Manifold Discriminant Analysis
This paper presents a novel discriminative learning method, called manifold discriminant analysis (MDA), to solve the problem of image set classification. By modeling each image set as a manifold, we formulate the problem as classification-oriented multi-manifolds learning. Aiming at maximizing &quo...
Saved in:
Published in | 2009 IEEE Conference on Computer Vision and Pattern Recognition pp. 429 - 436 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2009
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper presents a novel discriminative learning method, called manifold discriminant analysis (MDA), to solve the problem of image set classification. By modeling each image set as a manifold, we formulate the problem as classification-oriented multi-manifolds learning. Aiming at maximizing "manifold margin", MDA seeks to learn an embedding space, where manifolds with different class labels are better separated, and local data compactness within each manifold is enhanced. As a result, new testing manifold can be more reliably classified in the learned embedding space. The proposed method is evaluated on the tasks of object recognition with image sets, including face recognition and object categorization. Comprehensive comparisons and extensive experiments demonstrate the effectiveness of our method. |
---|---|
AbstractList | This paper presents a novel discriminative learning method, called manifold discriminant analysis (MDA), to solve the problem of image set classification. By modeling each image set as a manifold, we formulate the problem as classification-oriented multi-manifolds learning. Aiming at maximizing "manifold margin", MDA seeks to learn an embedding space, where manifolds with different class labels are better separated, and local data compactness within each manifold is enhanced. As a result, new testing manifold can be more reliably classified in the learned embedding space. The proposed method is evaluated on the tasks of object recognition with image sets, including face recognition and object categorization. Comprehensive comparisons and extensive experiments demonstrate the effectiveness of our method. |
Author | Xilin Chen Ruiping Wang |
Author_xml | – sequence: 1 surname: Ruiping Wang fullname: Ruiping Wang email: rpwang@jdl.ac.cn organization: Key Lab. of Intell. Inf. Process., Chinese Acad. of Sci. (CAS), Beijing, China – sequence: 2 surname: Xilin Chen fullname: Xilin Chen email: xlchen@jdl.ac.cn organization: Key Lab. of Intell. Inf. Process., Chinese Acad. of Sci. (CAS), Beijing, China |
BookMark | eNpNz91Kw0AQBeBVK9jUPoAI0hdInJndbLKXJf60UFFEvS0zyQZW4la6venbW7CCV-fig8M5mRrFTfRKXSEUiOBum4-X14IAXFES2LqEEzV1VY2GjNHOIZ6qMYLVuXXozlT2B0Sjf3ChspQ-AUhXBGN188Qx9Juhm92F1G7DV4gcd7N55GGfQrpU5z0PyU-POVHvD_dvzSJfPT8um_kqDwjlLqcWBbgGU-meOitGXNUJauPFs2ipxFm2or22TK400grVwi0ZPjiynqjr397gvV9_H3bwdr8-_tQ_KFJDuQ |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR.2009.5206850 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISBN | 9781424439911 1424439914 |
EISSN | 1063-6919 |
EndPage | 436 |
ExternalDocumentID | 5206850 |
Genre | orig-research |
GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS |
ID | FETCH-LOGICAL-i105t-2c1b0a80473f2d6b4b97db134ebeab3b7b96a6b3e36a2954bcb28bac24aeab1a3 |
IEDL.DBID | RIE |
ISBN | 1424439922 9781424439928 |
ISSN | 1063-6919 |
IngestDate | Wed Aug 27 02:43:40 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i105t-2c1b0a80473f2d6b4b97db134ebeab3b7b96a6b3e36a2954bcb28bac24aeab1a3 |
PageCount | 8 |
ParticipantIDs | ieee_primary_5206850 |
PublicationCentury | 2000 |
PublicationDate | 2009-June |
PublicationDateYYYYMMDD | 2009-06-01 |
PublicationDate_xml | – month: 06 year: 2009 text: 2009-June |
PublicationDecade | 2000 |
PublicationTitle | 2009 IEEE Conference on Computer Vision and Pattern Recognition |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2009 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0023720 ssj0000453166 ssj0003211698 |
Score | 2.2187526 |
Snippet | This paper presents a novel discriminative learning method, called manifold discriminant analysis (MDA), to solve the problem of image set classification. By... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 429 |
SubjectTerms | Computers Content addressable storage Image analysis Image recognition Information analysis Information processing Laplace equations Linear discriminant analysis Object recognition Testing |
Title | Manifold Discriminant Analysis |
URI | https://ieeexplore.ieee.org/document/5206850 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKJ6YCLeJZZWDEbfyIE8-FqkIqqhBF3Sqf40gVKEU0Xfj12I4TBGJgiy-KEufl7-67-w6hG-v6S0qMxiZWEnOdxVhpCVglVOQ6UZD7YM78UcyW_GGVrDrotq2FMcb45DMzcpuey8-3eu9CZeOExiJzDvqBddzqWq02nmKhCSMBmrgxs56NkC2jQF03Fs98CoaFJLIp8vLCrI32Uxhngf4ksRxPXhZPtaxlOPuPNix-FZr20Ly5_jr55HW0r2CkP39JO_53gkdo8F3vFy3alewYdUx5gnoBoEbh899ZU9MDorH10XCuyk2xfcuju437A9WZNVGjdTJAy-n982SGQ88FvLFIq8JUE4hVFvOUFTQXwEGmORDG7cNWwCAFKZQAZphQjiIEDTQDpSlXdj9R7BR1y21pzlBkoQwthAUMRuY8VWlW6KSQ9nhwgjKpPEd9dwfW77WsxjpM_uJv8yU6rIkcFwC5Qt3qY2-uLR6oYOhfhC8766q4 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT4MwFG8WPehp6mb8nBw82o22UOh5ukwdy2I2s9vSV0qyaJhRdvGvt4WC0XjwRh8h5BXS93tfv4fQtXH9BSVaYe1LgQMV-1gqAViGlKcqlJCWwZxkyseL4GEZLlvopumF0VqXxWe6by_LXH66UVsbKhuE1OexddB3jd0PSdWt1URUDDhhxIETu2bGt-GiySlQO4-lzH1yhrkgom7zKqlZa_Ynt45dApT4YjB8nj1VxJbu_T8GsZR2aNRGSa1BVX7y0t8W0Fefv8gd_6viAep-d_x5s8aWHaKWzo9Q20FUzx0AH0ZUT4GoZR3US2S-zjavqXe7tmdQVVvj1WwnXbQY3c2HY-ymLuC1wVoFpoqAL2M_iFhGUw4BiCgFwgLzuSUwiEBwyYFpxqVNEoICGoNUNJDmPpHsGO3km1yfIM-AGZpxAxm0SINIRnGmwkyY58FSykTiFHXsDqzeKmKNlVP-7G_xFdobz5PJanI_fTxH-1Vax4ZDLtBO8b7VlwYdFNArf4ovYDOuAQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Manifold+Discriminant+Analysis&rft.au=Ruiping+Wang&rft.au=Xilin+Chen&rft.date=2009-06-01&rft.pub=IEEE&rft.isbn=9781424439928&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=429&rft.epage=436&rft_id=info:doi/10.1109%2FCVPR.2009.5206850&rft.externalDocID=5206850 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon |