Joint nonparametric alignment for analyzing spatial gene expression patterns in Drosophila imaginal discs
To compare spatial patterns of gene expression, one must analyze a large number of images as current methods are only able to measure a small number of genes at a time. Bringing images of corresponding tissues into alignment is a critical first step in making a meaningful comparative analysis of the...
Saved in:
Published in | 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) Vol. 2; pp. 755 - 760 vol. 2 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
2005
|
Subjects | |
Online Access | Get full text |
ISBN | 0769523722 9780769523729 |
ISSN | 1063-6919 1063-6919 |
DOI | 10.1109/CVPR.2005.198 |
Cover
Loading…
Abstract | To compare spatial patterns of gene expression, one must analyze a large number of images as current methods are only able to measure a small number of genes at a time. Bringing images of corresponding tissues into alignment is a critical first step in making a meaningful comparative analysis of these spatial patterns. Significant image noise and variability in the shapes make it hard to pick a canonical shape model. In this paper, we address these problems by combining segmentation and unsupervised shape learning algorithms. We first segment images to acquire structures of interest, then jointly align the shapes of these acquired structures using an unsupervised nonparametric maximum likelihood algorithm along the lines of 'congealing' (E. G. Miller et al., 2000), while simultaneously learning the underlying shape model and associated transformations. The learned transformations are applied to corresponding images to bring them into alignment in one step. We demonstrate the results for images of various classes of Drosophila imaginal discs and discuss the methodology used for a quantitative analysis of spatial gene expression patterns. |
---|---|
AbstractList | To compare spatial patterns of gene expression, one must analyze a large number of images as current methods are only able to measure a small number of genes at a time. Bringing images of corresponding tissues into alignment is a critical first step in making a meaningful comparative analysis of these spatial patterns. Significant image noise and variability in the shapes make it hard to pick a canonical shape model. In this paper, we address these problems by combining segmentation and unsupervised shape learning algorithms. We first segment images to acquire structures of interest, then jointly align the shapes of these acquired structures using an unsupervised nonparametric maximum likelihood algorithm along the lines of 'congealing' (E. G. Miller et al., 2000), while simultaneously learning the underlying shape model and associated transformations. The learned transformations are applied to corresponding images to bring them into alignment in one step. We demonstrate the results for images of various classes of Drosophila imaginal discs and discuss the methodology used for a quantitative analysis of spatial gene expression patterns. |
Author | Shankar Sastry, S. Harmon, C.L. Hammonds, A. Rubin, G.M. Ahammad, P. |
Author_xml | – sequence: 1 givenname: P. surname: Ahammad fullname: Ahammad, P. organization: Dept. of Electr. Eng. & Comput. Sci., California Univ., Berkeley, CA, USA – sequence: 2 givenname: C.L. surname: Harmon fullname: Harmon, C.L. – sequence: 3 givenname: A. surname: Hammonds fullname: Hammonds, A. – sequence: 4 givenname: S. surname: Shankar Sastry fullname: Shankar Sastry, S. – sequence: 5 givenname: G.M. surname: Rubin fullname: Rubin, G.M. |
BookMark | eNpNTztPwzAYtKBItKUjE4v_QIIfiR8jKm9VAiFgrRz3S_hQ6kR2BsqvxxIM3HLSne50tyCzMAQg5JyzknNmL9fvzy-lYKwuuTVHZM6ZkoWy3B6TBdPK1kJqIWb_jFOySumTZUgrTSXmBB8HDBPNzaOLbg9TRE9dj13YQ9bbIVIXXH_4xtDRNLoJXU87CEDha4yQEg6BZnmCGBLFQK_jkIbxA3tHce86zGG6w-TTGTlpXZ9g9cdL8nZ787q-LzZPdw_rq02BnNVTUXnndC1ta403tm6YFe2Oa2i01kwYgMqIxvtWMc4VU6BbabmEfNe3TjQgl-TitxcBYDvGvCIetrxSuuZG_gCNgFzi |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR.2005.198 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISSN | 1063-6919 |
EndPage | 760 vol. 2 |
ExternalDocumentID | 1467518 |
Genre | orig-research |
GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS |
ID | FETCH-LOGICAL-i105t-4caa7539f98c895b092fd17eb777028ee482bccf6011606e7f3913e769cfa2be3 |
IEDL.DBID | RIE |
ISBN | 0769523722 9780769523729 |
ISSN | 1063-6919 |
IngestDate | Wed Aug 27 02:18:30 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i105t-4caa7539f98c895b092fd17eb777028ee482bccf6011606e7f3913e769cfa2be3 |
ParticipantIDs | ieee_primary_1467518 |
PublicationCentury | 2000 |
PublicationDate | 20050000 |
PublicationDateYYYYMMDD | 2005-01-01 |
PublicationDate_xml | – year: 2005 text: 20050000 |
PublicationDecade | 2000 |
PublicationTitle | 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2005 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000393842 ssj0023720 ssj0003211698 |
Score | 1.5723538 |
Snippet | To compare spatial patterns of gene expression, one must analyze a large number of images as current methods are only able to measure a small number of genes... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 755 |
SubjectTerms | Biological cells Embryo Gene expression Image analysis Image segmentation Insects Organisms Pattern analysis Shape Time measurement |
Title | Joint nonparametric alignment for analyzing spatial gene expression patterns in Drosophila imaginal discs |
URI | https://ieeexplore.ieee.org/document/1467518 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LT8IwHG6AkydUML7Tg0cHe289o8SQYIgRw4203a9mEQZh48Jf76_dg2g8eFu7ZOn6SL_f6_sIeWBuAF4SMiuB2LN8hLCWEDyymLRDxm0llVnp6Wv4Mvcni2DRIo9NLQwAmOQzGOhHE8tPNnKvXWVDfaoDJ26TNhpuZa1W40_RNaZxZebptoeWTciaiIKr1VhM5DP0rJA5rDThWaBfuBUTT91mRzLO4ehj9la6XtA8_yHBYm6gcZdM67GXiSdfg30hBvLwi9bxvz93SvrHWj86a26xM9KC7Jx0K3BKq6OfY1et_1D39Ug62aRZQbNNpgnE11qbS1LE9Z8mw4AiHKZcc54c8MM016nbfEVxwwLF8ZX5txndGoLPLKdpRp92RlUhXXGarrkR7KK6bDjvk_n4-X30YlXSDVaKgK2wfMk5GkJMsVjGLBA2c1XiRCCiKEJEA-DHrpBShToOZIcQKY85HuACSMVdAd4F6eDo4ZLQQDBNmMN4DJEvfCWCKME7VPmu8CXI-Ir09GQutyU7x7Kax-u_u2_IiSFfNU6UW9Ipdnu4Q1hRiHuzn74Byi_GQw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LT8IwHG4QD3pCBePbHjw63HvrGSWIQIgBw4203a9mEQZh48Jfb9s9iMaDt7VLlq6P9Pu9vg-hB2J74EQ-MSIIHcOVENZgjAYG4aZPqCm40Cs9HPm9qdufebMaeqxqYQBAJ59BWz3qWH604lvlKntSp9qzwgN06Kli3Lxaq_KoqCrTsDD0VNuRto1PqpiCrfRYdOzTdwyfWCQ34omnXtgFF0_ZJns6zqfOx_g9d75IA_2HCIu-g7oNNCxHn6eefLW3GWvz3S9ix__-3glq7av98Li6x05RDZIz1CjgKS4Ofyq7SgWIsq-J4v4qTjKcrBJFIb5U6lwcS2T_qXMMsATEmCrWk538ME5V8jZdYLllAcvx5Rm4CV5ris8kxXGCnzdaVyFeUBwvqZbswqpwOG2hafdl0ukZhXiDEUvIlhkup1SaQkSQkIfEYyaxRWQFwIIgkJgGwA1txrnwVSTI9CEQDrEckAvABbUZOOeoLkcPFwh7jCjKHEJDCFzmCuYFkbxFhWszlwMPL1FTTeZ8nfNzzIt5vPq7-x4d9SbDwXzwOnq7RseailW7VG5QPdts4VaCjIzd6b31DVDtyYs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2005+IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%2705%29&rft.atitle=Joint+nonparametric+alignment+for+analyzing+spatial+gene+expression+patterns+in+Drosophila+imaginal+discs&rft.au=Ahammad%2C+P.&rft.au=Harmon%2C+C.L.&rft.au=Hammonds%2C+A.&rft.au=Shankar+Sastry%2C+S.&rft.date=2005-01-01&rft.pub=IEEE&rft.isbn=9780769523729&rft.issn=1063-6919&rft.eissn=1063-6919&rft.volume=2&rft.spage=755&rft.epage=760+vol.+2&rft_id=info:doi/10.1109%2FCVPR.2005.198&rft.externalDocID=1467518 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon |