Joint nonparametric alignment for analyzing spatial gene expression patterns in Drosophila imaginal discs

To compare spatial patterns of gene expression, one must analyze a large number of images as current methods are only able to measure a small number of genes at a time. Bringing images of corresponding tissues into alignment is a critical first step in making a meaningful comparative analysis of the...

Full description

Saved in:
Bibliographic Details
Published in2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) Vol. 2; pp. 755 - 760 vol. 2
Main Authors Ahammad, P., Harmon, C.L., Hammonds, A., Shankar Sastry, S., Rubin, G.M.
Format Conference Proceeding
LanguageEnglish
Published IEEE 2005
Subjects
Online AccessGet full text
ISBN0769523722
9780769523729
ISSN1063-6919
1063-6919
DOI10.1109/CVPR.2005.198

Cover

Loading…
Abstract To compare spatial patterns of gene expression, one must analyze a large number of images as current methods are only able to measure a small number of genes at a time. Bringing images of corresponding tissues into alignment is a critical first step in making a meaningful comparative analysis of these spatial patterns. Significant image noise and variability in the shapes make it hard to pick a canonical shape model. In this paper, we address these problems by combining segmentation and unsupervised shape learning algorithms. We first segment images to acquire structures of interest, then jointly align the shapes of these acquired structures using an unsupervised nonparametric maximum likelihood algorithm along the lines of 'congealing' (E. G. Miller et al., 2000), while simultaneously learning the underlying shape model and associated transformations. The learned transformations are applied to corresponding images to bring them into alignment in one step. We demonstrate the results for images of various classes of Drosophila imaginal discs and discuss the methodology used for a quantitative analysis of spatial gene expression patterns.
AbstractList To compare spatial patterns of gene expression, one must analyze a large number of images as current methods are only able to measure a small number of genes at a time. Bringing images of corresponding tissues into alignment is a critical first step in making a meaningful comparative analysis of these spatial patterns. Significant image noise and variability in the shapes make it hard to pick a canonical shape model. In this paper, we address these problems by combining segmentation and unsupervised shape learning algorithms. We first segment images to acquire structures of interest, then jointly align the shapes of these acquired structures using an unsupervised nonparametric maximum likelihood algorithm along the lines of 'congealing' (E. G. Miller et al., 2000), while simultaneously learning the underlying shape model and associated transformations. The learned transformations are applied to corresponding images to bring them into alignment in one step. We demonstrate the results for images of various classes of Drosophila imaginal discs and discuss the methodology used for a quantitative analysis of spatial gene expression patterns.
Author Shankar Sastry, S.
Harmon, C.L.
Hammonds, A.
Rubin, G.M.
Ahammad, P.
Author_xml – sequence: 1
  givenname: P.
  surname: Ahammad
  fullname: Ahammad, P.
  organization: Dept. of Electr. Eng. & Comput. Sci., California Univ., Berkeley, CA, USA
– sequence: 2
  givenname: C.L.
  surname: Harmon
  fullname: Harmon, C.L.
– sequence: 3
  givenname: A.
  surname: Hammonds
  fullname: Hammonds, A.
– sequence: 4
  givenname: S.
  surname: Shankar Sastry
  fullname: Shankar Sastry, S.
– sequence: 5
  givenname: G.M.
  surname: Rubin
  fullname: Rubin, G.M.
BookMark eNpNTztPwzAYtKBItKUjE4v_QIIfiR8jKm9VAiFgrRz3S_hQ6kR2BsqvxxIM3HLSne50tyCzMAQg5JyzknNmL9fvzy-lYKwuuTVHZM6ZkoWy3B6TBdPK1kJqIWb_jFOySumTZUgrTSXmBB8HDBPNzaOLbg9TRE9dj13YQ9bbIVIXXH_4xtDRNLoJXU87CEDha4yQEg6BZnmCGBLFQK_jkIbxA3tHce86zGG6w-TTGTlpXZ9g9cdL8nZ787q-LzZPdw_rq02BnNVTUXnndC1ta403tm6YFe2Oa2i01kwYgMqIxvtWMc4VU6BbabmEfNe3TjQgl-TitxcBYDvGvCIetrxSuuZG_gCNgFzi
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2005.198
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1063-6919
EndPage 760 vol. 2
ExternalDocumentID 1467518
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-i105t-4caa7539f98c895b092fd17eb777028ee482bccf6011606e7f3913e769cfa2be3
IEDL.DBID RIE
ISBN 0769523722
9780769523729
ISSN 1063-6919
IngestDate Wed Aug 27 02:18:30 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i105t-4caa7539f98c895b092fd17eb777028ee482bccf6011606e7f3913e769cfa2be3
ParticipantIDs ieee_primary_1467518
PublicationCentury 2000
PublicationDate 20050000
PublicationDateYYYYMMDD 2005-01-01
PublicationDate_xml – year: 2005
  text: 20050000
PublicationDecade 2000
PublicationTitle 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)
PublicationTitleAbbrev CVPR
PublicationYear 2005
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000393842
ssj0023720
ssj0003211698
Score 1.5723538
Snippet To compare spatial patterns of gene expression, one must analyze a large number of images as current methods are only able to measure a small number of genes...
SourceID ieee
SourceType Publisher
StartPage 755
SubjectTerms Biological cells
Embryo
Gene expression
Image analysis
Image segmentation
Insects
Organisms
Pattern analysis
Shape
Time measurement
Title Joint nonparametric alignment for analyzing spatial gene expression patterns in Drosophila imaginal discs
URI https://ieeexplore.ieee.org/document/1467518
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LT8IwHG6AkydUML7Tg0cHe289o8SQYIgRw4203a9mEQZh48Jf76_dg2g8eFu7ZOn6SL_f6_sIeWBuAF4SMiuB2LN8hLCWEDyymLRDxm0llVnp6Wv4Mvcni2DRIo9NLQwAmOQzGOhHE8tPNnKvXWVDfaoDJ26TNhpuZa1W40_RNaZxZebptoeWTciaiIKr1VhM5DP0rJA5rDThWaBfuBUTT91mRzLO4ehj9la6XtA8_yHBYm6gcZdM67GXiSdfg30hBvLwi9bxvz93SvrHWj86a26xM9KC7Jx0K3BKq6OfY1et_1D39Ug62aRZQbNNpgnE11qbS1LE9Z8mw4AiHKZcc54c8MM016nbfEVxwwLF8ZX5txndGoLPLKdpRp92RlUhXXGarrkR7KK6bDjvk_n4-X30YlXSDVaKgK2wfMk5GkJMsVjGLBA2c1XiRCCiKEJEA-DHrpBShToOZIcQKY85HuACSMVdAd4F6eDo4ZLQQDBNmMN4DJEvfCWCKME7VPmu8CXI-Ir09GQutyU7x7Kax-u_u2_IiSFfNU6UW9Ipdnu4Q1hRiHuzn74Byi_GQw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LT8IwHG4QD3pCBePbHjw63HvrGSWIQIgBw4203a9mEQZh48Jfb9s9iMaDt7VLlq6P9Pu9vg-hB2J74EQ-MSIIHcOVENZgjAYG4aZPqCm40Cs9HPm9qdufebMaeqxqYQBAJ59BWz3qWH604lvlKntSp9qzwgN06Kli3Lxaq_KoqCrTsDD0VNuRto1PqpiCrfRYdOzTdwyfWCQ34omnXtgFF0_ZJns6zqfOx_g9d75IA_2HCIu-g7oNNCxHn6eefLW3GWvz3S9ix__-3glq7av98Li6x05RDZIz1CjgKS4Ofyq7SgWIsq-J4v4qTjKcrBJFIb5U6lwcS2T_qXMMsATEmCrWk538ME5V8jZdYLllAcvx5Rm4CV5ris8kxXGCnzdaVyFeUBwvqZbswqpwOG2hafdl0ukZhXiDEUvIlhkup1SaQkSQkIfEYyaxRWQFwIIgkJgGwA1txrnwVSTI9CEQDrEckAvABbUZOOeoLkcPFwh7jCjKHEJDCFzmCuYFkbxFhWszlwMPL1FTTeZ8nfNzzIt5vPq7-x4d9SbDwXzwOnq7RseailW7VG5QPdts4VaCjIzd6b31DVDtyYs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2005+IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%2705%29&rft.atitle=Joint+nonparametric+alignment+for+analyzing+spatial+gene+expression+patterns+in+Drosophila+imaginal+discs&rft.au=Ahammad%2C+P.&rft.au=Harmon%2C+C.L.&rft.au=Hammonds%2C+A.&rft.au=Shankar+Sastry%2C+S.&rft.date=2005-01-01&rft.pub=IEEE&rft.isbn=9780769523729&rft.issn=1063-6919&rft.eissn=1063-6919&rft.volume=2&rft.spage=755&rft.epage=760+vol.+2&rft_id=info:doi/10.1109%2FCVPR.2005.198&rft.externalDocID=1467518
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon