Phosphoproteomic screening identifies Rab GTPases as novel downstream targets of PINK1

Mutations in the PTEN‐induced kinase 1 (PINK1) are causative of autosomal recessive Parkinson's disease (PD). We have previously reported that PINK1 is activated by mitochondrial depolarisation and phosphorylates serine 65 (Ser 65 ) of the ubiquitin ligase Parkin and ubiquitin to stimulate Park...

Full description

Saved in:
Bibliographic Details
Published inThe EMBO journal Vol. 34; no. 22; pp. 2840 - 2861
Main Authors Lai, Yu-Chiang, Kondapalli, Chandana, Lehneck, Ronny, Procter, James B, Dill, Brian D, Woodroof, Helen I, Gourlay, Robert, Peggie, Mark, Macartney, Thomas J, Corti, Olga, Corvol, Jean-Christophe, Campbell, David G, Itzen, Aymelt, Trost, Matthias, Muqit, Miratul MK
Format Journal Article
LanguageEnglish
Published London Blackwell Publishing Ltd 12.11.2015
Nature Publishing Group UK
Springer Nature B.V
EMBO Press
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mutations in the PTEN‐induced kinase 1 (PINK1) are causative of autosomal recessive Parkinson's disease (PD). We have previously reported that PINK1 is activated by mitochondrial depolarisation and phosphorylates serine 65 (Ser 65 ) of the ubiquitin ligase Parkin and ubiquitin to stimulate Parkin E3 ligase activity. Here, we have employed quantitative phosphoproteomics to search for novel PINK1‐dependent phosphorylation targets in HEK (human embryonic kidney) 293 cells stimulated by mitochondrial depolarisation. This led to the identification of 14,213 phosphosites from 4,499 gene products. Whilst most phosphosites were unaffected, we strikingly observed three members of a sub‐family of Rab GTPases namely Rab8A, 8B and 13 that are all phosphorylated at the highly conserved residue of serine 111 (Ser 111 ) in response to PINK1 activation. Using phospho‐specific antibodies raised against Ser 111 of each of the Rabs, we demonstrate that Rab Ser 111 phosphorylation occurs specifically in response to PINK1 activation and is abolished in HeLa PINK1 knockout cells and mutant PINK1 PD patient‐derived fibroblasts stimulated by mitochondrial depolarisation. We provide evidence that Rab8A GTPase Ser 111 phosphorylation is not directly regulated by PINK1 in vitro and demonstrate in cells the time course of Ser 111 phosphorylation of Rab8A, 8B and 13 is markedly delayed compared to phosphorylation of Parkin at Ser 65 . We further show mechanistically that phosphorylation at Ser 111 significantly impairs Rab8A activation by its cognate guanine nucleotide exchange factor (GEF), Rabin8 (by using the Ser111Glu phosphorylation mimic). These findings provide the first evidence that PINK1 is able to regulate the phosphorylation of Rab GTPases and indicate that monitoring phosphorylation of Rab8A/8B/13 at Ser 111 may represent novel biomarkers of PINK1 activity in vivo . Our findings also suggest that disruption of Rab GTPase‐mediated signalling may represent a major mechanism in the neurodegenerative cascade of Parkinson's disease. Synopsis The Parkinson's disease‐mutated PINK1 kinase phosphorylates Parkin and ubiquitin. Phosphoproteomic screening reveals Rab8A, Rab8B and Rab13 GTPases as some of only few additional targets whose phosphorylation depends on PINK1 during mitophagy. Activated PINK1 indirectly controls phosphorylation of serine 111 of Rab8A and closely related Rab GTPases. Biochemical and cellular analysis imply an unknown intermediate PINK1‐dependent Rab8A Ser111 kinase or phosphatase. PINK1‐directed activation of Parkin E3 ligase activity is independent of Rab8A Ser111 phosphorylation Phosphorylation at Ser111 inhibits Rab8A activation by its guanine exchange factor, Rabin8. Graphical Abstract Ser111 modification of Rab8A, Rab8B and Rab13 represent some of only few PINK1‐dependent phosphorylation events and may regulate GTPase function during mitophagy.
AbstractList Mutations in the PTEN‐induced kinase 1 (PINK1) are causative of autosomal recessive Parkinson's disease (PD). We have previously reported that PINK1 is activated by mitochondrial depolarisation and phosphorylates serine 65 (Ser65) of the ubiquitin ligase Parkin and ubiquitin to stimulate Parkin E3 ligase activity. Here, we have employed quantitative phosphoproteomics to search for novel PINK1‐dependent phosphorylation targets in HEK (human embryonic kidney) 293 cells stimulated by mitochondrial depolarisation. This led to the identification of 14,213 phosphosites from 4,499 gene products. Whilst most phosphosites were unaffected, we strikingly observed three members of a sub‐family of Rab GTPases namely Rab8A, 8B and 13 that are all phosphorylated at the highly conserved residue of serine 111 (Ser111) in response to PINK1 activation. Using phospho‐specific antibodies raised against Ser111 of each of the Rabs, we demonstrate that Rab Ser111 phosphorylation occurs specifically in response to PINK1 activation and is abolished in HeLa PINK1 knockout cells and mutant PINK1 PD patient‐derived fibroblasts stimulated by mitochondrial depolarisation. We provide evidence that Rab8A GTPase Ser111 phosphorylation is not directly regulated by PINK1 in vitro and demonstrate in cells the time course of Ser111 phosphorylation of Rab8A, 8B and 13 is markedly delayed compared to phosphorylation of Parkin at Ser65. We further show mechanistically that phosphorylation at Ser111 significantly impairs Rab8A activation by its cognate guanine nucleotide exchange factor (GEF), Rabin8 (by using the Ser111Glu phosphorylation mimic). These findings provide the first evidence that PINK1 is able to regulate the phosphorylation of Rab GTPases and indicate that monitoring phosphorylation of Rab8A/8B/13 at Ser111 may represent novel biomarkers of PINK1 activity in vivo. Our findings also suggest that disruption of Rab GTPase‐mediated signalling may represent a major mechanism in the neurodegenerative cascade of Parkinson's disease. Synopsis The Parkinson's disease‐mutated PINK1 kinase phosphorylates Parkin and ubiquitin. Phosphoproteomic screening reveals Rab8A, Rab8B and Rab13 GTPases as some of only few additional targets whose phosphorylation depends on PINK1 during mitophagy. Activated PINK1 indirectly controls phosphorylation of serine 111 of Rab8A and closely related Rab GTPases. Biochemical and cellular analysis imply an unknown intermediate PINK1‐dependent Rab8A Ser111 kinase or phosphatase. PINK1‐directed activation of Parkin E3 ligase activity is independent of Rab8A Ser111 phosphorylation Phosphorylation at Ser111 inhibits Rab8A activation by its guanine exchange factor, Rabin8. Ser111 modification of Rab8A, Rab8B and Rab13 represent some of only few PINK1‐dependent phosphorylation events and may regulate GTPase function during mitophagy.
Mutations in the PTEN-induced kinase 1 (PINK1) are causative of autosomal recessive Parkinson's disease (PD). We have previously reported that PINK1 is activated by mitochondrial depolarisation and phosphorylates serine 65 (Ser(65)) of the ubiquitin ligase Parkin and ubiquitin to stimulate Parkin E3 ligase activity. Here, we have employed quantitative phosphoproteomics to search for novel PINK1-dependent phosphorylation targets in HEK (human embryonic kidney) 293 cells stimulated by mitochondrial depolarisation. This led to the identification of 14,213 phosphosites from 4,499 gene products. Whilst most phosphosites were unaffected, we strikingly observed three members of a sub-family of Rab GTPases namely Rab8A, 8B and 13 that are all phosphorylated at the highly conserved residue of serine 111 (Ser(111)) in response to PINK1 activation. Using phospho-specific antibodies raised against Ser(111) of each of the Rabs, we demonstrate that Rab Ser(111) phosphorylation occurs specifically in response to PINK1 activation and is abolished in HeLa PINK1 knockout cells and mutant PINK1 PD patient-derived fibroblasts stimulated by mitochondrial depolarisation. We provide evidence that Rab8A GTPase Ser(111) phosphorylation is not directly regulated by PINK1 in vitro and demonstrate in cells the time course of Ser(111) phosphorylation of Rab8A, 8B and 13 is markedly delayed compared to phosphorylation of Parkin at Ser(65). We further show mechanistically that phosphorylation at Ser(111) significantly impairs Rab8A activation by its cognate guanine nucleotide exchange factor (GEF), Rabin8 (by using the Ser111Glu phosphorylation mimic). These findings provide the first evidence that PINK1 is able to regulate the phosphorylation of Rab GTPases and indicate that monitoring phosphorylation of Rab8A/8B/13 at Ser(111) may represent novel biomarkers of PINK1 activity in vivo. Our findings also suggest that disruption of Rab GTPase-mediated signalling may represent a major mechanism in the neurodegenerative cascade of Parkinson's disease.Mutations in the PTEN-induced kinase 1 (PINK1) are causative of autosomal recessive Parkinson's disease (PD). We have previously reported that PINK1 is activated by mitochondrial depolarisation and phosphorylates serine 65 (Ser(65)) of the ubiquitin ligase Parkin and ubiquitin to stimulate Parkin E3 ligase activity. Here, we have employed quantitative phosphoproteomics to search for novel PINK1-dependent phosphorylation targets in HEK (human embryonic kidney) 293 cells stimulated by mitochondrial depolarisation. This led to the identification of 14,213 phosphosites from 4,499 gene products. Whilst most phosphosites were unaffected, we strikingly observed three members of a sub-family of Rab GTPases namely Rab8A, 8B and 13 that are all phosphorylated at the highly conserved residue of serine 111 (Ser(111)) in response to PINK1 activation. Using phospho-specific antibodies raised against Ser(111) of each of the Rabs, we demonstrate that Rab Ser(111) phosphorylation occurs specifically in response to PINK1 activation and is abolished in HeLa PINK1 knockout cells and mutant PINK1 PD patient-derived fibroblasts stimulated by mitochondrial depolarisation. We provide evidence that Rab8A GTPase Ser(111) phosphorylation is not directly regulated by PINK1 in vitro and demonstrate in cells the time course of Ser(111) phosphorylation of Rab8A, 8B and 13 is markedly delayed compared to phosphorylation of Parkin at Ser(65). We further show mechanistically that phosphorylation at Ser(111) significantly impairs Rab8A activation by its cognate guanine nucleotide exchange factor (GEF), Rabin8 (by using the Ser111Glu phosphorylation mimic). These findings provide the first evidence that PINK1 is able to regulate the phosphorylation of Rab GTPases and indicate that monitoring phosphorylation of Rab8A/8B/13 at Ser(111) may represent novel biomarkers of PINK1 activity in vivo. Our findings also suggest that disruption of Rab GTPase-mediated signalling may represent a major mechanism in the neurodegenerative cascade of Parkinson's disease.
