Manifold Discriminant Analysis

This paper presents a novel discriminative learning method, called manifold discriminant analysis (MDA), to solve the problem of image set classification. By modeling each image set as a manifold, we formulate the problem as classification-oriented multi-manifolds learning. Aiming at maximizing &quo...

Full description

Saved in:
Bibliographic Details
Published in2009 IEEE Conference on Computer Vision and Pattern Recognition pp. 429 - 436
Main Authors Ruiping Wang, Xilin Chen
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2009
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper presents a novel discriminative learning method, called manifold discriminant analysis (MDA), to solve the problem of image set classification. By modeling each image set as a manifold, we formulate the problem as classification-oriented multi-manifolds learning. Aiming at maximizing "manifold margin", MDA seeks to learn an embedding space, where manifolds with different class labels are better separated, and local data compactness within each manifold is enhanced. As a result, new testing manifold can be more reliably classified in the learned embedding space. The proposed method is evaluated on the tasks of object recognition with image sets, including face recognition and object categorization. Comprehensive comparisons and extensive experiments demonstrate the effectiveness of our method.
AbstractList This paper presents a novel discriminative learning method, called manifold discriminant analysis (MDA), to solve the problem of image set classification. By modeling each image set as a manifold, we formulate the problem as classification-oriented multi-manifolds learning. Aiming at maximizing "manifold margin", MDA seeks to learn an embedding space, where manifolds with different class labels are better separated, and local data compactness within each manifold is enhanced. As a result, new testing manifold can be more reliably classified in the learned embedding space. The proposed method is evaluated on the tasks of object recognition with image sets, including face recognition and object categorization. Comprehensive comparisons and extensive experiments demonstrate the effectiveness of our method.
Author Xilin Chen
Ruiping Wang
Author_xml – sequence: 1
  surname: Ruiping Wang
  fullname: Ruiping Wang
  email: rpwang@jdl.ac.cn
  organization: Key Lab. of Intell. Inf. Process., Chinese Acad. of Sci. (CAS), Beijing, China
– sequence: 2
  surname: Xilin Chen
  fullname: Xilin Chen
  email: xlchen@jdl.ac.cn
  organization: Key Lab. of Intell. Inf. Process., Chinese Acad. of Sci. (CAS), Beijing, China
BookMark eNpNz91Kw0AQBeBVK9jUPoAI0hdInJndbLKXJf60UFFEvS0zyQZW4la6venbW7CCV-fig8M5mRrFTfRKXSEUiOBum4-X14IAXFES2LqEEzV1VY2GjNHOIZ6qMYLVuXXozlT2B0Sjf3ChspQ-AUhXBGN188Qx9Juhm92F1G7DV4gcd7N55GGfQrpU5z0PyU-POVHvD_dvzSJfPT8um_kqDwjlLqcWBbgGU-meOitGXNUJauPFs2ipxFm2or22TK400grVwi0ZPjiynqjr397gvV9_H3bwdr8-_tQ_KFJDuQ
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2009.5206850
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 9781424439911
1424439914
EISSN 1063-6919
EndPage 436
ExternalDocumentID 5206850
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-i105t-2c1b0a80473f2d6b4b97db134ebeab3b7b96a6b3e36a2954bcb28bac24aeab1a3
IEDL.DBID RIE
ISBN 1424439922
9781424439928
ISSN 1063-6919
IngestDate Wed Aug 27 02:43:40 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i105t-2c1b0a80473f2d6b4b97db134ebeab3b7b96a6b3e36a2954bcb28bac24aeab1a3
PageCount 8
ParticipantIDs ieee_primary_5206850
PublicationCentury 2000
PublicationDate 2009-June
PublicationDateYYYYMMDD 2009-06-01
PublicationDate_xml – month: 06
  year: 2009
  text: 2009-June
PublicationDecade 2000
PublicationTitle 2009 IEEE Conference on Computer Vision and Pattern Recognition
PublicationTitleAbbrev CVPR
PublicationYear 2009
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0023720
ssj0000453166
ssj0003211698
Score 2.2187526
Snippet This paper presents a novel discriminative learning method, called manifold discriminant analysis (MDA), to solve the problem of image set classification. By...
SourceID ieee
SourceType Publisher
StartPage 429
SubjectTerms Computers
Content addressable storage
Image analysis
Image recognition
Information analysis
Information processing
Laplace equations
Linear discriminant analysis
Object recognition
Testing
Title Manifold Discriminant Analysis
URI https://ieeexplore.ieee.org/document/5206850
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKJ6YCLeJZZWDEbfyIE8-FqkIqqhBF3Sqf40gVKEU0Xfj12I4TBGJgiy-KEufl7-67-w6hG-v6S0qMxiZWEnOdxVhpCVglVOQ6UZD7YM78UcyW_GGVrDrotq2FMcb45DMzcpuey8-3eu9CZeOExiJzDvqBddzqWq02nmKhCSMBmrgxs56NkC2jQF03Fs98CoaFJLIp8vLCrI32Uxhngf4ksRxPXhZPtaxlOPuPNix-FZr20Ly5_jr55HW0r2CkP39JO_53gkdo8F3vFy3alewYdUx5gnoBoEbh899ZU9MDorH10XCuyk2xfcuju437A9WZNVGjdTJAy-n982SGQ88FvLFIq8JUE4hVFvOUFTQXwEGmORDG7cNWwCAFKZQAZphQjiIEDTQDpSlXdj9R7BR1y21pzlBkoQwthAUMRuY8VWlW6KSQ9nhwgjKpPEd9dwfW77WsxjpM_uJv8yU6rIkcFwC5Qt3qY2-uLR6oYOhfhC8766q4
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT4MwFG8WPehp6mb8nBw82o22UOh5ukwdy2I2s9vSV0qyaJhRdvGvt4WC0XjwRh8h5BXS93tfv4fQtXH9BSVaYe1LgQMV-1gqAViGlKcqlJCWwZxkyseL4GEZLlvopumF0VqXxWe6by_LXH66UVsbKhuE1OexddB3jd0PSdWt1URUDDhhxIETu2bGt-GiySlQO4-lzH1yhrkgom7zKqlZa_Ynt45dApT4YjB8nj1VxJbu_T8GsZR2aNRGSa1BVX7y0t8W0Fefv8gd_6viAep-d_x5s8aWHaKWzo9Q20FUzx0AH0ZUT4GoZR3US2S-zjavqXe7tmdQVVvj1WwnXbQY3c2HY-ymLuC1wVoFpoqAL2M_iFhGUw4BiCgFwgLzuSUwiEBwyYFpxqVNEoICGoNUNJDmPpHsGO3km1yfIM-AGZpxAxm0SINIRnGmwkyY58FSykTiFHXsDqzeKmKNlVP-7G_xFdobz5PJanI_fTxH-1Vax4ZDLtBO8b7VlwYdFNArf4ovYDOuAQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Manifold+Discriminant+Analysis&rft.au=Ruiping+Wang&rft.au=Xilin+Chen&rft.date=2009-06-01&rft.pub=IEEE&rft.isbn=9781424439928&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=429&rft.epage=436&rft_id=info:doi/10.1109%2FCVPR.2009.5206850&rft.externalDocID=5206850
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon