Learning semantic scene models by object classification and trajectory clustering

Activity analysis is a basic task in video surveillance and has become an active research area. However, due to the diversity of moving objects category and their motion patterns, developing robust semantic scene models for activity analysis remains a challenging problem in traffic scenarios. This p...

Full description

Saved in:
Bibliographic Details
Published in2009 IEEE Conference on Computer Vision and Pattern Recognition pp. 1940 - 1947
Main Authors Tianzhu Zhang, Hanqing Lu, Li, Stan Z
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2009
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Activity analysis is a basic task in video surveillance and has become an active research area. However, due to the diversity of moving objects category and their motion patterns, developing robust semantic scene models for activity analysis remains a challenging problem in traffic scenarios. This paper proposes a novel framework to learn semantic scene models. In this framework, the detected moving objects are first classified as pedestrians or vehicles via a co-trained classifier which takes advantage of the multiview information of objects. As a result, the framework can automatically learn motion patterns respectively for pedestrians and vehicles. Then, a graph is proposed to learn and cluster the motion patterns. To this end, trajectory is parameterized and the image is cut into multiple blocks which are taken as the nodes in the graph. Based on the parameters of trajectories, the primary motion patterns in each node (block) are extracted via Gaussian mixture model (GMM), and supplied to this graph. The graph cut algorithm is finally employed to group the motion patterns together, and trajectories are clustered to learn semantic scene models. Experimental results and applications to real world scenes show the validity of our proposed method.
AbstractList Activity analysis is a basic task in video surveillance and has become an active research area. However, due to the diversity of moving objects category and their motion patterns, developing robust semantic scene models for activity analysis remains a challenging problem in traffic scenarios. This paper proposes a novel framework to learn semantic scene models. In this framework, the detected moving objects are first classified as pedestrians or vehicles via a co-trained classifier which takes advantage of the multiview information of objects. As a result, the framework can automatically learn motion patterns respectively for pedestrians and vehicles. Then, a graph is proposed to learn and cluster the motion patterns. To this end, trajectory is parameterized and the image is cut into multiple blocks which are taken as the nodes in the graph. Based on the parameters of trajectories, the primary motion patterns in each node (block) are extracted via Gaussian mixture model (GMM), and supplied to this graph. The graph cut algorithm is finally employed to group the motion patterns together, and trajectories are clustered to learn semantic scene models. Experimental results and applications to real world scenes show the validity of our proposed method.
Author Tianzhu Zhang
Li, Stan Z
Hanqing Lu
Author_xml – sequence: 1
  surname: Tianzhu Zhang
  fullname: Tianzhu Zhang
  email: tzzhang@nlpr.ia.ac.cn
  organization: Nat. Lab. of Pattern Recognition, Chinese Acad. of Sci., Beijing, China
– sequence: 2
  surname: Hanqing Lu
  fullname: Hanqing Lu
  email: luhq@nlpr.ia.ac.cn
  organization: Nat. Lab. of Pattern Recognition, Chinese Acad. of Sci., Beijing, China
– sequence: 3
  givenname: Stan Z
