Multi-cue onboard pedestrian detection
Various powerful people detection methods exist. Surprisingly, most approaches rely on static image features only despite the obvious potential of motion information for people detection. This paper systematically evaluates different features and classifiers in a sliding-window framework. First, our...
Saved in:
Published in | 2009 IEEE Conference on Computer Vision and Pattern Recognition pp. 794 - 801 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2009
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Various powerful people detection methods exist. Surprisingly, most approaches rely on static image features only despite the obvious potential of motion information for people detection. This paper systematically evaluates different features and classifiers in a sliding-window framework. First, our experiments indicate that incorporating motion information improves detection performance significantly. Second, the combination of multiple and complementary feature types can also help improve performance. And third, the choice of the classifier-feature combination and several implementation details are crucial to reach best performance. In contrast to many recent papers experimental results are reported for four different datasets rather than using a single one. Three of them are taken from the literature allowing for direct comparison. The fourth dataset is newly recorded using an onboard camera driving through urban environment. Consequently this dataset is more realistic and more challenging than any currently available dataset. |
---|---|
AbstractList | Various powerful people detection methods exist. Surprisingly, most approaches rely on static image features only despite the obvious potential of motion information for people detection. This paper systematically evaluates different features and classifiers in a sliding-window framework. First, our experiments indicate that incorporating motion information improves detection performance significantly. Second, the combination of multiple and complementary feature types can also help improve performance. And third, the choice of the classifier-feature combination and several implementation details are crucial to reach best performance. In contrast to many recent papers experimental results are reported for four different datasets rather than using a single one. Three of them are taken from the literature allowing for direct comparison. The fourth dataset is newly recorded using an onboard camera driving through urban environment. Consequently this dataset is more realistic and more challenging than any currently available dataset. |
Author | Walk, Stefan Schiele, Bernt Wojek, Christian |
Author_xml | – sequence: 1 givenname: Christian surname: Wojek fullname: Wojek, Christian email: wojek@cs.tu-darmstadt.de organization: Comput. Sci. Dept., Tech. Univ. Darmstadt, Darmstadt, Germany – sequence: 2 givenname: Stefan surname: Walk fullname: Walk, Stefan email: walk@cs.tu-darmstadt.de organization: Comput. Sci. Dept., Tech. Univ. Darmstadt, Darmstadt, Germany – sequence: 3 givenname: Bernt surname: Schiele fullname: Schiele, Bernt email: schiele@cs.tu-darmstadt.de organization: Comput. Sci. Dept., Tech. Univ. Darmstadt, Darmstadt, Germany |
BookMark | eNpNj0tLw0AURketYFP7A8RNVu4S751XcpcSfEFFEXVbJjN3YKQmJUkX_nsLVnD1LQ58nJOJWdd3LMQFQokIdN18vLyWEoBKI8FaVR-JJVU1aqm1IkI8FnMEqwpLSCci-wNSzv6BM5GN4yeAVJWEubh62m2mVPgd533X9m4I-ZYDj9OQXJcHnthPqe_OxWl0m5GXh12I97vbt-ahWD3fPzY3qyIhmKlwraHWgwbee3pHdayM8XvXSFq1lTUe2WjGaGKlQrDIOhC0SNE6ZvRqIS5_fxMzr7dD-nLD9_rQq34AomZGHA |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR.2009.5206638 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISBN | 9781424439911 1424439914 |
EISSN | 1063-6919 |
EndPage | 801 |
ExternalDocumentID | 5206638 |
Genre | orig-research |
GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS |
ID | FETCH-LOGICAL-i105t-ab59bc040e200ca98f755c663f943b765c1e54e1f5f73dd61e4d90b19f6aee1c3 |
IEDL.DBID | RIE |
ISBN | 1424439922 9781424439928 |
ISSN | 1063-6919 |
IngestDate | Wed Aug 27 02:43:41 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i105t-ab59bc040e200ca98f755c663f943b765c1e54e1f5f73dd61e4d90b19f6aee1c3 |
PageCount | 8 |
ParticipantIDs | ieee_primary_5206638 |
PublicationCentury | 2000 |
PublicationDate | 2009-June |
PublicationDateYYYYMMDD | 2009-06-01 |
PublicationDate_xml | – month: 06 year: 2009 text: 2009-June |
PublicationDecade | 2000 |
PublicationTitle | 2009 IEEE Conference on Computer Vision and Pattern Recognition |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2009 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0023720 ssj0000453166 ssj0003211698 |
Score | 2.2059019 |
Snippet | Various powerful people detection methods exist. Surprisingly, most approaches rely on static image features only despite the obvious potential of motion... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 794 |
SubjectTerms | Boosting Cameras Computer vision Detectors Histograms Humans Image motion analysis Motion detection Object detection Robot vision systems |
Title | Multi-cue onboard pedestrian detection |
URI | https://ieeexplore.ieee.org/document/5206638 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5tT56qtuKbPYgn0zbNYzfnYilCpYiV3koesyDCbtHdi7_eJJutKB68beaykzAh3zy-GYRuwEytkYRiJaRzUJiS2NmNwEJIYRixlElPTl4-isWaPWz4poPu9lwYAAjFZzDynyGXb0tT-1DZmPve4zTroq5z3Bqu1j6e4qAJJRGa-DV1no2Q-4zC1E9jCZlPQbFTS7Ykr9CYte39FNdZTH-SiRzPXlZPTVvL-PcfY1jCKzTvo2Wrf1N88jaqKz0yn79aO_53g4do-M33S1b7l-wIdaA4Rv0IUJN4_T-cqJ0B0coG6DYweLGpISkLXTp7S3ZgIUwDKRILVSj1KoZoPb9_ni1wnL2AXx3iqrDSXGrjbji4vRslszzl3DjlcsmoTgU3BDgDkvM8pdYKAszKiSYyFwqAGHqCekVZwClKpqklkGY5CO3AF08VI1JNtAWZc6lSeoYG_iS2u6a9xjYewvnf4gt00CR0fCDkEvWq9xquHC6o9HUwiC9B4KzL |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKGWAq0CLeZEBMuK3rR-K5oirQVhVqUbcqti8SQkorSBZ-PbbzQCAGtviW-KxL7nx333cI3YAeGC0JxbGQ9oLCYomt3QgshBSaEUOZdODk6UyMl-xxxVcNdFdjYQDAN59B1z36Wr7Z6NylynrccY_TaAftWr_PSYHWqjMqNjihpAxO3Jrau42QdU1h4Oax-NqnoNhuTFYwL0_NWrE_leuoLICSvuwNX-bPBbFl-f4fg1i8Hxq10LTSoGg_eevmmerqz1_kjv9V8QB1vhF_wbz2ZYeoAekRapUhalD-AD6sqJoCUcna6NZjeLHOIdikamMtLtiCAT8PJA0MZL7ZK-2g5eh-MRzjcvoCfrUxV4ZjxaXS9hsHq7uOZZSEnGu7uUQyqkLBNQHOgCQ8CakxggAzsq-ITEQMQDQ9Rs10k8IJCgahIRBGCQhlwy8exozIuK8MyITLOKSnqO1OYr0tCDbW5SGc_S2-RnvjxXSynjzMns7RflHecWmRC9TM3nO4tFFCpq68cXwBgFqwFA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Multi-cue+onboard+pedestrian+detection&rft.au=Wojek%2C+Christian&rft.au=Walk%2C+Stefan&rft.au=Schiele%2C+Bernt&rft.date=2009-06-01&rft.pub=IEEE&rft.isbn=9781424439928&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=794&rft.epage=801&rft_id=info:doi/10.1109%2FCVPR.2009.5206638&rft.externalDocID=5206638 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon |