNCYulTICTUBFl4j1K6BnqFJsCzhGOlOSJkjIkQpu9oUWWMkakYjznBn2KC9SzC7X6qNQ3Vn6NLv82X6Gjqt5j8yTXqFNu93BjYEOZ3br98gXwebny
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4QD3pCBeNve_DogLVdt54JBBUIMWC4kW59jcQ4DAwP_PW23YbRePC2vqRZ2rz0fa-v3_cQuqMglNKB8lQMkcdUFHsiFNKTxi5DBglxcgzDEe9P2eMsmFXQ_Y4LAwDu8Rk07aer5atlsrFXZa3Aao1TsYf2TdwP_JyttbtRMeCE-gU4sWNqchsudjUFYvuxuNonpx4XvihpXk6atVR_KsZRUQD126LVeRk_58KWxf9_NGJxcahXQ8NyBfnzk7fmJoubyfaXuON_l3iEGt-MPzzexbJjVIH0BNUKiIqLA2BtTGUXiNJWR93hIl28L7ZmHjbH02oN-NU9HsFO1hODYxdiG0Cdj-OlxpYLvDJwHX-aVN2St9YNNO11J52-VzRn8BYGkmVeHIuQcK2hraRIiJY8oAlRjGiWQARUgNUFAqsHGNKIsEDKEDhpK6JMxkcJPUXVdJnCGcK-kjxUUraJ0MY7tIgjxohUjCfc4E9xjup2o-Yfuf7GvNiji7_Nt-igPxkO5oOH0dMlOsyrP_bW5ApVs9UGrg2IyOIb5ztf23m9Ow
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Minimizing+sparse+higher+order+energy+functions+of+discrete+variables&rft.au=Rother%2C+Carsten&rft.au=Kohli%2C+Pushmeet&rft.au=Wei+Feng&rft.au=Jiaya+Jia&rft.date=2009-06-01&rft.pub=IEEE&rft.isbn=9781424439928&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=1382&rft.epage=1389&rft_id=info:doi/10.1109%2FCVPR.2009.5206739&rft.externalDocID=5206739
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon