Smoke and fire detection by a convolutional neural network based on a combinatorial model
Work in the field of fire and smoke detection is becoming an increasingly covered subject. Conventional algorithms use exclusively models based on feature vectors. These vectors are difficult to define and depend largely on the type of fire being treated. These traditional methods give results with...
Saved in:
Published in | International journal of innovation and applied studies Vol. 39; no. 2; pp. 742 - 750 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Rabat
International Journal of Innovation and Applied Studies
01.04.2023
ISSR Journals |
Subjects | |
Online Access | Get full text |
ISSN | 2028-9324 2028-9324 |
Cover
Abstract | Work in the field of fire and smoke detection is becoming an increasingly covered subject. Conventional algorithms use exclusively models based on feature vectors. These vectors are difficult to define and depend largely on the type of fire being treated. These traditional methods give results with low detection rates and high false classification rates. The current trend is to take an innovative approach to solving this problem by using an algorithm to automatically determine useful features to classify fire and smoke. In this paper, we propose a convolutional neural network to identify fire and smoke from real-time images. Convolutional neural networks have shown their great performance in the field of object classification. Tested on real image sequences, the proposed approach achieves better classification performance than conventional methods. These results clearly indicate that the use of convolutional neural networks for fire detection is very encouraging. |
---|---|
AbstractList | Work in the field of fire and smoke detection is becoming an increasingly covered subject. Conventional algorithms use exclusively models based on feature vectors. These vectors are difficult to define and depend largely on the type of fire being treated. These traditional methods give results with low detection rates and high false classification rates. The current trend is to take an innovative approach to solving this problem by using an algorithm to automatically determine useful features to classify fire and smoke. In this paper, we propose a convolutional neural network to identify fire and smoke from real-time images. Convolutional neural networks have shown their great performance in the field of object classification. Tested on real image sequences, the proposed approach achieves better classification performance than conventional methods. These results clearly indicate that the use of convolutional neural networks for fire detection is very encouraging. |
Author | Ouattara, Sié Fofana, Tidiane Clement, Alain |
Author_xml | – sequence: 1 givenname: Tidiane surname: Fofana fullname: Fofana, Tidiane – sequence: 2 givenname: Sié surname: Ouattara fullname: Ouattara, Sié – sequence: 3 givenname: Alain surname: Clement fullname: Clement, Alain |
BackLink | https://hal.science/hal-04128385$$DView record in HAL |
BookMark | eNpNj19LwzAUxYNMcM59h4BPPhTy57ZNH8dQJxR8cC8-lTRNWLY2mUk72bc3cz4IB87h3B8Xzj2aOe_0DZozwkRWcQazf_kOLWPcE0IoByqKYo4-PwZ_0Fi6DhsbNO70qNVovcPtGUusvDv5froUssdOT-HXxm8fDriVUXc4oRduaK2Tow82AYPvdP-Abo3so17--QJtX563601Wv7--rVd1tisYZLk2wAgtBQHGgWveVpCDAGGUaY2SvCTARRqgaFkZXrQySanSyLzoynRfoKfr253sm2OwgwznxkvbbFZ1c-kIUCa4yE80sY9X9hj816Tj2Oz9FNKy2DBBIWeMUuA_t7he7g |
ContentType | Journal Article |
Copyright | Copyright International Journal of Innovation and Applied Studies Apr 2023 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Copyright International Journal of Innovation and Applied Studies Apr 2023 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | 8FD 8FE 8FG ABJCF ABUWG AFKRA BENPR BGLVJ CCPQU CWDGH DWQXO F28 FR3 HCIFZ L6V M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 1XC VOOES |
DatabaseName | Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central ProQuest Central UK/Ireland ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) ProQuest One Community College Middle East & Africa Database ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest SciTech Premium Collection ProQuest Engineering Collection Engineering Database Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | Engineering Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection Middle East & Africa Database ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest Central (New) Engineering Collection ProQuest One Academic (New) ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Engineering Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 2028-9324 |
EndPage | 750 |
ExternalDocumentID | oai_HAL_hal_04128385v1 |
GroupedDBID | 8FD 8FE 8FG ABJCF ABUWG ACIWK AFKRA ALMA_UNASSIGNED_HOLDINGS BENPR BGLVJ BPHCQ CCPQU CWDGH DWQXO F28 FR3 HCIFZ KQ8 L6V M7S OK1 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PROAC PTHSS RNS 1XC VOOES |
ID | FETCH-LOGICAL-h624-5ef420178042343e3b9454848fcfbfca370438202c179f36ba6bacc7fa56d7ca3 |
IEDL.DBID | 8FG |
ISSN | 2028-9324 |
IngestDate | Fri May 09 12:27:48 EDT 2025 Fri Jul 25 12:02:03 EDT 2025 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 2 |
Keywords | Smoke classification convolutional neural network Fire dropout |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-h624-5ef420178042343e3b9454848fcfbfca370438202c179f36ba6bacc7fa56d7ca3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7416-126X |
OpenAccessLink | https://hal.science/hal-04128385 |
PQID | 2814522114 |
PQPubID | 2031961 |
PageCount | 9 |
ParticipantIDs | hal_primary_oai_HAL_hal_04128385v1 proquest_journals_2814522114 |
PublicationCentury | 2000 |
PublicationDate | 20230401 2023-04 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: 20230401 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Rabat |
PublicationPlace_xml | – name: Rabat |
PublicationTitle | International journal of innovation and applied studies |
PublicationYear | 2023 |
Publisher | International Journal of Innovation and Applied Studies ISSR Journals |
Publisher_xml | – name: International Journal of Innovation and Applied Studies – name: ISSR Journals |
SSID | ssj0001341866 |
Score | 2.2151678 |
Snippet | Work in the field of fire and smoke detection is becoming an increasingly covered subject. Conventional algorithms use exclusively models based on feature... |
SourceID | hal proquest |
SourceType | Open Access Repository Aggregation Database |
StartPage | 742 |
SubjectTerms | Algorithms Artificial neural networks Classification Combinatorial analysis Computer Science Datasets Fire detection Image databases Neural and Evolutionary Computing Neural networks Signal and Image Processing Smoke |
Title | Smoke and fire detection by a convolutional neural network based on a combinatorial model |
URI | https://www.proquest.com/docview/2814522114 https://hal.science/hal-04128385 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA62vehBfGK1ShCvwd1NNpuepEprES2iFepp2bwoSLfVVsF_70y6peJBWFjYDDlkZueRfPmGkAupIQtOTMaMjC0TLspYoZ1kVjkN8SROpMH7zg8D2X8Rd6N0VG24zStY5conBkdtpwb3yC8TFSP5N6TvV7N3hl2j8HS1aqFRIw2YVaKdq97teo8FXLRC_sPaGFGOf5xtiCC9HbJdpX60s9TVLtlw5R7Z-kUIuE9enyfTN0ehuqcefBG1bhGgUiXV37SgCBGvTAUmQirK8ApAborxyFIQRbkJFLxYToN10dDs5oAMe93hTZ9VzQ_YWCaCpc4LiM1ID5RwwR3XbQHFhVDeeO1NwbNwhBclBv4oz6Uu4DEm80UqbQbjh6ReTkt3RGjbxF4IZy2IicS2lfIQuXhkvORe26hJzmF58tmS3SJHvul-5z7Hb0jGpbhKv-Imaa1WL6-sfJ6vdXL8__AJ2cQ27UvES4vUFx-f7hSC-UKfBY2dkcZ1d_D49AN6B6Rp |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB5sPagH8YmPqovoMdhstpv0IOKT1j4QrVBPIfuiIKbVVqU_yv_oTJpS8eBNCASyyx52v8zM7n7zDcCRVBgFcx16WvrGE7Yceomy0jORVehPfC415Tu32rL2KG67le4cfE1zYYhWObWJmaE2fU1n5Cc88kn8G8P3s8GrR1Wj6HZ1WkJjAouGHX_ilm14Wr_C9T3m_Oa6c1nz8qoCXk9y4VWsE5xq0hMhRAQ2UFWBUbuInHbK6SQIs7uxMtcIVRdIleCjdeiSijQhtuOwBZgXlNBahPmL6_bd_exQB31CRIKLhR7RKn9Z98xl3azAch5rsvMJOFZhzqZrsPRDgXAdnh5e-s-WJalhDo0fM3aUcbNSpsYsYcRJz7GJA5H2ZfbKmOOMHKBh2JX6veAOm_bvCGeWVdfZgM5_zMsmFNN-areAVbXvhLDGYDfBTTWKHLrKoKydDJwy5W04xOmJBxM5jZgErmvnzZi-kfpXFESVD38bStPZi_PfahjPQLDzd_MBLNQ6rWbcrLcbu7BINeIndJsSFEdv73YPI4mR2s_Xj0H8z4j5BlHp3_w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bS8MwFD64CaIP4hXvBtHHsjVN0-xBRNQ5rwgqzKfS3BiI3XRT2U_z33lO16H44NugUGhCHpKv55J8-Q7AvtQYBXOTBEaGNhCungSZdjKwymn0JyGXhu4739zK1qO4bMftKfga34UhWuXYJhaG2nYN7ZHXuApJ_BvD95ovaRF3p82j3mtAFaTopHVcTmMEkSs3_MT0rX94cYprfcB58-zhpBWUFQaCjuQiiJ0XnOrTEzlERC7SDYERvFDeeO1NFiXFOVmdG4Stj6TO8DEm8VksbYLtOGwFppMoaVDep5rnP9s76B0USS9WOkSw_GPnC-fVXID5MupkxyOYLMKUy5dg7pcW4TI83b90nx3Lcss8mkFm3aBgaeVMD1nGiJ1eohQHIhXM4lVwyBm5QsuwK_V7wVybMnkENivq7KzAwyRmZRWqeTd3a8AaJvRCOGuxm-C2oZRHpxnVjZeR17a-Dns4PWlvJKyRktR16_g6pW-kA6YiFX-E67A1nr20_MH66Q8cNv5v3oUZxEl6fXF7tQmzVCx-xLvZgurg7d1tY0gx0DvF4jFIJwyWbz7w4sw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Smoke+and+fire+detection+by+a+convolutional+neural+network+based+on+a+combinatorial+model&rft.jtitle=International+journal+of+innovation+and+applied+studies&rft.au=Fofana%2C+Tidiane&rft.au=Ouattara%2C+Si%C3%A9&rft.au=Clement%2C+Alain&rft.date=2023-04-01&rft.pub=International+Journal+of+Innovation+and+Applied+Studies&rft.eissn=2028-9324&rft.volume=39&rft.issue=2&rft.spage=742&rft.epage=750&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2028-9324&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2028-9324&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2028-9324&client=summon |