An improved interactive genetic algorithm incorporating relevant feedback
This paper has proposed a new interactive genetic algorithm (IGA) framework incorporating relevant feedback (RF), in which human evaluation is regarded as not only the fitness function of GA, but also the relevant score to instruct interactive machine learning. Thus, on the one hand, user's fat...
Saved in:
Published in | 2005 International Conference on Machine Learning and Cybernetics Vol. 5; pp. 2996 - 3001 Vol. 5 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
2005
|
Subjects | |
Online Access | Get full text |
ISBN | 0780390911 9780780390911 |
ISSN | 2160-133X |
DOI | 10.1109/ICMLC.2005.1527456 |
Cover
Abstract | This paper has proposed a new interactive genetic algorithm (IGA) framework incorporating relevant feedback (RF), in which human evaluation is regarded as not only the fitness function of GA, but also the relevant score to instruct interactive machine learning. Thus, on the one hand, user's fatigue, the key issue of IGA, can be alleviated, since some individuals with higher preference weight are added in each generation through relevance feedback technology. On the other hand, the two mapping functions between the low-level parameter space and the high-level users' psychological space can be built during interactions. An instance of this frame, which uses support vector machine (SVM) as the machine learning method in RF, is also provided. The effectiveness of our approach is first evaluated through simulation tests using two benchmark functions. The experimental results show that the convergence speed of the proposal is much faster than that of normal IGA. Then, the approach is applied to retrieve images with emotion semantics queries. The subject experiments also demonstrate that the proposal algorithm can alleviate user fatigue. Furthermore, SVM constructs an individual emotion user model though learning. |
---|---|
AbstractList | This paper has proposed a new interactive genetic algorithm (IGA) framework incorporating relevant feedback (RF), in which human evaluation is regarded as not only the fitness function of GA, but also the relevant score to instruct interactive machine learning. Thus, on the one hand, user's fatigue, the key issue of IGA, can be alleviated, since some individuals with higher preference weight are added in each generation through relevance feedback technology. On the other hand, the two mapping functions between the low-level parameter space and the high-level users' psychological space can be built during interactions. An instance of this frame, which uses support vector machine (SVM) as the machine learning method in RF, is also provided. The effectiveness of our approach is first evaluated through simulation tests using two benchmark functions. The experimental results show that the convergence speed of the proposal is much faster than that of normal IGA. Then, the approach is applied to retrieve images with emotion semantics queries. The subject experiments also demonstrate that the proposal algorithm can alleviate user fatigue. Furthermore, SVM constructs an individual emotion user model though learning. |
Author | Xu-Fa Wang Shang-Fei Wang Jia Xue |
Author_xml | – sequence: 1 surname: Shang-Fei Wang fullname: Shang-Fei Wang organization: Dept. of Comput. Sci. & Technol., China Univ. of Sci. & Technol., Anhui, China – sequence: 2 surname: Xu-Fa Wang fullname: Xu-Fa Wang organization: Dept. of Comput. Sci. & Technol., China Univ. of Sci. & Technol., Anhui, China – sequence: 3 surname: Jia Xue fullname: Jia Xue organization: Dept. of Comput. Sci. & Technol., China Univ. of Sci. & Technol., Anhui, China |
BookMark | eNotj11LwzAUhgNOcJv7A3rTP9B5TtMkzeUofhQm3ih4N9LkdEbbtKRh4L934N6b5-KBB94VW4QxEGN3CFtE0A9N_bqvtwWA2KIoVCnkFVuBqoBr0IgLtixQQo6cf96wzTx_w3lcC8lhyZpdyPwwxfFELvMhUTQ2-RNlRwqUvM1MfxyjT1_D2doxTmM0yYdjFqmnkwkp64hca-zPLbvuTD_T5sI1-3h6fK9f8v3bc1Pv9rlHEClX5MgoIXSBneukKYFz2apSobJItuMVOpSqLStO6JwDU_LWVmWrNEjtKr5m9_9dT0SHKfrBxN_D5Tn_A81WT8E |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICMLC.2005.1527456 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Psychology Computer Science |
EndPage | 3001 Vol. 5 |
ExternalDocumentID | 1527456 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI M43 OCL RIE RIL |
ID | FETCH-LOGICAL-i105t-7edea755921fdf6a40336b74717c1ecf381d167b483e1ddd0a43bc84b79069d83 |
IEDL.DBID | RIE |
ISBN | 0780390911 9780780390911 |
ISSN | 2160-133X |
IngestDate | Tue Aug 26 19:21:58 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i105t-7edea755921fdf6a40336b74717c1ecf381d167b483e1ddd0a43bc84b79069d83 |
ParticipantIDs | ieee_primary_1527456 |
PublicationCentury | 2000 |
PublicationDate | 20050000 |
PublicationDateYYYYMMDD | 2005-01-01 |
PublicationDate_xml | – year: 2005 text: 20050000 |
PublicationDecade | 2000 |
PublicationTitle | 2005 International Conference on Machine Learning and Cybernetics |
PublicationTitleAbbrev | ICMLC |
PublicationYear | 2005 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000395630 ssj0000744891 |
Score | 1.3871139 |
Snippet | This paper has proposed a new interactive genetic algorithm (IGA) framework incorporating relevant feedback (RF), in which human evaluation is regarded as not... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 2996 |
SubjectTerms | emotion semantics Fatigue Feedback Genetic algorithms Humans image retrieval Interactive genetic algorithm Machine learning Proposals Psychology Radio frequency relevant feedback Space technology Support vector machines |
Title | An improved interactive genetic algorithm incorporating relevant feedback |
URI | https://ieeexplore.ieee.org/document/1527456 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG6QEycUMP5ODx4trHRrt6MhEjBiPEjCjfSnEhQMGSb61_vajRmNBy_Luixr17319b32-z6ELqUTJkmtJonjmsSZNEQyJYlmSus0cTAEBrbPez6axrezZFZDVxUWxlobNp_Zrj8Na_lmrbc-VdbzEqzg8PfQHphZgdWq8ikRyyqqq1AWEHgEwbw-5RGBUGwWovYUbgQfSUvynaq8A9REWW88mNwNinRLWeMP6ZXgeYZNNNm1udhwsuxuc9XVn7_oHP_7Uvuo843xww-V9zpANbtqoeZO5AGX_3wLNaoh8qONxtcrvAhpCGuwZ5oIGKt3i8EMPRoSy5en9WaRP79iz_pQkCTD47GXZoE5e44d1KekXnbQdHjzOBiRUoyBLGAKlhNhjZUC4o8-dcZxGUeMceVDWqGp1Q48v6FcqDhllhpjIhnD505jJbKIZyZlh6i-Wq_sEcK6n0lqvTKWcX51P7MuiRyTFA6cKXGM2r6b5m8F38a87KGTvy-fokagUw1pkTNUzzdbew4ThVxdBAv5ArSotu4 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4gHvSEAsa3e_BooWX7PBoiAQXiARJuZJ9K0GJIMdFf7-y21Gg8eGm6TdPdbrf7zczufB_ANdORDGIlnECHwvETJh1GOXME5ULEgcYp0LJ9jsP-1L-fBbMK3JS5MEopu_lMtcypXcuXK7ExobK2kWBFwN-BXcR9P8iztcqIikuTkuzKliN0PaxkXscLXQedsZn122O8EVHSK-h3yvI2pcZN2oPuaNjNAy5FnT_EVyz29Gow2rY633KybG0y3hKfvwgd__taB9D8zvIjjyV-HUJFpXWobWUeSPHX12G_nCQ_GjC4TcnCBiKUJIZrwmZZvSuCA9HkQxL28rRaL7LnV2J4H3KaZHw8MeIsaLVnRGN9nIllE6a9u0m37xRyDM4CjbDMiZRULEIPpONpqUPmu5SG3Di1kfCU0Ij90gsj7sdUeVJKl_n4wWOfR4kbJjKmR1BNV6k6BiI6CfOU0caS2qzvJ0oHrqbMw0NIeXQCDdNN87eccWNe9NDp35evYK8_GQ3nw8H44Qz2LbmqDZKcQzVbb9QFmg0Zv7Sj5Qt_W7o7 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2005+International+Conference+on+Machine+Learning+and+Cybernetics&rft.atitle=An+improved+interactive+genetic+algorithm+incorporating+relevant+feedback&rft.au=Shang-Fei+Wang&rft.au=Xu-Fa+Wang&rft.au=Jia+Xue&rft.date=2005-01-01&rft.pub=IEEE&rft.isbn=9780780390911&rft.issn=2160-133X&rft.volume=5&rft.spage=2996&rft.epage=3001+Vol.+5&rft_id=info:doi/10.1109%2FICMLC.2005.1527456&rft.externalDocID=1527456 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-133X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-133X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-133X&client=summon |