Multi-cue onboard pedestrian detection

Various powerful people detection methods exist. Surprisingly, most approaches rely on static image features only despite the obvious potential of motion information for people detection. This paper systematically evaluates different features and classifiers in a sliding-window framework. First, our...

Full description

Saved in:
Bibliographic Details
Published in2009 IEEE Conference on Computer Vision and Pattern Recognition pp. 794 - 801
Main Authors Wojek, Christian, Walk, Stefan, Schiele, Bernt
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2009
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Various powerful people detection methods exist. Surprisingly, most approaches rely on static image features only despite the obvious potential of motion information for people detection. This paper systematically evaluates different features and classifiers in a sliding-window framework. First, our experiments indicate that incorporating motion information improves detection performance significantly. Second, the combination of multiple and complementary feature types can also help improve performance. And third, the choice of the classifier-feature combination and several implementation details are crucial to reach best performance. In contrast to many recent papers experimental results are reported for four different datasets rather than using a single one. Three of them are taken from the literature allowing for direct comparison. The fourth dataset is newly recorded using an onboard camera driving through urban environment. Consequently this dataset is more realistic and more challenging than any currently available dataset.
AbstractList Various powerful people detection methods exist. Surprisingly, most approaches rely on static image features only despite the obvious potential of motion information for people detection. This paper systematically evaluates different features and classifiers in a sliding-window framework. First, our experiments indicate that incorporating motion information improves detection performance significantly. Second, the combination of multiple and complementary feature types can also help improve performance. And third, the choice of the classifier-feature combination and several implementation details are crucial to reach best performance. In contrast to many recent papers experimental results are reported for four different datasets rather than using a single one. Three of them are taken from the literature allowing for direct comparison. The fourth dataset is newly recorded using an onboard camera driving through urban environment. Consequently this dataset is more realistic and more challenging than any currently available dataset.
Author Walk, Stefan
Schiele, Bernt
Wojek, Christian
Author_xml – sequence: 1
  givenname: Christian
  surname: Wojek
  fullname: Wojek, Christian
  email: wojek@cs.tu-darmstadt.de
  organization: Comput. Sci. Dept., Tech. Univ. Darmstadt, Darmstadt, Germany
– sequence: 2
  givenname: Stefan
  surname: Walk
  fullname: Walk, Stefan
  email: walk@cs.tu-darmstadt.de
  organization: Comput. Sci. Dept., Tech. Univ. Darmstadt, Darmstadt, Germany
– sequence: 3
  givenname: Bernt
  surname: Schiele
  fullname: Schiele, Bernt
  email: schiele@cs.tu-darmstadt.de
  organization: Comput. Sci. Dept., Tech. Univ. Darmstadt, Darmstadt, Germany