  surname: Li
  fullname: Li, Stan Z
  email: szli@nlpr.ia.ac.cn
  organization: Nat. Lab. of Pattern Recognition, Chinese Acad. of Sci., Beijing, China
BookMark eNpNkEtLAzEUhaNWsK39AeImf2DGm8wzSym-YMAH6rbcJDeS0mYkGRfz7x2xgquz-ODjnLNgs9AHYuxCQC4EqKv1-9NLLgFUXkmoW1BHbKWaVpSyLAulhDhmcwF1kdVKqBO2-ANSzv6BM7ZIaQsgi0bCnD13hDH48MET7TEM3vBkKBDf95Z2ieuR93pLZuBmhyl55w0Ovg8cg-VDxB_Ux3GiX2mgOInO2anDXaLVIZfs7fbmdX2fdY93D-vrLvMCqiGbejWlM1pbZ51Bh9KAtQCEpA1WlS5b1IaEQ1cZN81QjTVaaLQkiqbUxZJd_no9EW0-o99jHDeHa4pv94NZCQ
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2009.5206809
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 9781424439911
1424439914
EISSN 1063-6919
EndPage 1947
ExternalDocumentID 5206809
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-i105t-99274fcbbdfdfcafa2c0dd00eaebca55b48abce1faf5cf39997dcb1bade1374b3
IEDL.DBID RIE
ISBN 1424439922
9781424439928
ISSN 1063-6919
IngestDate Wed Aug 27 02:43:41 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i105t-99274fcbbdfdfcafa2c0dd00eaebca55b48abce1faf5cf39997dcb1bade1374b3
PageCount 8
ParticipantIDs ieee_primary_5206809
PublicationCentury 2000
PublicationDate 2009-June
PublicationDateYYYYMMDD 2009-06-01
PublicationDate_xml – month: 06
  year: 2009
  text: 2009-June
PublicationDecade 2000
PublicationTitle 2009 IEEE Conference on Computer Vision and Pattern Recognition
PublicationTitleAbbrev CVPR
PublicationYear 2009
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0023720
ssj0000453166
ssj0003211698
Score 2.0026448
Snippet Activity analysis is a basic task in video surveillance and has become an active research area. However, due to the diversity of moving objects category and...
SourceID ieee
SourceType Publisher
StartPage 1940
SubjectTerms Automation
Biometrics
Laboratories
Layout
National security
Pattern analysis
Pattern recognition
Traffic control
Vehicles
Video surveillance
Title Learning semantic scene models by object classification and trajectory clustering
URI https://ieeexplore.ieee.org/document/5206809
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELbaTkwFWsRbHhhJG8fOa66oKiRQQRR1q_w4o4JIUZsM5ddjO04RiIHNdqQkvji6x3f3HUJXQlNBWQiBJMqSamsRGD3Pg0TmmVKKRimx9c5398lkxm7n8byFrne1MADgks9gYIcOy1crWdlQ2TCObKeIvI3axnGra7V28RRjmlDiTRM7p8azSfIdohDZbiwO-UxokOQkb4q8HDFrw_3k55mHP0mYD0fP08ea1tI__UcbFqeFxl1017x_nXzyNqhKMZCfv6gd_7vBfdT_rvfD050mO0AtKA5R1xuo2P_-G7PU9IBo1nrowRO0vuANvJuvtJTY8kMBdi12Nlhs8UrYWA-W1k63iUnuLGBeKFyu-atDDbbmamUpG8yN-mg2vnkaTQLfpiFYGuOsDIzAUqalEEorLbnmkQyVCkPgNtEqjgXLuJBANNex1Ea-eaqkIIIrIDRlgh6hTrEq4BhhyTMOJMwkUM50DoIZf08yMyBKCRKfoJ4V2uKjZuJYeHmd_r18hvZq7MfGTM5Rp1xXcGFMiFJcurPzBe8QwT8
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG8QD3pCBeO3PXh0uNJ99UwkqEDQgOFG-mnQOAxsB_zrbbtuRuPBW_uWbOlrs_f6Pn4_AK6YwgwHvvQ4EgZUWzFP23nqRZwkQgjciZHpdx6Oov40uJ-Fsxq4rnphpJS2-Ey2zdDm8sWS5yZUdhN2DFME2QLb2u6HqOjWqiIq2jnByDknZo713SYiVU6hY_hYbO4zwl5EECnbvCw0a4n-5OaJS4Ain9x0n8dPBbCl-_4PIhZrh3oNMCxXUJSfvLXzjLX55y9wx_8ucQ-0vjv-4LiyZfugJtMD0HAuKnQ_gLUWlSwQpawJHh1E6wtcy3e9TwsODUKUhJZkZw3ZBi6ZifZAbjx1U5pkTwOkqYDZir7avMFGP80NaIN-UQtMe7eTbt9zRA3eQrtnmacVFgeKMyaUUJwq2uG-EL4vqSm1CkMWJJRxiRRVIVdavyQWnCFGhUQ4Dhg-BPV0mcojADlNqER-wiWmgSKSBfrGxwM9QEIwFB6DplHa_KPA4pg7fZ38Lb4EO_3JcDAf3I0eTsFukQkyEZQzUM9WuTzXDkXGLuw5-gI008SI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Learning+semantic+scene+models+by+object+classification+and+trajectory+clustering&rft.au=Tianzhu+Zhang&rft.au=Hanqing+Lu&rft.au=Li%2C+Stan+Z&rft.date=2009-06-01&rft.pub=IEEE&rft.isbn=9781424439928&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=1940&rft.epage=1947&rft_id=info:doi/10.1109%2FCVPR.2009.5206809&rft.externalDocID=5206809
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon