An improved interactive genetic algorithm incorporating relevant feedback

This paper has proposed a new interactive genetic algorithm (IGA) framework incorporating relevant feedback (RF), in which human evaluation is regarded as not only the fitness function of GA, but also the relevant score to instruct interactive machine learning. Thus, on the one hand, user's fat...

Full description

Saved in:
Bibliographic Details
Published in2005 International Conference on Machine Learning and Cybernetics Vol. 5; pp. 2996 - 3001 Vol. 5
Main Authors Shang-Fei Wang, Xu-Fa Wang, Jia Xue
Format Conference Proceeding
LanguageEnglish
Published IEEE 2005
Subjects
Online AccessGet full text
ISBN0780390911
9780780390911
ISSN2160-133X
DOI10.1109/ICMLC.2005.1527456

Cover

Abstract This paper has proposed a new interactive genetic algorithm (IGA) framework incorporating relevant feedback (RF), in which human evaluation is regarded as not only the fitness function of GA, but also the relevant score to instruct interactive machine learning. Thus, on the one hand, user's fatigue, the key issue of IGA, can be alleviated, since some individuals with higher preference weight are added in each generation through relevance feedback technology. On the other hand, the two mapping functions between the low-level parameter space and the high-level users' psychological space can be built during interactions. An instance of this frame, which uses support vector machine (SVM) as the machine learning method in RF, is also provided. The effectiveness of our approach is first evaluated through simulation tests using two benchmark functions. The experimental results show that the convergence speed of the proposal is much faster than that of normal IGA. Then, the approach is applied to retrieve images with emotion semantics queries. The subject experiments also demonstrate that the proposal algorithm can alleviate user fatigue. Furthermore, SVM constructs an individual emotion user model though learning.
AbstractList This paper has proposed a new interactive genetic algorithm (IGA) framework incorporating relevant feedback (RF), in which human evaluation is regarded as not only the fitness function of GA, but also the relevant score to instruct interactive machine learning. Thus, on the one hand, user's fatigue, the key issue of IGA, can be alleviated, since some individuals with higher preference weight are added in each generation through relevance feedback technology. On the other hand, the two mapping functions between the low-level parameter space and the high-level users' psychological space can be built during interactions. An instance of this frame, which uses support vector machine (SVM) as the machine learning method in RF, is also provided. The effectiveness of our approach is first evaluated through simulation tests using two benchmark functions. The experimental results show that the convergence speed of the proposal is much faster than that of normal IGA. Then, the approach is applied to retrieve images with emotion semantics queries. The subject experiments also demonstrate that the proposal algorithm can alleviate user fatigue. Furthermore, SVM constructs an individual emotion user model though learning.
Author Xu-Fa Wang
Shang-Fei Wang
Jia Xue
Author_xml – sequence: 1
  surname: Shang-Fei Wang
  fullname: Shang-Fei Wang
  organization: Dept. of Comput. Sci. & Technol., China Univ. of Sci. & Technol., Anhui, China
– sequence: 2
  surname: Xu-Fa Wang
  fullname: Xu-Fa Wang
  organization: Dept. of Comput. Sci. & Technol., China Univ. of Sci. & Technol., Anhui, China
– sequence: 3
  surname: Jia Xue
  fullname: Jia Xue
  organization: Dept. of Comput. Sci. & Technol., China Univ. of Sci. & Technol., Anhui, China
BookMark eNotj11LwzAUhgNOcJv7A3rTP9B5TtMkzeUofhQm3ih4N9LkdEbbtKRh4L934N6b5-KBB94VW4QxEGN3CFtE0A9N_bqvtwWA2KIoVCnkFVuBqoBr0IgLtixQQo6cf96wzTx_w3lcC8lhyZpdyPwwxfFELvMhUTQ2-RNlRwqUvM1MfxyjT1_D2doxTmM0yYdjFqmnkwkp64hca-zPLbvuTD_T5sI1-3h6fK9f8v3bc1Pv9rlHEClX5MgoIXSBneukKYFz2apSobJItuMVOpSqLStO6JwDU_LWVmWrNEjtKr5m9_9dT0SHKfrBxN_D5Tn_A81WT8E
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICMLC.2005.1527456
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Psychology
Computer Science
EndPage 3001 Vol. 5
ExternalDocumentID 1527456
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i105t-7edea755921fdf6a40336b74717c1ecf381d167b483e1ddd0a43bc84b79069d83
IEDL.DBID RIE
ISBN 0780390911
9780780390911
ISSN 2160-133X
IngestDate Tue Aug 26 19:21:58 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i105t-7edea755921fdf6a40336b74717c1ecf381d167b483e1ddd0a43bc84b79069d83
ParticipantIDs ieee_primary_1527456
PublicationCentury 2000
PublicationDate 20050000
PublicationDateYYYYMMDD 2005-01-01
PublicationDate_xml – year: 2005
  text: 20050000
PublicationDecade 2000
PublicationTitle 2005 International Conference on Machine Learning and Cybernetics
PublicationTitleAbbrev ICMLC
PublicationYear 2005
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000395630
ssj0000744891
Score 1.3871139
Snippet This paper has proposed a new interactive genetic algorithm (IGA) framework incorporating relevant feedback (RF), in which human evaluation is regarded as not...
SourceID ieee
SourceType Publisher
StartPage 2996
SubjectTerms emotion semantics
Fatigue
Feedback
Genetic algorithms
Humans
image retrieval
Interactive genetic algorithm
Machine learning
Proposals
Psychology
Radio frequency
relevant feedback
Space technology
Support vector machines
Title An improved interactive genetic algorithm incorporating relevant feedback
URI https://ieeexplore.ieee.org/document/1527456
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG6QEycUMP5ODx4trHRrt6MhEjBiPEjCjfSnEhQMGSb61_vajRmNBy_Luixr17319b32-z6ELqUTJkmtJonjmsSZNEQyJYlmSus0cTAEBrbPez6axrezZFZDVxUWxlobNp_Zrj8Na_lmrbc-VdbzEqzg8PfQHphZgdWq8ikRyyqqq1AWEHgEwbw-5RGBUGwWovYUbgQfSUvynaq8A9REWW88mNwNinRLWeMP6ZXgeYZNNNm1udhwsuxuc9XVn7_oHP_7Uvuo843xww-V9zpANbtqoeZO5AGX_3wLNaoh8qONxtcrvAhpCGuwZ5oIGKt3i8EMPRoSy5en9WaRP79iz_pQkCTD47GXZoE5e44d1KekXnbQdHjzOBiRUoyBLGAKlhNhjZUC4o8-dcZxGUeMceVDWqGp1Q48v6FcqDhllhpjIhnD505jJbKIZyZlh6i-Wq_sEcK6n0lqvTKWcX51P7MuiRyTFA6cKXGM2r6b5m8F38a87KGTvy-fokagUw1pkTNUzzdbew4ThVxdBAv5ArSotu4
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4gHvSEAsa3e_BooWX7PBoiAQXiARJuZJ9K0GJIMdFf7-y21Gg8eGm6TdPdbrf7zczufB_ANdORDGIlnECHwvETJh1GOXME5ULEgcYp0LJ9jsP-1L-fBbMK3JS5MEopu_lMtcypXcuXK7ExobK2kWBFwN-BXcR9P8iztcqIikuTkuzKliN0PaxkXscLXQedsZn122O8EVHSK-h3yvI2pcZN2oPuaNjNAy5FnT_EVyz29Gow2rY633KybG0y3hKfvwgd__taB9D8zvIjjyV-HUJFpXWobWUeSPHX12G_nCQ_GjC4TcnCBiKUJIZrwmZZvSuCA9HkQxL28rRaL7LnV2J4H3KaZHw8MeIsaLVnRGN9nIllE6a9u0m37xRyDM4CjbDMiZRULEIPpONpqUPmu5SG3Di1kfCU0Ij90gsj7sdUeVJKl_n4wWOfR4kbJjKmR1BNV6k6BiI6CfOU0caS2qzvJ0oHrqbMw0NIeXQCDdNN87eccWNe9NDp35evYK8_GQ3nw8H44Qz2LbmqDZKcQzVbb9QFmg0Zv7Sj5Qt_W7o7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2005+International+Conference+on+Machine+Learning+and+Cybernetics&rft.atitle=An+improved+interactive+genetic+algorithm+incorporating+relevant+feedback&rft.au=Shang-Fei+Wang&rft.au=Xu-Fa+Wang&rft.au=Jia+Xue&rft.date=2005-01-01&rft.pub=IEEE&rft.isbn=9780780390911&rft.issn=2160-133X&rft.volume=5&rft.spage=2996&rft.epage=3001+Vol.+5&rft_id=info:doi/10.1109%2FICMLC.2005.1527456&rft.externalDocID=1527456
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-133X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-133X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-133X&client=summon