Automatic training of generalized min-max classifiers

Among fuzzy classifiers, min-max networks have the advantage to be trained in a constructive way, by a simple learning procedure. The classification strategy of Simpson's min-max classifier (1992) consists in covering the training data with hyperboxes constrained to have their boundary surfaces...

Full description

Saved in:
Bibliographic Details
Published inProceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569) pp. 3070 - 3075 vol.5
Main Authors Rizzi, A., Panella, M., Mascioli, F.M.F., Martinelli, G.
Format Conference Proceeding
LanguageEnglish
Published IEEE 2001
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Among fuzzy classifiers, min-max networks have the advantage to be trained in a constructive way, by a simple learning procedure. The classification strategy of Simpson's min-max classifier (1992) consists in covering the training data with hyperboxes constrained to have their boundary surfaces parallel to the coordinate axes of the chosen reference system. In order to obtain a more accurate data coverage, it is possible to adopt a new classification model which allows to arrange the hyperboxes orientation along any direction of the data space. The training algorithm is based on the ARC/PARC technique, which already yields better performances with respect to the original Simpson's algorithm. Although the most important feature of a classifier is its generalization capability, the effectiveness of a training procedure is strictly related to its automation degree. A low automation degree can be a serious drawback for a classification system, since it can prevent an unskilled user from successfully generate an acceptable model. From this point of view, a learning procedure should not depend on any critical parameter. The automation degree of the new classification system is evaluated in the paper.
AbstractList Among fuzzy classifiers, min-max networks have the advantage to be trained in a constructive way, by a simple learning procedure. The classification strategy of Simpson's min-max classifier (1992) consists in covering the training data with hyperboxes constrained to have their boundary surfaces parallel to the coordinate axes of the chosen reference system. In order to obtain a more accurate data coverage, it is possible to adopt a new classification model which allows to arrange the hyperboxes orientation along any direction of the data space. The training algorithm is based on the ARC/PARC technique, which already yields better performances with respect to the original Simpson's algorithm. Although the most important feature of a classifier is its generalization capability, the effectiveness of a training procedure is strictly related to its automation degree. A low automation degree can be a serious drawback for a classification system, since it can prevent an unskilled user from successfully generate an acceptable model. From this point of view, a learning procedure should not depend on any critical parameter. The automation degree of the new classification system is evaluated in the paper.
Author Mascioli, F.M.F.
Rizzi, A.
Martinelli, G.
Panella, M.
Author_xml – sequence: 1
  givenname: A.
  surname: Rizzi
  fullname: Rizzi, A.
  organization: Dept. of INFO-COM, La Sapienza Univ., Rome, Italy
– sequence: 2
  givenname: M.
  surname: Panella
  fullname: Panella, M.
– sequence: 3
  givenname: F.M.F.
  surname: Mascioli
  fullname: Mascioli, F.M.F.
– sequence: 4
  givenname: G.
  surname: Martinelli
  fullname: Martinelli, G.
BookMark eNotj9FKwzAYhQMqqLMvsKu-QGv-JlmSyzKcDoYKbtcjaf6MSJtKUkF9egvb4fCduw_OPbmOY0RClkBrAKofX9vN9v2jbiiFWnMmQV2RQktF5zI5k9-SIudPOocLAMXuiGi_p3EwU-jKKZkQQzyVoy9PGDGZPvyhK4cQq8H8lF1vcg4-YMoP5MabPmNx2QU5bJ7265dq9_a8Xbe7KgDlU-UtawTnTK8s9955LzVYLY2wyipYIe2ccJyCpA2iYV5ophRyq51zRjPOFmR59gZEPH6lMJj0ezx_Y_8MJEbe
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/NAFIPS.2001.943718
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EndPage 3075 vol.5
ExternalDocumentID 943718
GroupedDBID 6IE
6IK
6IL
AAJGR
AAVQY
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
OCL
RIE
RIL
ID FETCH-LOGICAL-i104t-fb32544396b4ffdff791b97a5b8b816e0cd5d401702eea3f59388e4b9ddda9343
IEDL.DBID RIE
ISBN 9780780370784
0780370783
IngestDate Wed Jun 26 19:23:34 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i104t-fb32544396b4ffdff791b97a5b8b816e0cd5d401702eea3f59388e4b9ddda9343
ParticipantIDs ieee_primary_943718
PublicationCentury 2000
PublicationDate 20010000
PublicationDateYYYYMMDD 2001-01-01
PublicationDate_xml – year: 2001
  text: 20010000
PublicationDecade 2000
PublicationTitle Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569)
PublicationTitleAbbrev NAFIPS
PublicationYear 2001
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000451183
Score 1.3099467
Snippet Among fuzzy classifiers, min-max networks have the advantage to be trained in a constructive way, by a simple learning procedure. The classification strategy...
SourceID ieee
SourceType Publisher
StartPage 3070
SubjectTerms Classification algorithms
Design automation
Neural networks
Particle measurements
Performance evaluation
Plasma welding
Power system modeling
Testing
Training data
Yield estimation
Title Automatic training of generalized min-max classifiers
URI https://ieeexplore.ieee.org/document/943718
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3Pa4MwFMfD2tNO3Y-O_SaHXWPVJNUcy1jpBiuFrdBbSczLkFEdm8LoX78kasfGDgMPaiCoib6853ufL0I3KbBY23Ut4SZOCFOgicqUIMpEAlJum7WLdzzOx7Mle1jxVcvZ9rUwAOCTzyBwu_5fvi6z2oXKRoJR-yntoV4iRFOqtQunOEyKnZ3eMU9D6hg2tOXrdMesq5kJxWg-md4vnpx7GAVNrz_UVbxxmQ6aqu0PzyR0OSWvQV2pINv-Ijb-87oP0PC7ig8vdvbpEO1BcYQGnYwDbt_qY8QndVV6civuBCNwafBLA6TOt6DxJi_IRn7izK21c-Pks4doOb17vp2RVk2B5NblqohR1OHIqBgrZow2JhGREonkKlVpNIYw01wzh9OJASQ1XNDUDpUSWmspKKMnqF-UBZwinAGTkoaMqtT2aIR0cr8sS0QseSyAnqEj9xDWbw0wY93c__mfZy_QfpPW5bZL1K_ea7iydr5S136EvwBCvKR0
link.rule.ids 310,311,783,787,792,793,799,4057,4058,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1NS8MwGMeDzoOepnPiuzl4Tdc2aZschzg23cbADXYbSZPIkLWiLcg-vUnaKooHoYe-QGibts9Ln-f3B-CWKhJK49eiSIcJIkJJJFLBkNABUzQyh6XNd0ym8XBBHpbRsuZsu14YpZQrPlOeXXX_8mWeljZV1mMEm0_pLtgzbjWNq2atr4SKBaWY59OF5tTHlmKDa8JOs02arhmf9ab9wWj2ZAPEwKvG_aGv4szLoF31bb87KqGtKnnxykJ46fYXs_GfZ34Iut99fHD2ZaGOwI7KOqDdCDnA-r0-BlG_LHLHboWNZATMNXyukNTrrZJws87Qhn_A1Hrba20FtLtgMbif3w1RraeA1iboKpAW2ALJMIsF0VpqnbBAsIRHggoaxMpPZSSJBeqESnGsI4apmSzBpJScYYJPQCvLM3UKYKoI59gnWFAzombcCv6SNGEhj0Km8Bno2Juweq2QGavq-s__3HsD9ofzyXg1Hk0fL8BBVeRll0vQKt5KdWWsfiGu3Wx_AhHEp78
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+Joint+9th+IFSA+World+Congress+and+20th+NAFIPS+International+Conference+%28Cat.+No.+01TH8569%29&rft.atitle=Automatic+training+of+generalized+min-max+classifiers&rft.au=Rizzi%2C+A.&rft.au=Panella%2C+M.&rft.au=Mascioli%2C+F.M.F.&rft.au=Martinelli%2C+G.&rft.date=2001-01-01&rft.pub=IEEE&rft.isbn=9780780370784&rft.spage=3070&rft.epage=3075+vol.5&rft_id=info:doi/10.1109%2FNAFIPS.2001.943718&rft.externalDocID=943718
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780370784/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780370784/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780370784/sc.gif&client=summon&freeimage=true