BookMark eNpNj0tLw0AURketYFP7A8RNVu4S751XcpcSfEFFEXVbJjN3YKQmJUkX_nsLVnD1LQ58nJOJWdd3LMQFQokIdN18vLyWEoBKI8FaVR-JJVU1aqm1IkI8FnMEqwpLSCci-wNSzv6BM5GN4yeAVJWEubh62m2mVPgd533X9m4I-ZYDj9OQXJcHnthPqe_OxWl0m5GXh12I97vbt-ahWD3fPzY3qyIhmKlwraHWgwbee3pHdayM8XvXSFq1lTUe2WjGaGKlQrDIOhC0SNE6ZvRqIS5_fxMzr7dD-nLD9_rQq34AomZGHA
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2009.5206638
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 9781424439911
1424439914
EISSN 1063-6919
EndPage 801
ExternalDocumentID 5206638
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-i105t-ab59bc040e200ca98f755c663f943b765c1e54e1f5f73dd61e4d90b19f6aee1c3
IEDL.DBID RIE
ISBN 1424439922
9781424439928
ISSN 1063-6919
IngestDate Wed Aug 27 02:43:41 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i105t-ab59bc040e200ca98f755c663f943b765c1e54e1f5f73dd61e4d90b19f6aee1c3
PageCount 8
ParticipantIDs ieee_primary_5206638
PublicationCentury 2000
PublicationDate 2009-June
PublicationDateYYYYMMDD 2009-06-01
PublicationDate_xml – month: 06
  year: 2009
  text: 2009-June
PublicationDecade 2000
PublicationTitle 2009 IEEE Conference on Computer Vision and Pattern Recognition
PublicationTitleAbbrev CVPR
PublicationYear 2009
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0023720
ssj0000453166
ssj0003211698
Score 2.2059019
Snippet Various powerful people detection methods exist. Surprisingly, most approaches rely on static image features only despite the obvious potential of motion...
SourceID ieee
SourceType Publisher
StartPage 794
SubjectTerms Boosting
Cameras
Computer vision
Detectors
Histograms
Humans
Image motion analysis
Motion detection
Object detection
Robot vision systems
Title Multi-cue onboard pedestrian detection
URI https://ieeexplore.ieee.org/document/5206638
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5tT56qtuKbPYgn0zbNYzfnYilCpYiV3koesyDCbtHdi7_eJJutKB68beaykzAh3zy-GYRuwEytkYRiJaRzUJiS2NmNwEJIYRixlElPTl4-isWaPWz4poPu9lwYAAjFZzDynyGXb0tT-1DZmPve4zTroq5z3Bqu1j6e4qAJJRGa-DV1no2Q-4zC1E9jCZlPQbFTS7Ykr9CYte39FNdZTH-SiRzPXlZPTVvL-PcfY1jCKzTvo2Wrf1N88jaqKz0yn79aO_53g4do-M33S1b7l-wIdaA4Rv0IUJN4_T-cqJ0B0coG6DYweLGpISkLXTp7S3ZgIUwDKRILVSj1KoZoPb9_ni1wnL2AXx3iqrDSXGrjbji4vRslszzl3DjlcsmoTgU3BDgDkvM8pdYKAszKiSYyFwqAGHqCekVZwClKpqklkGY5CO3AF08VI1JNtAWZc6lSeoYG_iS2u6a9xjYewvnf4gt00CR0fCDkEvWq9xquHC6o9HUwiC9B4KzL
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKGWAq0CLeZEBMuK3rR-K5oirQVhVqUbcqti8SQkorSBZ-PbbzQCAGtviW-KxL7nx333cI3YAeGC0JxbGQ9oLCYomt3QgshBSaEUOZdODk6UyMl-xxxVcNdFdjYQDAN59B1z36Wr7Z6NylynrccY_TaAftWr_PSYHWqjMqNjihpAxO3Jrau42QdU1h4Oax-NqnoNhuTFYwL0_NWrE_leuoLICSvuwNX-bPBbFl-f4fg1i8Hxq10LTSoGg_eevmmerqz1_kjv9V8QB1vhF_wbz2ZYeoAekRapUhalD-AD6sqJoCUcna6NZjeLHOIdikamMtLtiCAT8PJA0MZL7ZK-2g5eh-MRzjcvoCfrUxV4ZjxaXS9hsHq7uOZZSEnGu7uUQyqkLBNQHOgCQ8CakxggAzsq-ITEQMQDQ9Rs10k8IJCgahIRBGCQhlwy8exozIuK8MyITLOKSnqO1OYr0tCDbW5SGc_S2-RnvjxXSynjzMns7RflHecWmRC9TM3nO4tFFCpq68cXwBgFqwFA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Multi-cue+onboard+pedestrian+detection&rft.au=Wojek%2C+Christian&rft.au=Walk%2C+Stefan&rft.au=Schiele%2C+Bernt&rft.date=2009-06-01&rft.pub=IEEE&rft.isbn=9781424439928&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=794&rft.epage=801&rft_id=info:doi/10.1109%2FCVPR.2009.5206638&rft.externalDocID=5206638
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon