Smoke and fire detection by a convolutional neural network based on a combinatorial model

Work in the field of fire and smoke detection is becoming an increasingly covered subject. Conventional algorithms use exclusively models based on feature vectors. These vectors are difficult to define and depend largely on the type of fire being treated. These traditional methods give results with...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of innovation and applied studies Vol. 39; no. 2; pp. 742 - 750
Main Authors Fofana, Tidiane, Ouattara, Sié, Clement, Alain
Format Journal Article
LanguageEnglish
Published Rabat International Journal of Innovation and Applied Studies 01.04.2023
ISSR Journals
Subjects
Online AccessGet full text
ISSN2028-9324
2028-9324

Cover

Abstract Work in the field of fire and smoke detection is becoming an increasingly covered subject. Conventional algorithms use exclusively models based on feature vectors. These vectors are difficult to define and depend largely on the type of fire being treated. These traditional methods give results with low detection rates and high false classification rates. The current trend is to take an innovative approach to solving this problem by using an algorithm to automatically determine useful features to classify fire and smoke. In this paper, we propose a convolutional neural network to identify fire and smoke from real-time images. Convolutional neural networks have shown their great performance in the field of object classification. Tested on real image sequences, the proposed approach achieves better classification performance than conventional methods. These results clearly indicate that the use of convolutional neural networks for fire detection is very encouraging.
AbstractList Work in the field of fire and smoke detection is becoming an increasingly covered subject. Conventional algorithms use exclusively models based on feature vectors. These vectors are difficult to define and depend largely on the type of fire being treated. These traditional methods give results with low detection rates and high false classification rates. The current trend is to take an innovative approach to solving this problem by using an algorithm to automatically determine useful features to classify fire and smoke. In this paper, we propose a convolutional neural network to identify fire and smoke from real-time images. Convolutional neural networks have shown their great performance in the field of object classification. Tested on real image sequences, the proposed approach achieves better classification performance than conventional methods. These results clearly indicate that the use of convolutional neural networks for fire detection is very encouraging.
Author Ouattara, Sié
Fofana, Tidiane
Clement, Alain
Author_xml – sequence: 1
  givenname: Tidiane
  surname: Fofana
  fullname: Fofana, Tidiane
– sequence: 2
  givenname: Sié
  surname: Ouattara
  fullname: Ouattara, Sié
– sequence: 3
  givenname: Alain
  surname: Clement
  fullname: Clement, Alain
BackLink https://hal.science/hal-04128385$$DView record in HAL
BookMark eNpNj19LwzAUxYNMcM59h4BPPhTy57ZNH8dQJxR8cC8-lTRNWLY2mUk72bc3cz4IB87h3B8Xzj2aOe_0DZozwkRWcQazf_kOLWPcE0IoByqKYo4-PwZ_0Fi6DhsbNO70qNVovcPtGUusvDv5froUssdOT-HXxm8fDriVUXc4oRduaK2Tow82AYPvdP-Abo3so17--QJtX563601Wv7--rVd1tisYZLk2wAgtBQHGgWveVpCDAGGUaY2SvCTARRqgaFkZXrQySanSyLzoynRfoKfr253sm2OwgwznxkvbbFZ1c-kIUCa4yE80sY9X9hj816Tj2Oz9FNKy2DBBIWeMUuA_t7he7g
ContentType Journal Article
Copyright Copyright International Journal of Innovation and Applied Studies Apr 2023
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright International Journal of Innovation and Applied Studies Apr 2023
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
BENPR
BGLVJ
CCPQU
CWDGH
DWQXO
F28
FR3
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
1XC
VOOES
DatabaseName Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
ProQuest One Community College
Middle East & Africa Database
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle Engineering Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Middle East & Africa Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Engineering Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2028-9324
EndPage 750
ExternalDocumentID oai_HAL_hal_04128385v1
GroupedDBID 8FD
8FE
8FG
ABJCF
ABUWG
ACIWK
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BENPR
BGLVJ
BPHCQ
CCPQU
CWDGH
DWQXO
F28
FR3
HCIFZ
KQ8
L6V
M7S
OK1
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PROAC
PTHSS
RNS
1XC
VOOES
ID FETCH-LOGICAL-h624-5ef420178042343e3b9454848fcfbfca370438202c179f36ba6bacc7fa56d7ca3
IEDL.DBID 8FG
ISSN 2028-9324
IngestDate Fri May 09 12:27:48 EDT 2025
Fri Jul 25 12:02:03 EDT 2025
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 2
Keywords Smoke
classification
convolutional neural network
Fire
dropout
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-h624-5ef420178042343e3b9454848fcfbfca370438202c179f36ba6bacc7fa56d7ca3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7416-126X
OpenAccessLink https://hal.science/hal-04128385
PQID 2814522114
PQPubID 2031961
PageCount 9
ParticipantIDs hal_primary_oai_HAL_hal_04128385v1
proquest_journals_2814522114
PublicationCentury 2000
PublicationDate 20230401
2023-04
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 20230401
  day: 01
PublicationDecade 2020
PublicationPlace Rabat
PublicationPlace_xml – name: Rabat
PublicationTitle International journal of innovation and applied studies
PublicationYear 2023
Publisher International Journal of Innovation and Applied Studies
ISSR Journals
Publisher_xml – name: International Journal of Innovation and Applied Studies
– name: ISSR Journals
SSID ssj0001341866
Score 2.2151678
Snippet Work in the field of fire and smoke detection is becoming an increasingly covered subject. Conventional algorithms use exclusively models based on feature...
SourceID hal
proquest
SourceType Open Access Repository
Aggregation Database
StartPage 742
SubjectTerms Algorithms
Artificial neural networks
Classification
Combinatorial analysis
Computer Science
Datasets
Fire detection
Image databases
Neural and Evolutionary Computing
Neural networks
Signal and Image Processing
Smoke
Title Smoke and fire detection by a convolutional neural network based on a combinatorial model
URI https://www.proquest.com/docview/2814522114
https://hal.science/hal-04128385
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA62vehBfGK1ShCvwd1NNpuepEprES2iFepp2bwoSLfVVsF_70y6peJBWFjYDDlkZueRfPmGkAupIQtOTMaMjC0TLspYoZ1kVjkN8SROpMH7zg8D2X8Rd6N0VG24zStY5conBkdtpwb3yC8TFSP5N6TvV7N3hl2j8HS1aqFRIw2YVaKdq97teo8FXLRC_sPaGFGOf5xtiCC9HbJdpX60s9TVLtlw5R7Z-kUIuE9enyfTN0ehuqcefBG1bhGgUiXV37SgCBGvTAUmQirK8ApAborxyFIQRbkJFLxYToN10dDs5oAMe93hTZ9VzQ_YWCaCpc4LiM1ID5RwwR3XbQHFhVDeeO1NwbNwhBclBv4oz6Uu4DEm80UqbQbjh6ReTkt3RGjbxF4IZy2IicS2lfIQuXhkvORe26hJzmF58tmS3SJHvul-5z7Hb0jGpbhKv-Imaa1WL6-sfJ6vdXL8__AJ2cQ27UvES4vUFx-f7hSC-UKfBY2dkcZ1d_D49AN6B6Rp
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB5sPagH8YmPqovoMdhstpv0IOKT1j4QrVBPIfuiIKbVVqU_yv_oTJpS8eBNCASyyx52v8zM7n7zDcCRVBgFcx16WvrGE7Yceomy0jORVehPfC415Tu32rL2KG67le4cfE1zYYhWObWJmaE2fU1n5Cc88kn8G8P3s8GrR1Wj6HZ1WkJjAouGHX_ilm14Wr_C9T3m_Oa6c1nz8qoCXk9y4VWsE5xq0hMhRAQ2UFWBUbuInHbK6SQIs7uxMtcIVRdIleCjdeiSijQhtuOwBZgXlNBahPmL6_bd_exQB31CRIKLhR7RKn9Z98xl3azAch5rsvMJOFZhzqZrsPRDgXAdnh5e-s-WJalhDo0fM3aUcbNSpsYsYcRJz7GJA5H2ZfbKmOOMHKBh2JX6veAOm_bvCGeWVdfZgM5_zMsmFNN-areAVbXvhLDGYDfBTTWKHLrKoKydDJwy5W04xOmJBxM5jZgErmvnzZi-kfpXFESVD38bStPZi_PfahjPQLDzd_MBLNQ6rWbcrLcbu7BINeIndJsSFEdv73YPI4mR2s_Xj0H8z4j5BlHp3_w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bS8MwFD64CaIP4hXvBtHHsjVN0-xBRNQ5rwgqzKfS3BiI3XRT2U_z33lO16H44NugUGhCHpKv55J8-Q7AvtQYBXOTBEaGNhCungSZdjKwymn0JyGXhu4739zK1qO4bMftKfga34UhWuXYJhaG2nYN7ZHXuApJ_BvD95ovaRF3p82j3mtAFaTopHVcTmMEkSs3_MT0rX94cYprfcB58-zhpBWUFQaCjuQiiJ0XnOrTEzlERC7SDYERvFDeeO1NFiXFOVmdG4Stj6TO8DEm8VksbYLtOGwFppMoaVDep5rnP9s76B0USS9WOkSw_GPnC-fVXID5MupkxyOYLMKUy5dg7pcW4TI83b90nx3Lcss8mkFm3aBgaeVMD1nGiJ1eohQHIhXM4lVwyBm5QsuwK_V7wVybMnkENivq7KzAwyRmZRWqeTd3a8AaJvRCOGuxm-C2oZRHpxnVjZeR17a-Dns4PWlvJKyRktR16_g6pW-kA6YiFX-E67A1nr20_MH66Q8cNv5v3oUZxEl6fXF7tQmzVCx-xLvZgurg7d1tY0gx0DvF4jFIJwyWbz7w4sw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Smoke+and+fire+detection+by+a+convolutional+neural+network+based+on+a+combinatorial+model&rft.jtitle=International+journal+of+innovation+and+applied+studies&rft.au=Fofana%2C+Tidiane&rft.au=Ouattara%2C+Si%C3%A9&rft.au=Clement%2C+Alain&rft.date=2023-04-01&rft.pub=International+Journal+of+Innovation+and+Applied+Studies&rft.eissn=2028-9324&rft.volume=39&rft.issue=2&rft.spage=742&rft.epage=750&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2028-9324&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2028-9324&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2028-9324&client=summon