Mutations in the PTEN-induced kinase 1 (PINK1) are causative of autosomal recessive Parkinson's disease (PD). We have previously reported that PINK1 is activated by mitochondrial depolarisation and phosphorylates serine 65 (Ser 65) of the ubiquitin ligase Parkin and ubiquitin to stimulate Parkin E3 ligase activity. Here, we have employed quantitative phosphoproteomics to search for novel PINK1-dependent phosphorylation targets in HEK (human embry-onic kidney) 293 cells stimulated by mitochondrial depolarisation. This led to the identification of 14,213 phosphosites from 4,499 gene products. Whilst most phosphosites were unaffected, we strikingly observed three members of a sub-family of Rab GTPases namely Rab8A, 8B and 13 that are all phosphorylated at the highly conserved residue of serine 111 (Ser 111) in response to PINK1 activation. Using phospho-specific antibodies raised against Ser 111 of each of the Rabs, we demonstrate that Rab Ser 111 phosphoryla-tion occurs specifically in response to PINK1 activation and is abolished in HeLa PINK1 knockout cells and mutant PINK1 PD patient-derived fibroblasts stimulated by mitochondrial depolari-sation. We provide evidence that Rab8A GTPase Ser 111 phosphory-lation is not directly regulated by PINK1 in vitro and demonstrate in cells the time course of Ser 111 phosphorylation of Rab8A, 8B and 13 is markedly delayed compared to phosphorylation of Parkin at Ser 65. We further show mechanistically that phosphorylation at Ser 111 significantly impairs Rab8A activation by its cognate guanine nucleotide exchange factor (GEF), Rabin8 (by using the Ser111Glu phosphorylation mimic). These findings provide the first evidence that PINK1 is able to regulate the phosphorylation of Rab GTPases and indicate that monitoring phosphorylation of Rab8A/ 8B/13 at Ser 111 may represent novel biomarkers of PINK1 activity in vivo. Our findings also suggest that disruption of Rab GTPase-mediated signalling may represent a major mechanism in the neurodegenerative cascade of Parkinson's disease.
Mutations in the PTEN‐induced kinase 1 (PINK1) are causative of autosomal recessive Parkinson's disease (PD). We have previously reported that PINK1 is activated by mitochondrial depolarisation and phosphorylates serine 65 (Ser 65 ) of the ubiquitin ligase Parkin and ubiquitin to stimulate Parkin E3 ligase activity. Here, we have employed quantitative phosphoproteomics to search for novel PINK1‐dependent phosphorylation targets in HEK (human embryonic kidney) 293 cells stimulated by mitochondrial depolarisation. This led to the identification of 14,213 phosphosites from 4,499 gene products. Whilst most phosphosites were unaffected, we strikingly observed three members of a sub‐family of Rab GTPases namely Rab8A, 8B and 13 that are all phosphorylated at the highly conserved residue of serine 111 (Ser 111 ) in response to PINK1 activation. Using phospho‐specific antibodies raised against Ser 111 of each of the Rabs, we demonstrate that Rab Ser 111 phosphorylation occurs specifically in response to PINK1 activation and is abolished in HeLa PINK1 knockout cells and mutant PINK1 PD patient‐derived fibroblasts stimulated by mitochondrial depolarisation. We provide evidence that Rab8A GTPase Ser 111 phosphorylation is not directly regulated by PINK1 in vitro and demonstrate in cells the time course of Ser 111 phosphorylation of Rab8A, 8B and 13 is markedly delayed compared to phosphorylation of Parkin at Ser 65 . We further show mechanistically that phosphorylation at Ser 111 significantly impairs Rab8A activation by its cognate guanine nucleotide exchange factor (GEF), Rabin8 (by using the Ser111Glu phosphorylation mimic). These findings provide the first evidence that PINK1 is able to regulate the phosphorylation of Rab GTPases and indicate that monitoring phosphorylation of Rab8A/8B/13 at Ser 111 may represent novel biomarkers of PINK1 activity in vivo . Our findings also suggest that disruption of Rab GTPase‐mediated signalling may represent a major mechanism in the neurodegenerative cascade of Parkinson's disease. Synopsis The Parkinson's disease‐mutated PINK1 kinase phosphorylates Parkin and ubiquitin. Phosphoproteomic screening reveals Rab8A, Rab8B and Rab13 GTPases as some of only few additional targets whose phosphorylation depends on PINK1 during mitophagy. Activated PINK1 indirectly controls phosphorylation of serine 111 of Rab8A and closely related Rab GTPases. Biochemical and cellular analysis imply an unknown intermediate PINK1‐dependent Rab8A Ser111 kinase or phosphatase. PINK1‐directed activation of Parkin E3 ligase activity is independent of Rab8A Ser111 phosphorylation Phosphorylation at Ser111 inhibits Rab8A activation by its guanine exchange factor, Rabin8. Graphical Abstract Ser111 modification of Rab8A, Rab8B and Rab13 represent some of only few PINK1‐dependent phosphorylation events and may regulate GTPase function during mitophagy.
Mutations in the PTEN ‐induced kinase 1 ( PINK 1) are causative of autosomal recessive Parkinson's disease ( PD ). We have previously reported that PINK 1 is activated by mitochondrial depolarisation and phosphorylates serine 65 (Ser 65 ) of the ubiquitin ligase Parkin and ubiquitin to stimulate Parkin E3 ligase activity. Here, we have employed quantitative phosphoproteomics to search for novel PINK 1‐dependent phosphorylation targets in HEK (human embryonic kidney) 293 cells stimulated by mitochondrial depolarisation. This led to the identification of 14,213 phosphosites from 4,499 gene products. Whilst most phosphosites were unaffected, we strikingly observed three members of a sub‐family of Rab GTP ases namely Rab8A, 8B and 13 that are all phosphorylated at the highly conserved residue of serine 111 (Ser 111 ) in response to PINK 1 activation. Using phospho‐specific antibodies raised against Ser 111 of each of the Rabs, we demonstrate that Rab Ser 111 phosphorylation occurs specifically in response to PINK 1 activation and is abolished in HeLa PINK 1 knockout cells and mutant PINK 1 PD patient‐derived fibroblasts stimulated by mitochondrial depolarisation. We provide evidence that Rab8A GTP ase Ser 111 phosphorylation is not directly regulated by PINK 1 in vitro and demonstrate in cells the time course of Ser 111 phosphorylation of Rab8A, 8B and 13 is markedly delayed compared to phosphorylation of Parkin at Ser 65 . We further show mechanistically that phosphorylation at Ser 111 significantly impairs Rab8A activation by its cognate guanine nucleotide exchange factor ( GEF ), Rabin8 (by using the Ser111Glu phosphorylation mimic). These findings provide the first evidence that PINK 1 is able to regulate the phosphorylation of Rab GTP ases and indicate that monitoring phosphorylation of Rab8A/8B/13 at Ser 111 may represent novel biomarkers of PINK 1 activity in vivo . Our findings also suggest that disruption of Rab GTP ase‐mediated signalling may represent a major mechanism in the neurodegenerative cascade of Parkinson's disease.
Mutations in the PTEN-induced kinase 1 (PINK1) are causative of autosomal recessive Parkinson's disease (PD). We have previously reported that PINK1 is activated by mitochondrial depolarisation and phosphorylates serine 65 (Ser65) of the ubiquitin ligase Parkin and ubiquitin to stimulate Parkin E3 ligase activity. Here, we have employed quantitative phosphoproteomics to search for novel PINK1-dependent phosphorylation targets in HEK (human embryonic kidney) 293 cells stimulated by mitochondrial depolarisation. This led to the identification of 14,213 phosphosites from 4,499 gene products. Whilst most phosphosites were unaffected, we strikingly observed three members of a sub-family of Rab GTPases namely Rab8A, 8B and 13 that are all phosphorylated at the highly conserved residue of serine 111 (Ser111) in response to PINK1 activation. Using phospho-specific antibodies raised against Ser111 of each of the Rabs, we demonstrate that Rab Ser111 phosphorylation occurs specifically in response to PINK1 activation and is abolished in HeLa PINK1 knockout cells and mutant PINK1 PD patient-derived fibroblasts stimulated by mitochondrial depolarisation. We provide evidence that Rab8A GTPase Ser111 phosphorylation is not directly regulated by PINK1 in vitro and demonstrate in cells the time course of Ser111 phosphorylation of Rab8A, 8B and 13 is markedly delayed compared to phosphorylation of Parkin at Ser65. We further show mechanistically that phosphorylation at Ser111 significantly impairs Rab8A activation by its cognate guanine nucleotide exchange factor (GEF), Rabin8 (by using the Ser111Glu phosphorylation mimic). These findings provide the first evidence that PINK1 is able to regulate the phosphorylation of Rab GTPases and indicate that monitoring phosphorylation of Rab8A/8B/13 at Ser111 may represent novel biomarkers of PINK1 activity in vivo. Our findings also suggest that disruption of Rab GTPase-mediated signalling may represent a major mechanism in the neurodegenerative cascade of Parkinson's disease. Synopsis The Parkinson's disease-mutated PINK1 kinase phosphorylates Parkin and ubiquitin. Phosphoproteomic screening reveals Rab8A, Rab8B and Rab13 GTPases as some of only few additional targets whose phosphorylation depends on PINK1 during mitophagy. Activated PINK1 indirectly controls phosphorylation of serine 111 of Rab8A and closely related Rab GTPases. Biochemical and cellular analysis imply an unknown intermediate PINK1-dependent Rab8A Ser111 kinase or phosphatase. PINK1-directed activation of Parkin E3 ligase activity is independent of Rab8A Ser111 phosphorylation Phosphorylation at Ser111 inhibits Rab8A activation by its guanine exchange factor, Rabin8.
Mutations in the PTEN-induced kinase 1 (PINK1) are causative of autosomal recessive Parkinson's disease (PD). We have previously reported that PINK1 is activated by mitochondrial depolarisation and phosphorylates serine 65 (Ser(65)) of the ubiquitin ligase Parkin and ubiquitin to stimulate Parkin E3 ligase activity. Here, we have employed quantitative phosphoproteomics to search for novel PINK1-dependent phosphorylation targets in HEK (human embryonic kidney) 293 cells stimulated by mitochondrial depolarisation. This led to the identification of 14,213 phosphosites from 4,499 gene products. Whilst most phosphosites were unaffected, we strikingly observed three members of a sub-family of Rab GTPases namely Rab8A, 8B and 13 that are all phosphorylated at the highly conserved residue of serine 111 (Ser(111)) in response to PINK1 activation. Using phospho-specific antibodies raised against Ser(111) of each of the Rabs, we demonstrate that Rab Ser(111) phosphorylation occurs specifically in response to PINK1 activation and is abolished in HeLa PINK1 knockout cells and mutant PINK1 PD patient-derived fibroblasts stimulated by mitochondrial depolarisation. We provide evidence that Rab8A GTPase Ser(111) phosphorylation is not directly regulated by PINK1 in vitro and demonstrate in cells the time course of Ser(111) phosphorylation of Rab8A, 8B and 13 is markedly delayed compared to phosphorylation of Parkin at Ser(65). We further show mechanistically that phosphorylation at Ser(111) significantly impairs Rab8A activation by its cognate guanine nucleotide exchange factor (GEF), Rabin8 (by using the Ser111Glu phosphorylation mimic). These findings provide the first evidence that PINK1 is able to regulate the phosphorylation of Rab GTPases and indicate that monitoring phosphorylation of Rab8A/8B/13 at Ser(111) may represent novel biomarkers of PINK1 activity in vivo. Our findings also suggest that disruption of Rab GTPase-mediated signalling may represent a major mechanism in the neurodegenerative cascade of Parkinson's disease.
Author Corvol, Jean‐Christophe
Woodroof, Helen I
Corti, Olga
Trost, Matthias
Gourlay, Robert
Campbell, David G
Kondapalli, Chandana
Macartney, Thomas J
Dill, Brian D
Peggie, Mark
Lai, Yu‐Chiang
Lehneck, Ronny
Muqit, Miratul MK
Itzen, Aymelt
Procter, James B
AuthorAffiliation 4 Division of Signal Transduction Therapy College of Life Sciences University of Dundee Dundee UK
10 AP‐HP Département des maladies du système nerveux Hôpital de la Pitié‐Salpêtrière Paris France
7 Sorbonne Universités UPMC Paris 06 UMR S 1127 Paris France
1 MRC Protein Phosphorylation and Ubiquitylation Unit College of Life Sciences University of Dundee Dundee UK
2 Centre for Integrated Protein Science Munich Department Chemistry Technische Universität München Garching Germany
3 Division of Computational Biology College of Life Sciences University of Dundee Dundee UK
5 Inserm U 1127 Paris France
8 Institut du Cerveau et de la Moelle épinière ICM Paris France
9 Inserm Centre d'Investigation Clinique (CIC) Paris France
11 College of Medicine, Dentistry & Nursing University of Dundee Dundee UK
6 CNRS UMR 7225 Paris France
AuthorAffiliation_xml – name: 1 MRC Protein Phosphorylation and Ubiquitylation Unit College of Life Sciences University of Dundee Dundee UK
– name: 11 College of Medicine, Dentistry & Nursing University of Dundee Dundee UK
– name: 6 CNRS UMR 7225 Paris France
– name: 7 Sorbonne Universités UPMC Paris 06 UMR S 1127 Paris France
– name: 10 AP‐HP Département des maladies du système nerveux Hôpital de la Pitié‐Salpêtrière Paris France
– name: 4 Division of Signal Transduction Therapy College of Life Sciences University of Dundee Dundee UK
– name: 5 Inserm U 1127 Paris France
– name: 9 Inserm Centre d'Investigation Clinique (CIC) Paris France
– name: 3 Division of Computational Biology College of Life Sciences University of Dundee Dundee UK
– name: 8 Institut du Cerveau et de la Moelle épinière ICM Paris France
– name: 2 Centre for Integrated Protein Science Munich Department Chemistry Technische Universität München Garching Germany
Author_xml – sequence: 1
  givenname: Yu-Chiang
  surname: Lai
  fullname: Lai, Yu-Chiang
  organization: MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, UK
– sequence: 2
  givenname: Chandana
  surname: Kondapalli
  fullname: Kondapalli, Chandana
  organization: MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, UK
– sequence: 3
  givenname: Ronny
  surname: Lehneck
  fullname: Lehneck, Ronny
  organization: Centre for Integrated Protein Science Munich, Department Chemistry, Technische Universität München, Garching, Germany
– sequence: 4
  givenname: James B
  surname: Procter
  fullname: Procter, James B
  organization: Division of Computational Biology, College of Life Sciences, University of Dundee, Dundee, UK
– sequence: 5
  givenname: Brian D
  surname: Dill
  fullname: Dill, Brian D
  organization: MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, UK
– sequence: 6
  givenname: Helen I
  surname: Woodroof
  fullname: Woodroof, Helen I
  organization: MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, UK
– sequence: 7
  givenname: Robert
  surname: Gourlay
  fullname: Gourlay, Robert
  organization: MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, UK
– sequence: 8
  givenname: Mark
  surname: Peggie
  fullname: Peggie, Mark
  organization: Division of Signal Transduction Therapy, College of Life Sciences, University of Dundee, Dundee, UK
– sequence: 9
  givenname: Thomas J
  surname: Macartney
  fullname: Macartney, Thomas J
  organization: Division of Signal Transduction Therapy, College of Life Sciences, University of Dundee, Dundee, UK
– sequence: 10
  givenname: Olga
  surname: Corti
  fullname: Corti, Olga
  organization: Inserm U 1127, Paris, France
– sequence: 11
  givenname: Jean-Christophe
  surname: Corvol
  fullname: Corvol, Jean-Christophe
  organization: Inserm U 1127, Paris, France
– sequence: 12
  givenname: David G
  surname: Campbell
  fullname: Campbell, David G
  organization: MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, UK
– sequence: 13
  givenname: Aymelt
  surname: Itzen
  fullname: Itzen, Aymelt
  organization: Centre for Integrated Protein Science Munich, Department Chemistry, Technische Universität München, Garching, Germany
– sequence: 14
  givenname: Matthias
  surname: Trost
  fullname: Trost, Matthias
  email: Corresponding author. Tel: +44 1382 386402; , m.trost@dundee.ac.uk, Corresponding author. Tel: +44 1382 388377; , m.muqit@dundee.ac.uk
  organization: MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, UK
– sequence: 15
  givenname: Miratul MK
  surname: Muqit
  fullname: Muqit, Miratul MK
  email: Corresponding author. Tel: +44 1382 386402; , m.trost@dundee.ac.uk, Corresponding author. Tel: +44 1382 388377; , m.muqit@dundee.ac.uk
  organization: MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26471730$$D View this record in MEDLINE/PubMed
https://hal.sorbonne-universite.fr/hal-01285599$$DView record in HAL
BookMark eNptUVtv0zAUttAQ6wbPvKFIvMBDhh1fkvCAtFVbN1ZGNRWQeLGc5qRxl9jFTrvt3-OSEY0JyZIv57scn-8A7RlrAKHXBB8RnvDkA7TF6ijBhOdh0WdoRJjAcYJTvodGOBEkZiTL99GB9yuMMc9S8gLtJ4KlJKV4hL7PauvXtV0724Ft9SLyCwdgtFlGugTT6UqDj65VEU3mM-XDWfnI2C00UWlvje8cqDbqlFtC5yNbRbOLq0vyEj2vVOPh1cN-iL6dnc7H5_H06-RifDyNay44jVOSFRlnkDBGS5bltKqwoJCVPC8VkIrTLCsxCFLRCsInCRWc8zwvCkgxFxU9RJ963fWmaKFchIadauTa6Va5e2mVlv9WjK7l0m4lE5zllAeB971A_YR2fjyVuzdMkmxnuSUB--7BzNlfG_CdbLVfQNMoA3bjZZgoJTmjHAfo2yfQld04E0YRUExkOAmSAfXmcfeD_994AuBjD7jVDdwPdYLln_TlLn05pC9Pv5x8Hm6BjHuyDzyzBPeoh_8LBErcU7Tv4G7wU-5GipSmXP64mkh8cj25_Dkmck5_A4OFwoo
CODEN EMJODG
ContentType Journal Article
Copyright The Author(s) 2015
2015 The Authors. Published under the terms of the CC BY 4.0 license
2015 The Authors. Published under the terms of the CC BY 4.0 license.
2015 EMBO
Attribution
Copyright_xml – notice: The Author(s) 2015
– notice: 2015 The Authors. Published under the terms of the CC BY 4.0 license
– notice: 2015 The Authors. Published under the terms of the CC BY 4.0 license.
– notice: 2015 EMBO
– notice: Attribution
DBID BSCLL
C6C
24P
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
1XC
VOOES
5PM
DOI 10.15252/embj.201591593
DatabaseName Istex
SpringerOpen Free (Free internet resource, activated by CARLI)
Wiley Online Library Open Access
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic



Virology and AIDS Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature Link OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
DocumentTitleAlternate Yu‐Chiang Lai et al
EISSN 1460-2075
EndPage 2861
ExternalDocumentID PMC4654935
oai_HAL_hal_01285599v1
3888878291
26471730
EMBJ201591593
10_15252_embj_201591593
ark_67375_WNG_0BRGKZC1_T
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: AstraZeneca
– fundername: Merck KGaA
– fundername: Pfizer
– fundername: Investissements d'avenir
  grantid: ANR‐10‐IAIHU‐06
– fundername: Wellcome Trust Senior Research Fellowship
  grantid: 101022/Z/13/Z
– fundername: Boehringer‐Ingelheim
– fundername: German Research Foundation
  grantid: DFG: SFB1035, project B05
– fundername: Wellcome/MRC PD consortium
– fundername: MRC‐PPU of University of Dundee
– fundername: Janssen Pharmaceutica
– fundername: Medical Research Council (MRC)
  funderid: MC_UU_12016/5
– fundername: German Research Foundation
  funderid: DFG: SFB1035, project B05
– fundername: NIGMS
  funderid: P41‐GM103311
– fundername: NIGMS NIH HHS
  grantid: P41 GM103311
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/J019364/1
– fundername: Medical Research Council
  grantid: G1100713
– fundername: Medical Research Council
  grantid: MC_UP_A500_1020
– fundername: Medical Research Council
  grantid: MC_UU_12016/5
– fundername: Wellcome Trust
  grantid: 101022/Z/13/Z
– fundername: Parkinson's UK
  grantid: G-1506
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/G022682/1
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/L020742/1
– fundername: Wellcome Trust
  grantid: 101022
GroupedDBID ---
-DZ
-Q-
-~X
0R~
123
1OC
24P
29G
2WC
33P
36B
39C
53G
5VS
70F
8R4
8R5
A8Z
AAESR
AAEVG
AAHBH
AAHHS
AAIHA
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABJNI
ABLJU
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACSMW
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFNX
AFGKR
AFPWT
AFRAH
AFZJQ
AHMBA
AIAGR
AIURR
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOIJS
AUFTA
AZBYB
AZFZN
AZVAB
BAWUL
BDRZF
BENPR
BFHJK
BMNLL
BMXJE
BRXPI
BSCLL
BTFSW
C6C
CS3
DCZOG
DIK
DPXWK
DRFUL
DRSTM
DU5
E3Z
EBD
EBLON
EBS
EJD
EMB
EMOBN
ESTFP
F5P
G-S
GROUPED_DOAJ
GX1
H13
HH5
HK~
HYE
KQ8
LATKE
LEEKS
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
MY~
O9-
OK1
P2P
P2W
Q2X
R.K
RHF
RHI
RNS
ROL
RPM
SV3
TN5
TR2
WBKPD
WH7
WIH
WIK
WIN
WOHZO
WXSBR
WYJ
YSK
ZCA
ZZTAW
~KM
AAJSJ
AAYCA
ACYXJ
AFWVQ
AAMMB
AASML
ABZEH
AEFGJ
AGQPQ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NAO
NPM
7QG
7QL
7QP
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
.55
1XC
3O-
4.4
7X7
88E
8AO
8C1
8CJ
8FE
8FH
8FI
8FJ
8G5
AANHP
ABUWG
ACKIV
ACRPL
ADNMO
AEUYN
AFKRA
AI.
ASPBG
AVWKF
AZQEC
BBNVY
BHPHI
BKSAR
BPHCQ
BVXVI
C1A
CAG
CCPQU
COF
D1J
DWQXO
FA8
FEDTE
FYUFA
GNUQQ
GODZA
GUQSH
HCIFZ
HMCUK
HVGLF
H~9
LH4
LK8
M1P
M2O
M7P
PCBAR
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
RIG
RNI
RZO
UKHRP
VH1
VOOES
WOQ
X7M
XSW
Y6R
YYP
ZGI
ZXP
5PM
ID FETCH-LOGICAL-h5653-718b854e2443d4893ff063e8d59dae1f5388d0e61f3fe01513655599bbe7056f3
IEDL.DBID 24P
ISSN 0261-4189
1460-2075
IngestDate Thu Aug 21 13:43:56 EDT 2025
Fri May 09 12:10:13 EDT 2025
Fri Jul 11 06:06:04 EDT 2025
Fri Jul 25 10:50:32 EDT 2025
Mon Jul 21 05:58:57 EDT 2025
Wed Jan 22 17:07:35 EST 2025
Fri Feb 21 02:37:31 EST 2025
Wed Oct 30 10:04:12 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords phosphoproteomics
PINK1
Parkinson's disease
Rab GTPases
Rab GTPases Subject Categories Membrane & Intracellular Transport
Post-translational Modifications
Methods & Resources
Proteolysis & Proteomics
Language English
License Attribution
2015 The Authors. Published under the terms of the CC BY 4.0 license.
Attribution: http://creativecommons.org/licenses/by
This is an open access article under the terms of the Creative Commons Attribution 4.0 License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-h5653-718b854e2443d4893ff063e8d59dae1f5388d0e61f3fe01513655599bbe7056f3
Notes GlaxoSmithKline
Wellcome/MRC PD consortium
Pfizer
Investissements d'avenir - No. ANR-10-IAIHU-06
ark:/67375/WNG-0BRGKZC1-T
Medical Research Council (MRC) - No. MC_UU_12016/5
BBSRC BBR - No. BB/L020742/1
istex:CC0F73DA46D8E73497F7BFC1EAC49A505D8D7E2B
ArticleID:EMBJ201591593
Boehringer-Ingelheim
German Research Foundation - No. DFG: SFB1035, project B05
Janssen Pharmaceutica
Michael J. Fox Foundation for Parkinson's disease research
AppendixExpanded View Figures PDFTable EV1Table EV2Table EV3Review Process File
Merck KGaA
Tenovus Scotland
AstraZeneca
MRC-PPU of University of Dundee
Wellcome Trust Senior Research Fellowship - No. 101022/Z/13/Z
NIGMS - No. P41-GM103311
Parkinson's UK
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work
ORCID 0000-0001-9733-2404
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembj.201591593
PMID 26471730
PQID 1746802599
PQPubID 35985
PageCount 22
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4654935
hal_primary_oai_HAL_hal_01285599v1
proquest_miscellaneous_1733194350
proquest_journals_1746802599
pubmed_primary_26471730
wiley_primary_10_15252_embj_201591593_EMBJ201591593
springer_journals_10_15252_embj_201591593
istex_primary_ark_67375_WNG_0BRGKZC1_T
PublicationCentury 2000
PublicationDate 12 November 2015
PublicationDateYYYYMMDD 2015-11-12
PublicationDate_xml – month: 11
  year: 2015
  text: 12 November 2015
  day: 12
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: New York
– name: Hoboken
PublicationTitle The EMBO journal
PublicationTitleAbbrev EMBO J
PublicationTitleAlternate EMBO J
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Nature Publishing Group UK
Springer Nature B.V
EMBO Press
John Wiley and Sons Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Nature Publishing Group UK
– name: Springer Nature B.V
– name: EMBO Press
– name: John Wiley and Sons Inc
References Kazlauskaite A, Kelly V, Johnson C, Baillie C, Hastie CJ, Peggie M, Macartney T, Woodroof HI, Alessi DR, Pedrioli PG, Muqit MM (2014a) Phosphorylation of Parkin at Serine65 is essential for activation: elaboration of a Miro1 substrate-based assay of Parkin E3 ligase activity. Open Biol 4: 130213
Ibanez P, Lesage S, Lohmann E, Thobois S, De Michele G, Borg M, Agid Y, Durr A, Brice A, French Parkinson's Disease Genetics Study Group (2006) Mutational analysis of the PINK1 gene in early-onset parkinsonism in Europe and North Africa. Brain 129: 686-694
Narendra D, Tanaka A, Suen DF, Youle RJ (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183: 795-803
Powell S, Forslund K, Szklarczyk D, Trachana K, Roth A, Huerta-Cepas J, Gabaldon T, Rattei T, Creevey C, Kuhn M, Jensen LJ, von Mering C, Bork P (2014) eggNOG v4.0: nested orthology inference across 3686 organisms. Nucleic Acids Res 42: D231-D239
Meissner C, Lorenz H, Weihofen A, Selkoe DJ, Lemberg MK (2011) The mitochondrial intramembrane protease PARL cleaves human Pink1 to regulate Pink1 trafficking. J Neurochem 117: 856-867
Rogerson DT, Sachdeva A, Wang K, Haq T, Kazlauskaite A, Hancock SM, Huguenin-Dezot N, Muqit MM, Fry AM, Bayliss R, Chin JW (2015) Efficient genetic encoding of phosphoserine and its nonhydrolyzable analog. Nat Chem Biol 11: 496-503
Sarraf SA, Raman M, Guarani-Pereira V, Sowa ME, Huttlin EL, Gygi SP, Harper JW (2013) Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature 496: 372-376
Weihofen A, Thomas KJ, Ostaszewski BL, Cookson MR, Selkoe DJ (2009) Pink1 forms a multiprotein complex with Miro and Milton, linking Pink1 function to mitochondrial trafficking. Biochemistry 48: 2045-2052
Periquet M, Latouche M, Lohmann E, Rawal N, De Michele G, Ricard S, Teive H, Fraix V, Vidailhet M, Nicholl D, Barone P, Wood NW, Raskin S, Deleuze JF, Agid Y, Durr A, Brice A, French Parkinson's Disease Genetics Study Group; European Consortium on Genetic Susceptibility in Parkinson's Disease (2003) Parkin mutations are frequent in patients with isolated early-onset parkinsonism. Brain 126: 1271-1278
MacLeod DA, Rhinn H, Kuwahara T, Zolin A, Di Paolo G, McCabe BD, Marder KS, Honig LS, Clark LN, Small SA, Abeliovich A (2013) RAB7L1 interacts with LRRK2 to modify intraneuronal protein sorting and Parkinson's disease risk. Neuron 77: 425-439
Ordureau A, Sarraf SA, Duda DM, Heo JM, Jedrychowski MP, Sviderskiy VO, Olszewski JL, Koerber JT, Xie T, Beausoleil SA, Wells JA, Gygi SP, Schulman BA, Harper JW (2014) Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis. Mol Cell 56: 360-375
Alto NM, Soderling J, Scott JD (2002) Rab32 is an A-kinase anchoring protein and participates in mitochondrial dynamics. J Cell Biol 158: 659-668
Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339: 819-823
McNulty DE, Annan RS (2008) Hydrophilic interaction chromatography reduces the complexity of the phosphoproteome and improves global phosphopeptide isolation and detection. Mol Cell Proteomics 7: 971-980
Wilson GR, Sim JC, McLean C, Giannandrea M, Galea CA, Riseley JR, Stephenson SE, Fitzpatrick E, Haas SA, Pope K, Hogan KJ, Gregg RG, Bromhead CJ, Wargowski DS, Lawrence CH, James PA, Churchyard A, Gao Y, Phelan DG, Gillies G et al (2014) Mutations in RAB39B cause X-linked intellectual disability and early-onset Parkinson disease with alpha-synuclein pathology. Am J Hum Genet 95: 729-735
Clark IE, Dodson MW, Jiang C, Cao JH, Huh JR, Seol JH, Yoo SJ, Hay BA, Guo M (2006) Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441: 1162-1166
Ong ST, Freeley M, Skubis-Zegadlo J, Fazil MH, Kelleher D, Fresser F, Baier G, Verma NK, Long A (2014) Phosphorylation of Rab5a protein by protein kinase C is crucial for T-cell migration. J Biol Chem 289: 19420-19434
Hou X, Hagemann N, Schoebel S, Blankenfeldt W, Goody RS, Erdmann KS, Itzen A (2011) A structural basis for Lowe syndrome caused by mutations in the Rab-binding domain of OCRL1. EMBO J 30: 1659-1670
Matsuda N, Sato S, Shiba K, Okatsu K, Saisho K, Gautier CA, Sou YS, Saiki S, Kawajiri S, Sato F, Kimura M, Komatsu M, Hattori N, Tanaka K (2010) PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol 189: 211-221
Zhang L, Karsten P, Hamm S, Pogson JH, Muller-Rischart AK, Exner N, Haass C, Whitworth AJ, Winklhofer KF, Schulz JB, Voigt A (2013) TRAP1 rescues PINK1 loss-of-function phenotypes. Hum Mol Genet 22: 2829-2841
Dzamko N, Deak M, Hentati F, Reith AD, Prescott AR, Alessi DR, Nichols RJ (2010) Inhibition of LRRK2 kinase activity leads to dephosphorylation of Ser(910)/Ser(935), disruption of 14-3-3 binding and altered cytoplasmic localization. Biochem J 430: 405-413
Ritorto MS, Cook K, Tyagi K, Pedrioli PG, Trost M (2013) Hydrophilic strong anion exchange (hSAX) chromatography for highly orthogonal peptide separation of complex proteomes. J Proteome Res 12: 2449-2457
Pereira-Leal JB, Seabra MC (2000) The mammalian Rab family of small GTPases: definition of family and subfamily sequence motifs suggests a mechanism for functional specificity in the Ras superfamily. J Mol Biol 301: 1077-1087
Pickrell AM, Youle RJ (2015) The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease. Neuron 85: 257-273
Frasa MA, Koessmeier KT, Ahmadian MR, Braga VM (2012) Illuminating the functional and structural repertoire of human TBC/RABGAPs. Nat Rev Mol Cell Biol 13: 67-73
Sklan EH, Serrano RL, Einav S, Pfeffer SR, Lambright DG, Glenn JS (2007) TBC1D20 is a Rab1 GTPase-activating protein that mediates hepatitis C virus replication. J Biol Chem 282: 36354-36361
Velankar S, Dana JM, Jacobsen J, van Ginkel G, Gane PJ, Luo J, Oldfield TJ, O'Donovan C, Martin MJ, Kleywegt GJ (2013) SIFTS: Structure Integration with Function, Taxonomy and Sequences resource. Nucleic Acids Res 41: D483-D489
Yamano K, Youle RJ (2013) PINK1 is degraded through the N-end rule pathway. Autophagy 9: 1758-1769
Wang X, Winter D, Ashrafi G, Schlehe J, Wong YL, Selkoe D, Rice S, Steen J, LaVoie MJ, Schwarz TL (2011) PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell 147: 893-906
Yamano K, Fogel AI, Wang C, van der Bliek AM, Youle RJ (2014) Mitochondrial Rab GAPs govern autophagosome biogenesis during mitophagy. eLife 3: e01612
Castor D, Nair N, Declais AC, Lachaud C, Toth R, Macartney TJ, Lilley DM, Arthur JS, Rouse J (2013) Cooperative control of holliday junction resolution and DNA repair by the SLX1 and MUS81-EME1 nucleases. Mol Cell 52: 221-233
Sharma K, D'Souza RC, Tyanova S, Schaab C, Wisniewski JR, Cox J, Mann M (2014) Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep 8: 1583-1594
Hutagalung AH, Novick PJ (2011) Role of Rab GTPases in membrane traffic and cell physiology. Physiol Rev 91: 119-149
Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392: 605-608
Wandinger-Ness A, Zerial M (2014) Rab proteins and the compartmentalization of the endosomal system. Cold Spring Harb Perspect Biol 6: a022616
Dave KD, De Silva S, Sheth NP, Ramboz S, Beck MJ, Quang C, Switzer RC 3rd, Ahmad S, Sunkin SM, Walker D, Cui X, Fisher DA, McCoy AM, Gamber K, Ding X, Goldberg MS, Benkovic SA, Haupt M, Baptista MA, Fiske BK et al (2014) Phenotypic characterization of recessive gene knockout rat models of Parkinson's disease. Neurobiol Dis 70: 190-203
Deas E, Plun-Favreau H, Gandhi S, Desmond H, Kjaer S, Loh SH, Renton AE, Harvey RJ, Whitworth AJ, Martins LM, Abramov AY, Wood NW (2011) PINK1 cleavage at position A103 by the mitochondrial protease PARL. Hum Mol Genet 20: 867-879
Hattula K, Furuhjelm J, Arffman A, Peranen J (2002) A Rab8-specific GDP/GTP exchange factor is involved in actin remodeling and polarized membrane transport. Mol Biol Cell 13: 3268-3280
Vives-Bauza C, Zhou C, Huang Y, Cui M, de Vries RL, Kim J, May J, Tocilescu MA, Liu W, Ko HS, Magrane J, Moore DJ, Dawson VL, Grailhe R, Dawson TM, Li C, Tieu K, Przedborski S (2010) PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc Natl Acad Sci USA 107: 378-383
Gandhi S, Wood-Kaczmar A, Yao Z, Plun-Favreau H, Deas E, Klupsch K, Downward J, Latchman DS, Tabrizi SJ, Wood NW, Duchen MR, Abramov AY (2009) PINK1-associated Parkinson's disease is caused by neuronal vulnerability to calcium-induced cell death. Mol Cell 33: 627-638
Ferrer-Acosta Y, Rodriguez-Cruz EN, Orange F, De Jesus-Cortes H, Madera B, Vaquer-Alicea J, Ballester J, Guinel MJ, Bloom GS, Vega IE (2013b) EFhd2 is a novel amyloid protein associated with pathological tau in Alzheimer's disease. J Neurochem 125: 921-931
Shiromizu T, Adachi J, Watanabe S, Murakami T, Kuga T, Muraoka S, Tomonaga T (2013) Identification of missing proteins in the neXtProt database and unregistered phosphopeptides in the PhosphoSitePlus database as part of the Chromosome-centric Human Proteome Project. J Proteome Res 12: 2414-2421
Gomez-Suaga P, Rivero-Rios P, Fdez E, Blanca Ramirez M, Ferrer I, Aiastui A, Lopez De Munain A, Hilfiker S (2014) LRRK2 delays degradative receptor trafficking by impeding late endosomal budding through decreasing Rab7 activity. Hum Mol Genet 23: 6779-6796
Saita S, Shirane M, Nakayama KI (2013) Selective escape of proteins from the mitochondria during mitophagy. Nat Commun 4: 1410
Ostermeier C, Brunger AT (1999) Structural basis of Rab effector specificity: crystal structure of the small G protein Rab3A complexed with the effector domain of rabphilin-3A. Cell 96: 363-374
Lopez R, Duggan K, Harte N, Kibria A (2003) Public
Mistry, Finn, Eddy, Bateman, Punta (CR54) 2013; 41
Woodroof, Pogson, Begley, Cantley, Deak, Campbell, van Aalten, Whitworth, Alessi, Muqit (CR96) 2011; 1
Cox, Mann (CR12) 2008; 26
Vives‐Bauza, Zhou, Huang, Cui, de Vries, Kim, May, Tocilescu, Liu, Ko, Magrane, Moore, Dawson, Grailhe, Dawson, Li, Tieu, Przedborski (CR88) 2010; 107
Zhang, Karsten, Hamm, Pogson, Muller‐Rischart, Exner, Haass, Whitworth, Winklhofer, Schulz, Voigt (CR100) 2013; 22
Jin, Lazarou, Wang, Kane, Narendra, Youle (CR33) 2010; 191
Ferrer‐Acosta, Rodriguez‐Cruz, Orange, De Jesus‐Cortes, Madera, Vaquer‐Alicea, Ballester, Guinel, Bloom, Vega (CR20) 2013; 125
Guo, Hou, Goody, Itzen (CR26) 2013; 288
Kazlauskaite, Muqit (CR39) 2015; 282
Cox, Mann (CR13) 2012; 13
Cong, Ran, Cox, Lin, Barretto, Habib, Hsu, Wu, Jiang, Marraffini, Zhang (CR11) 2013; 339
Waterhouse, Procter, Martin, Clamp, Barton (CR92) 2009; 25
Ostermeier, Brunger (CR64) 1999; 96
Gandhi, Wood‐Kaczmar, Yao, Plun‐Favreau, Deas, Klupsch, Downward, Latchman, Tabrizi, Wood, Duchen, Abramov (CR22) 2009; 33
Lutz, Exner, Fett, Schlehe, Kloos, Lammermann, Brunner, Kurz‐Drexler, Vogel, Reichert, Bouman, Vogt‐Weisenhorn, Wurst, Tatzelt, Haass, Winklhofer (CR49) 2009; 284
Periquet, Latouche, Lohmann, Rawal, De Michele, Ricard, Teive, Fraix, Vidailhet, Nicholl, Barone, Wood, Raskin, Deleuze, Agid, Durr, Brice (CR68) 2003; 126
Wilson, Sim, McLean, Giannandrea, Galea, Riseley, Stephenson, Fitzpatrick, Haas, Pope, Hogan, Gregg, Bromhead, Wargowski, Lawrence, James, Churchyard, Gao, Phelan, Gillies (CR95) 2014; 95
Bian, Song, Cheng, Dong, Wang, Huang, Sun, Wang, Ye, Zou (CR3) 2014; 96
Weihofen, Thomas, Ostaszewski, Cookson, Selkoe (CR94) 2009; 48
Ong, Freeley, Skubis‐Zegadlo, Fazil, Kelleher, Fresser, Baier, Verma, Long (CR62) 2014; 289
Jin, Mills (CR32) 2014; 127
Wandinger‐Ness, Zerial (CR90) 2014; 6
Kondapalli, Kazlauskaite, Zhang, Woodroof, Campbell, Gourlay, Burchell, Walden, Macartney, Deak, Knebel, Alessi, Muqit (CR43) 2012; 2
Velankar, Dana, Jacobsen, van Ginkel, Gane, Luo, Oldfield, O'Donovan, Martin, Kleywegt (CR87) 2013; 41
Palacios‐Moreno, Foltz, Guo, Stokes, Kuehn, George, Comb, Grimes (CR65) 2015; 11
Dzamko, Deak, Hentati, Reith, Prescott, Alessi, Nichols (CR17) 2010; 430
Yamano, Fogel, Wang, van der Bliek, Youle (CR97) 2014; 3
Ferrer‐Acosta, Rodriguez Cruz, Vaquer Adel, Vega (CR19) 2013; 20
Koyano, Okatsu, Kosako, Tamura, Go, Kimura, Kimura, Tsuchiya, Yoshihara, Hirokawa, Endo, Fon, Trempe, Saeki, Tanaka, Matsuda (CR45) 2014; 510
Sharma, D'Souza, Tyanova, Schaab, Wisniewski, Cox, Mann (CR79) 2014; 8
Bui, Gilady, Fitzsimmons, Benson, Lynes, Gesson, Alto, Strack, Scott, Simmen (CR5) 2010; 285
Pettersen, Goddard, Huang, Couch, Greenblatt, Meng, Ferrin (CR69) 2004; 25
Meissner, Lorenz, Weihofen, Selkoe, Lemberg (CR53) 2011; 117
Hattula, Furuhjelm, Arffman, Peranen (CR27) 2002; 13
Vizcaino, Cote, Csordas, Dianes, Fabregat, Foster, Griss, Alpi, Birim, Contell, O'Kelly, Schoenegger, Ovelleiro, Perez‐Riverol, Reisinger, Rios, Wang, Hermjakob (CR89) 2013; 41
Pickrell, Youle (CR70) 2015; 85
Dave, De Silva, Sheth, Ramboz, Beck, Quang, Switzer, Ahmad, Sunkin, Walker, Cui, Fisher, McCoy, Gamber, Ding, Goldberg, Benkovic, Haupt, Baptista, Fiske (CR14) 2014; 70
Khan, Valente, Bentivoglio, Wood, Albanese, Brooks, Piccini (CR41) 2002; 52
Alto, Soderling, Scott (CR1) 2002; 158
Narendra, Wang, Youle, Walker (CR58) 2013; 22
Rogerson, Sachdeva, Wang, Haq, Kazlauskaite, Hancock, Huguenin‐Dezot, Muqit, Fry, Bayliss, Chin (CR75) 2015; 11
Castor, Nair, Declais, Lachaud, Toth, Macartney, Lilley, Arthur, Rouse (CR7) 2013; 52
Nalls, Pankratz, Lill, Do, Hernandez, Saad, DeStefano, Kara, Bras, Sharma, Schulte, Keller, Arepalli, Letson, Edsall, Stefansson, Liu, Pliner, Lee, Cheng (CR55) 2014; 46
Pereira‐Leal, Seabra (CR67) 2000; 301
Deas, Plun‐Favreau, Gandhi, Desmond, Kjaer, Loh, Renton, Harvey, Whitworth, Martins, Abramov, Wood (CR15) 2011; 20
Reith, Bamborough, Jandu, Andreotti, Mensah, Dossang, Choi, Deng, Zhang, Alessi, Gray (CR73) 2012; 22
Hou, Hagemann, Schoebel, Blankenfeldt, Goody, Erdmann, Itzen (CR28) 2011; 30
Olsen, Vermeulen, Santamaria, Kumar, Miller, Jensen, Gnad, Cox, Jensen, Nigg, Brunak, Mann (CR61) 2010; 3
Saita, Shirane, Nakayama (CR76) 2013; 4
Clark, Dodson, Jiang, Cao, Huh, Seol, Yoo, Hay, Guo (CR10) 2006; 441
Samaranch, Lorenzo‐Betancor, Arbelo, Ferrer, Lorenzo, Irigoyen, Pastor, Marrero, Isla, Herrera‐Henriquez, Pastor (CR77) 2010; 133
Kane, Lazarou, Fogel, Li, Yamano, Sarraf, Banerjee, Youle (CR35) 2014; 205
Itier, Ibanez, Mena, Abbas, Cohen‐Salmon, Bohme, Laville, Pratt, Corti, Pradier, Ret, Joubert, Periquet, Araujo, Negroni, Casarejos, Canals, Solano, Serrano, Gallego (CR31) 2003; 12
Yang, Ouyang, Yang, Beal, McQuibban, Vogel, Lu (CR99) 2008; 105
Dill, Gierlinski, Hartlova, Gonzalez Arandilla, Guo, Clarke, Trost (CR16) 2015; 14
Campbell, Morrice (CR6) 2002; 13
Geisler, Holmstrom, Skujat, Fiesel, Rothfuss, Kahle, Springer (CR23) 2010; 12
Hutagalung, Novick (CR29) 2011; 91
Gomez‐Suaga, Rivero‐Rios, Fdez, Blanca Ramirez, Ferrer, Aiastui, Lopez De Munain, Hilfiker (CR25) 2014; 23
Narendra, Tanaka, Suen, Youle (CR56) 2008; 183
Yamano, Youle (CR98) 2013; 9
Park, Lee, Lee, Kim, Song, Kim, Bae, Kim, Shong, Kim, Chung (CR66) 2006; 441
Zhou, Di Palma, Preisinger, Peng, Polat, Heck, Mohammed (CR101) 2013; 12
Ng, Tang (CR59) 2008; 58
Shiba‐Fukushima, Imai, Yoshida, Ishihama, Kanao, Sato, Hattori (CR80) 2012; 2
Lopez, Duggan, Harte, Kibria (CR48) 2003; 4
Trost, Bridon, Desjardins, Thibault (CR84) 2010; 29
Frasa, Koessmeier, Ahmadian, Braga (CR21) 2012; 13
Trost, English, Lemieux, Courcelles, Desjardins, Thibault (CR85) 2009; 30
Okatsu, Oka, Iguchi, Imamura, Kosako, Tani, Kimura, Go, Koyano, Funayama, Shiba‐Fukushima, Sato, Shimizu, Fukunaga, Taniguchi, Komatsu, Hattori, Mihara, Tanaka, Matsuda (CR60) 2012; 3
Narendra, Jin, Tanaka, Suen, Gautier, Shen, Cookson, Youle (CR57) 2010; 8
Sugiura, McLelland, Fon, McBride (CR83) 2014; 33
Bleimling, Alexandrov, Goody, Itzen (CR4) 2009; 65
de Beer, Berka, Thornton, Laskowski (CR2) 2014; 42
McNulty, Annan (CR52) 2008; 7
Kazlauskaite, Kondapalli, Gourlay, Campbell, Ritorto, Hofmann, Alessi, Knebel, Trost, Muqit (CR37) 2014; 460
Sarraf, Raman, Guarani‐Pereira, Sowa, Huttlin, Gygi, Harper (CR78) 2013; 496
Kazlauskaite, Martinez‐Torres, Wilkie, Kumar, Peltier, Gonzalez, Johnson, Zhang, Hope, Peggie, Trost, van Aalten, Alessi, Prescott, Knebel, Walden, Muqit (CR38) 2015; 16
Kazlauskaite, Kelly, Johnson, Baillie, Hastie, Peggie, Macartney, Woodroof, Alessi, Pedrioli, Muqit (CR36) 2014; 4
Poole, Thomas, Andrews, McBride, Whitworth, Pallanck (CR71) 2008; 105
Wauer, Swatek, Wagstaff, Gladkova, Pruneda, Michel, Gersch, Johnson, Freund, Komander (CR93) 2015; 34
Ibanez, Lesage, Lohmann, Thobois, De, Borg, Agid, Durr, Brice (CR30) 2006; 129
Ritorto, Cook, Tyagi, Pedrioli, Trost (CR74) 2013; 12
Kitada, Asakawa, Hattori, Matsumine, Yamamura, Minoshima, Yokochi, Mizuno, Shimizu (CR42) 1998; 392
Kamp, Exner, Lutz, Wender, Hegermann, Brunner, Nuscher, Bartels, Giese, Beyer, Eimer, Winklhofer, Haass (CR34) 2010; 29
MacLeod, Rhinn, Kuwahara, Zolin, Di Paolo, McCabe, Marder, Honig, Clark, Small, Abeliovich (CR50) 2013; 77
Matsuda, Sato, Shiba, Okatsu, Saisho, Gautier, Sou, Saiki, Kawajiri, Sato, Kimura, Komatsu, Hattori, Tanaka (CR51) 2010; 189
Valente, Abou‐Sleiman, Caputo, Muqit, Harvey, Gispert, Ali, Del Turco, Bentivoglio, Healy, Albanese, Nussbaum, Gonzalez‐Maldonado, Deller, Salvi, Cortelli, Gilks, Latchman, Harvey, Dallapiccola (CR86) 2004; 304
Wang, Winter, Ashrafi, Schlehe, Wong, Selkoe, Rice, Steen, LaVoie, Schwarz (CR91) 2011; 147
Koyano, Matsuda (CR44) 2015; 1853
Sklan, Serrano, Einav, Pfeffer, Lambright, Glenn (CR82) 2007; 282
Ericsson, Hallberg, Detitta, Dekker, Nordlund (CR18) 2006; 357
Gitler, Bevis, Shorter, Strathearn, Hamamichi, Su, Caldwell, Caldwell, Rochet, McCaffery, Barlowe, Lindquist (CR24) 2008; 105
Kettenbach, Schweppe, Faherty, Pechenick, Pletnev, Gerber (CR40) 2011; 4
Larsen, Thingholm, Jensen, Roepstorff, Jorgensen (CR46) 2005; 4
Liu, Sawada, Lee, Yu, Silverio, Alapatt, Millan, Shen, Saxton, Kanao, Takahashi, Hattori, Imai, Lu (CR47) 2012; 8
Shiromizu, Adachi, Watanabe, Murakami, Kuga, Muraoka, Tomonaga (CR81) 2013; 12
Chen, Xie, Turkson, Zhuang (CR8) 2015; 35
Choi, Zhang, Deng, Hatcher, Patricelli, Zhao, Alessi, Gray (CR9) 2012; 3
Ordureau, Sarraf, Duda, Heo, Jedrychowski, Sviderskiy, Olszewski, Koerber, Xie, Beausoleil, Wells, Gygi, Schulman, Harper (CR63) 2014; 56
Powell, Forslund, Szklarczyk, Trachana, Roth, Huerta‐Cepas, Gabaldon, Rattei, Creevey, Kuhn, Jensen, von Mering, Bork (CR72) 2014; 42
2015; 35
2010; 12
2015; 34
2014; 70
2013; 4
2011; 117
2002; 52
2013; 22
2010; 107
2004; 25
2002; 158
2002; 13
2010; 189
2013; 288
2008; 7
2008; 105
2012; 13
2014; 23
2014b; 460
1998; 392
2009; 48
2008; 183
2013; 9
2003; 12
2013b; 125
2014; 127
2014a; 4
2014; 205
2014; 3
2010; 29
2013; 12
2015; 85
2013; 52
2011; 20
2008; 26
2010; 430
2003; 4
1999; 96
2009; 284
2014; 96
2010; 3
2003; 126
2010; 191
2014; 8
2014; 95
2006; 129
2012; 22
2014; 6
2014; 56
2006; 441
2010; 8
2014; 289
2015; 282
2009; 25
2015; 14
2015; 16
2009; 65
2011; 1
2007; 282
2015; 11
2013; 41
2008; 58
2011; 30
2010; 285
2014; 46
2015; 1853
2011; 4
2006; 357
2004; 304
2014; 510
2014; 42
2009; 33
2011; 147
2013a; 20
2012; 2
2009; 30
2012; 3
2013; 77
2013; 339
2000; 301
2011; 91
2005; 4
2010; 133
2013; 496
2014; 33
2012; 8
27115692 - Curr Biol. 2016 Apr 25;26(8):R332-4. doi: 10.1016/j.cub.2016.03.001.
References_xml – reference: Dill BD, Gierlinski M, Hartlova A, Gonzalez Arandilla A, Guo M, Clarke RG, Trost M (2015) Quantitative proteome analysis of temporally-resolved phagosomes following uptake via key phagocytic receptors. Mol Cell Proteomics 14: 1334-1349
– reference: Wilson GR, Sim JC, McLean C, Giannandrea M, Galea CA, Riseley JR, Stephenson SE, Fitzpatrick E, Haas SA, Pope K, Hogan KJ, Gregg RG, Bromhead CJ, Wargowski DS, Lawrence CH, James PA, Churchyard A, Gao Y, Phelan DG, Gillies G et al (2014) Mutations in RAB39B cause X-linked intellectual disability and early-onset Parkinson disease with alpha-synuclein pathology. Am J Hum Genet 95: 729-735
– reference: Palacios-Moreno J, Foltz L, Guo A, Stokes MP, Kuehn ED, George L, Comb M, Grimes ML (2015) Neuroblastoma Tyrosine Kinase Signaling Networks Involve FYN and LYN in Endosomes and Lipid Rafts. PLoS Comput Biol 11: e1004130
– reference: Ferrer-Acosta Y, Rodriguez-Cruz EN, Orange F, De Jesus-Cortes H, Madera B, Vaquer-Alicea J, Ballester J, Guinel MJ, Bloom GS, Vega IE (2013b) EFhd2 is a novel amyloid protein associated with pathological tau in Alzheimer's disease. J Neurochem 125: 921-931
– reference: Sklan EH, Serrano RL, Einav S, Pfeffer SR, Lambright DG, Glenn JS (2007) TBC1D20 is a Rab1 GTPase-activating protein that mediates hepatitis C virus replication. J Biol Chem 282: 36354-36361
– reference: Gitler AD, Bevis BJ, Shorter J, Strathearn KE, Hamamichi S, Su LJ, Caldwell KA, Caldwell GA, Rochet JC, McCaffery JM, Barlowe C, Lindquist S (2008) The Parkinson's disease protein alpha-synuclein disrupts cellular Rab homeostasis. Proc Natl Acad Sci USA 105: 145-150
– reference: Sharma K, D'Souza RC, Tyanova S, Schaab C, Wisniewski JR, Cox J, Mann M (2014) Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep 8: 1583-1594
– reference: Kazlauskaite A, Kondapalli C, Gourlay R, Campbell DG, Ritorto MS, Hofmann K, Alessi DR, Knebel A, Trost M, Muqit MM (2014b) Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65. Biochem J 460: 127-139
– reference: Wandinger-Ness A, Zerial M (2014) Rab proteins and the compartmentalization of the endosomal system. Cold Spring Harb Perspect Biol 6: a022616
– reference: Wang X, Winter D, Ashrafi G, Schlehe J, Wong YL, Selkoe D, Rice S, Steen J, LaVoie MJ, Schwarz TL (2011) PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell 147: 893-906
– reference: Saita S, Shirane M, Nakayama KI (2013) Selective escape of proteins from the mitochondria during mitophagy. Nat Commun 4: 1410
– reference: Hattula K, Furuhjelm J, Arffman A, Peranen J (2002) A Rab8-specific GDP/GTP exchange factor is involved in actin remodeling and polarized membrane transport. Mol Biol Cell 13: 3268-3280
– reference: Itier JM, Ibanez P, Mena MA, Abbas N, Cohen-Salmon C, Bohme GA, Laville M, Pratt J, Corti O, Pradier L, Ret G, Joubert C, Periquet M, Araujo F, Negroni J, Casarejos MJ, Canals S, Solano R, Serrano A, Gallego E et al (2003) Parkin gene inactivation alters behaviour and dopamine neurotransmission in the mouse. Hum Mol Genet 12: 2277-2291
– reference: Kazlauskaite A, Martinez-Torres RJ, Wilkie S, Kumar A, Peltier J, Gonzalez A, Johnson C, Zhang J, Hope AG, Peggie M, Trost M, van Aalten DM, Alessi DR, Prescott AR, Knebel A, Walden H, Muqit MM (2015) Binding to serine 65-phosphorylated ubiquitin primes Parkin for optimal PINK1-dependent phosphorylation and activation. EMBO Rep 16: 939-954
– reference: Periquet M, Latouche M, Lohmann E, Rawal N, De Michele G, Ricard S, Teive H, Fraix V, Vidailhet M, Nicholl D, Barone P, Wood NW, Raskin S, Deleuze JF, Agid Y, Durr A, Brice A, French Parkinson's Disease Genetics Study Group; European Consortium on Genetic Susceptibility in Parkinson's Disease (2003) Parkin mutations are frequent in patients with isolated early-onset parkinsonism. Brain 126: 1271-1278
– reference: Kazlauskaite A, Muqit MM (2015) PINK1 and Parkin - mitochondrial interplay between phosphorylation and ubiquitylation in Parkinson's disease. FEBS J 282: 215-223
– reference: Hutagalung AH, Novick PJ (2011) Role of Rab GTPases in membrane traffic and cell physiology. Physiol Rev 91: 119-149
– reference: Sugiura A, McLelland GL, Fon EA, McBride HM (2014) A new pathway for mitochondrial quality control: mitochondrial-derived vesicles. EMBO J 33: 2142-2156
– reference: Ostermeier C, Brunger AT (1999) Structural basis of Rab effector specificity: crystal structure of the small G protein Rab3A complexed with the effector domain of rabphilin-3A. Cell 96: 363-374
– reference: Trost M, Bridon G, Desjardins M, Thibault P (2010) Subcellular phosphoproteomics. Mass Spectrom Rev 29: 962-990
– reference: Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339: 819-823
– reference: Okatsu K, Oka T, Iguchi M, Imamura K, Kosako H, Tani N, Kimura M, Go E, Koyano F, Funayama M, Shiba-Fukushima K, Sato S, Shimizu H, Fukunaga Y, Taniguchi H, Komatsu M, Hattori N, Mihara K, Tanaka K, Matsuda N (2012) PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria. Nat Commun 3: 1016
– reference: Jin RU, Mills JC (2014) RAB26 coordinates lysosome traffic and mitochondrial localization. J Cell Sci 127: 1018-1032
– reference: Woodroof HI, Pogson JH, Begley M, Cantley LC, Deak M, Campbell DG, van Aalten DMF, Whitworth AJ, Alessi DR, Muqit MMK (2011) Discovery of catalytically active orthologues of the Parkinson's disease kinase PINK1: analysis of substrate specificity and impact of mutations. Open Biol 1: 110012
– reference: Kane LA, Lazarou M, Fogel AI, Li Y, Yamano K, Sarraf SA, Banerjee S, Youle RJ (2014) PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J Cell Biol 205: 143-153
– reference: Campbell DG, Morrice NA (2002) Identification of protein phosphorylation sites by a combination of mass spectrometry and solid phase Edman sequencing. J Biomol Tech 13: 119-130
– reference: Chen L, Xie Z, Turkson S, Zhuang X (2015) A53T human alpha-synuclein overexpression in transgenic mice induces pervasive mitochondria macroautophagy defects preceding dopamine neuron degeneration. J Neurosci 35: 890-905
– reference: Ong ST, Freeley M, Skubis-Zegadlo J, Fazil MH, Kelleher D, Fresser F, Baier G, Verma NK, Long A (2014) Phosphorylation of Rab5a protein by protein kinase C is crucial for T-cell migration. J Biol Chem 289: 19420-19434
– reference: Powell S, Forslund K, Szklarczyk D, Trachana K, Roth A, Huerta-Cepas J, Gabaldon T, Rattei T, Creevey C, Kuhn M, Jensen LJ, von Mering C, Bork P (2014) eggNOG v4.0: nested orthology inference across 3686 organisms. Nucleic Acids Res 42: D231-D239
– reference: Ritorto MS, Cook K, Tyagi K, Pedrioli PG, Trost M (2013) Hydrophilic strong anion exchange (hSAX) chromatography for highly orthogonal peptide separation of complex proteomes. J Proteome Res 12: 2449-2457
– reference: Valente EM, Abou-Sleiman PM, Caputo V, Muqit MM, Harvey K, Gispert S, Ali Z, Del Turco D, Bentivoglio AR, Healy DG, Albanese A, Nussbaum R, Gonzalez-Maldonado R, Deller T, Salvi S, Cortelli P, Gilks WP, Latchman DS, Harvey RJ, Dallapiccola B et al (2004) Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 304: 1158-1160
– reference: Matsuda N, Sato S, Shiba K, Okatsu K, Saisho K, Gautier CA, Sou YS, Saiki S, Kawajiri S, Sato F, Kimura M, Komatsu M, Hattori N, Tanaka K (2010) PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol 189: 211-221
– reference: Gandhi S, Wood-Kaczmar A, Yao Z, Plun-Favreau H, Deas E, Klupsch K, Downward J, Latchman DS, Tabrizi SJ, Wood NW, Duchen MR, Abramov AY (2009) PINK1-associated Parkinson's disease is caused by neuronal vulnerability to calcium-induced cell death. Mol Cell 33: 627-638
– reference: Kondapalli C, Kazlauskaite A, Zhang N, Woodroof HI, Campbell DG, Gourlay R, Burchell L, Walden H, Macartney TJ, Deak M, Knebel A, Alessi DR, Muqit MMK (2012) PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65. Open Biol 2: 120080
– reference: Kazlauskaite A, Kelly V, Johnson C, Baillie C, Hastie CJ, Peggie M, Macartney T, Woodroof HI, Alessi DR, Pedrioli PG, Muqit MM (2014a) Phosphorylation of Parkin at Serine65 is essential for activation: elaboration of a Miro1 substrate-based assay of Parkin E3 ligase activity. Open Biol 4: 130213
– reference: Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera-a visualization system for exploratory research and analysis. J Comput Chem 25: 1605-1612
– reference: Meissner C, Lorenz H, Weihofen A, Selkoe DJ, Lemberg MK (2011) The mitochondrial intramembrane protease PARL cleaves human Pink1 to regulate Pink1 trafficking. J Neurochem 117: 856-867
– reference: Hou X, Hagemann N, Schoebel S, Blankenfeldt W, Goody RS, Erdmann KS, Itzen A (2011) A structural basis for Lowe syndrome caused by mutations in the Rab-binding domain of OCRL1. EMBO J 30: 1659-1670
– reference: Vives-Bauza C, Zhou C, Huang Y, Cui M, de Vries RL, Kim J, May J, Tocilescu MA, Liu W, Ko HS, Magrane J, Moore DJ, Dawson VL, Grailhe R, Dawson TM, Li C, Tieu K, Przedborski S (2010) PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc Natl Acad Sci USA 107: 378-383
– reference: Deas E, Plun-Favreau H, Gandhi S, Desmond H, Kjaer S, Loh SH, Renton AE, Harvey RJ, Whitworth AJ, Martins LM, Abramov AY, Wood NW (2011) PINK1 cleavage at position A103 by the mitochondrial protease PARL. Hum Mol Genet 20: 867-879
– reference: de Beer TA, Berka K, Thornton JM, Laskowski RA (2014) PDBsum additions. Nucleic Acids Res 42: D292-D296
– reference: Lopez R, Duggan K, Harte N, Kibria A (2003) Public services from the European Bioinformatics Institute. Brief Bioinform 4: 332-340
– reference: Shiromizu T, Adachi J, Watanabe S, Murakami T, Kuga T, Muraoka S, Tomonaga T (2013) Identification of missing proteins in the neXtProt database and unregistered phosphopeptides in the PhosphoSitePlus database as part of the Chromosome-centric Human Proteome Project. J Proteome Res 12: 2414-2421
– reference: Shiba-Fukushima K, Imai Y, Yoshida S, Ishihama Y, Kanao T, Sato S, Hattori N (2012) PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy. Sci Rep 2: 1002
– reference: Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ (2009) Jalview Version 2-a multiple sequence alignment editor and analysis workbench. Bioinformatics 25: 1189-1191
– reference: Yamano K, Youle RJ (2013) PINK1 is degraded through the N-end rule pathway. Autophagy 9: 1758-1769
– reference: Vizcaino JA, Cote RG, Csordas A, Dianes JA, Fabregat A, Foster JM, Griss J, Alpi E, Birim M, Contell J, O'Kelly G, Schoenegger A, Ovelleiro D, Perez-Riverol Y, Reisinger F, Rios D, Wang R, Hermjakob H (2013) The PRoteomics IDEntifications (PRIDE) database and associated tools: status in 2013. Nucleic Acids Res 41: D1063-D1069
– reference: Choi HG, Zhang J, Deng X, Hatcher JM, Patricelli MP, Zhao Z, Alessi DR, Gray NS (2012) Brain Penetrant LRRK2 Inhibitor. ACS Med Chem Lett 3: 658-662
– reference: Zhou H, Di Palma S, Preisinger C, Peng M, Polat AN, Heck AJ, Mohammed S (2013) Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res 12: 260-271
– reference: Kettenbach AN, Schweppe DK, Faherty BK, Pechenick D, Pletnev AA, Gerber SA (2011) Quantitative phosphoproteomics identifies substrates and functional modules of Aurora and Polo-like kinase activities in mitotic cells. Sci Signal 4: rs5
– reference: Zhang L, Karsten P, Hamm S, Pogson JH, Muller-Rischart AK, Exner N, Haass C, Whitworth AJ, Winklhofer KF, Schulz JB, Voigt A (2013) TRAP1 rescues PINK1 loss-of-function phenotypes. Hum Mol Genet 22: 2829-2841
– reference: Trost M, English L, Lemieux S, Courcelles M, Desjardins M, Thibault P (2009) The phagosomal proteome in interferon-gamma-activated macrophages. Immunity 30: 143-154
– reference: Koyano F, Matsuda N (2015) Molecular mechanisms underlying PINK1 and Parkin catalyzed ubiquitylation of substrates on damaged mitochondria. Biochim Biophys Acta 1853: 2791-2796
– reference: Ibanez P, Lesage S, Lohmann E, Thobois S, De Michele G, Borg M, Agid Y, Durr A, Brice A, French Parkinson's Disease Genetics Study Group (2006) Mutational analysis of the PINK1 gene in early-onset parkinsonism in Europe and North Africa. Brain 129: 686-694
– reference: Rogerson DT, Sachdeva A, Wang K, Haq T, Kazlauskaite A, Hancock SM, Huguenin-Dezot N, Muqit MM, Fry AM, Bayliss R, Chin JW (2015) Efficient genetic encoding of phosphoserine and its nonhydrolyzable analog. Nat Chem Biol 11: 496-503
– reference: Ericsson UB, Hallberg BM, Detitta GT, Dekker N, Nordlund P (2006) Thermofluor-based high-throughput stability optimization of proteins for structural studies. Anal Biochem 357: 289-298
– reference: Bian Y, Song C, Cheng K, Dong M, Wang F, Huang J, Sun D, Wang L, Ye M, Zou H (2014) An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. J Proteomics 96: 253-262
– reference: Gomez-Suaga P, Rivero-Rios P, Fdez E, Blanca Ramirez M, Ferrer I, Aiastui A, Lopez De Munain A, Hilfiker S (2014) LRRK2 delays degradative receptor trafficking by impeding late endosomal budding through decreasing Rab7 activity. Hum Mol Genet 23: 6779-6796
– reference: Larsen MR, Thingholm TE, Jensen ON, Roepstorff P, Jorgensen TJ (2005) Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol Cell Proteomics 4: 873-886
– reference: Narendra DP, Jin SM, Tanaka A, Suen DF, Gautier CA, Shen J, Cookson MR, Youle RJ (2010) PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol 8: e1000298
– reference: Alto NM, Soderling J, Scott JD (2002) Rab32 is an A-kinase anchoring protein and participates in mitochondrial dynamics. J Cell Biol 158: 659-668
– reference: McNulty DE, Annan RS (2008) Hydrophilic interaction chromatography reduces the complexity of the phosphoproteome and improves global phosphopeptide isolation and detection. Mol Cell Proteomics 7: 971-980
– reference: Dzamko N, Deak M, Hentati F, Reith AD, Prescott AR, Alessi DR, Nichols RJ (2010) Inhibition of LRRK2 kinase activity leads to dephosphorylation of Ser(910)/Ser(935), disruption of 14-3-3 binding and altered cytoplasmic localization. Biochem J 430: 405-413
– reference: Kamp F, Exner N, Lutz AK, Wender N, Hegermann J, Brunner B, Nuscher B, Bartels T, Giese A, Beyer K, Eimer S, Winklhofer KF, Haass C (2010) Inhibition of mitochondrial fusion by alpha-synuclein is rescued by PINK1, Parkin and DJ-1. EMBO J 29: 3571-3589
– reference: Dave KD, De Silva S, Sheth NP, Ramboz S, Beck MJ, Quang C, Switzer RC 3rd, Ahmad S, Sunkin SM, Walker D, Cui X, Fisher DA, McCoy AM, Gamber K, Ding X, Goldberg MS, Benkovic SA, Haupt M, Baptista MA, Fiske BK et al (2014) Phenotypic characterization of recessive gene knockout rat models of Parkinson's disease. Neurobiol Dis 70: 190-203
– reference: Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26: 1367-1372
– reference: Liu S, Sawada T, Lee S, Yu W, Silverio G, Alapatt P, Millan I, Shen A, Saxton W, Kanao T, Takahashi R, Hattori N, Imai Y, Lu B (2012) Parkinson's disease-associated kinase PINK1 regulates Miro protein level and axonal transport of mitochondria. PLoS Genet 8: e1002537
– reference: Nalls MA, Pankratz N, Lill CM, Do CB, Hernandez DG, Saad M, DeStefano AL, Kara E, Bras J, Sharma M, Schulte C, Keller MF, Arepalli S, Letson C, Edsall C, Stefansson H, Liu X, Pliner H, Lee JH, Cheng R et al (2014) Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson's disease. Nat Genet 46: 989-993
– reference: Mistry J, Finn RD, Eddy SR, Bateman A, Punta M (2013) Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Res 41: e121
– reference: MacLeod DA, Rhinn H, Kuwahara T, Zolin A, Di Paolo G, McCabe BD, Marder KS, Honig LS, Clark LN, Small SA, Abeliovich A (2013) RAB7L1 interacts with LRRK2 to modify intraneuronal protein sorting and Parkinson's disease risk. Neuron 77: 425-439
– reference: Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392: 605-608
– reference: Lutz AK, Exner N, Fett ME, Schlehe JS, Kloos K, Lammermann K, Brunner B, Kurz-Drexler A, Vogel F, Reichert AS, Bouman L, Vogt-Weisenhorn D, Wurst W, Tatzelt J, Haass C, Winklhofer KF (2009) Loss of parkin or PINK1 function increases Drp1-dependent mitochondrial fragmentation. J Biol Chem 284: 22938-22951
– reference: Frasa MA, Koessmeier KT, Ahmadian MR, Braga VM (2012) Illuminating the functional and structural repertoire of human TBC/RABGAPs. Nat Rev Mol Cell Biol 13: 67-73
– reference: Olsen JV, Vermeulen M, Santamaria A, Kumar C, Miller ML, Jensen LJ, Gnad F, Cox J, Jensen TS, Nigg EA, Brunak S, Mann M (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3: ra3
– reference: Wauer T, Swatek KN, Wagstaff JL, Gladkova C, Pruneda JN, Michel MA, Gersch M, Johnson CM, Freund SM, Komander D (2015) Ubiquitin Ser65 phosphorylation affects ubiquitin structure, chain assembly and hydrolysis. EMBO J 34: 307-325
– reference: Jin SM, Lazarou M, Wang C, Kane LA, Narendra DP, Youle RJ (2010) Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J Cell Biol 191: 933-942
– reference: Reith AD, Bamborough P, Jandu K, Andreotti D, Mensah L, Dossang P, Choi HG, Deng X, Zhang J, Alessi DR, Gray NS (2012) GSK2578215A; a potent and highly selective 2-arylmethyloxy-5-substituent-N-arylbenzamide LRRK2 kinase inhibitor. Bioorg Med Chem Lett 22: 5625-5629
– reference: Khan NL, Valente EM, Bentivoglio AR, Wood NW, Albanese A, Brooks DJ, Piccini P (2002) Clinical and subclinical dopaminergic dysfunction in PARK6-linked parkinsonism: an 18F-dopa PET study. Ann Neurol 52: 849-853
– reference: Ng EL, Tang BL (2008) Rab GTPases and their roles in brain neurons and glia. Brain Res Rev 58: 236-246
– reference: Samaranch L, Lorenzo-Betancor O, Arbelo JM, Ferrer I, Lorenzo E, Irigoyen J, Pastor MA, Marrero C, Isla C, Herrera-Henriquez J, Pastor P (2010) PINK1-linked parkinsonism is associated with Lewy body pathology. Brain 133: 1128-1142
– reference: Koyano F, Okatsu K, Kosako H, Tamura Y, Go E, Kimura M, Kimura Y, Tsuchiya H, Yoshihara H, Hirokawa T, Endo T, Fon EA, Trempe JF, Saeki Y, Tanaka K, Matsuda N (2014) Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature 510: 162-166
– reference: Poole AC, Thomas RE, Andrews LA, McBride HM, Whitworth AJ, Pallanck LJ (2008) The PINK1/Parkin pathway regulates mitochondrial morphology. Proc Natl Acad Sci USA 105: 1638-1643
– reference: Castor D, Nair N, Declais AC, Lachaud C, Toth R, Macartney TJ, Lilley DM, Arthur JS, Rouse J (2013) Cooperative control of holliday junction resolution and DNA repair by the SLX1 and MUS81-EME1 nucleases. Mol Cell 52: 221-233
– reference: Park J, Lee SB, Lee S, Kim Y, Song S, Kim S, Bae E, Kim J, Shong M, Kim JM, Chung J (2006) Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 441: 1157-1161
– reference: Yang Y, Ouyang Y, Yang L, Beal MF, McQuibban A, Vogel H, Lu B (2008) Pink1 regulates mitochondrial dynamics through interaction with the fission/fusion machinery. Proc Natl Acad Sci USA 105: 7070-7075
– reference: Bleimling N, Alexandrov K, Goody R, Itzen A (2009) Chaperone-assisted production of active human Rab8A GTPase in Escherichia coli. Protein Expr Purif 65: 190-195
– reference: Bui M, Gilady SY, Fitzsimmons RE, Benson MD, Lynes EM, Gesson K, Alto NM, Strack S, Scott JD, Simmen T (2010) Rab32 modulates apoptosis onset and mitochondria-associated membrane (MAM) properties. J Biol Chem 285: 31590-31602
– reference: Ordureau A, Sarraf SA, Duda DM, Heo JM, Jedrychowski MP, Sviderskiy VO, Olszewski JL, Koerber JT, Xie T, Beausoleil SA, Wells JA, Gygi SP, Schulman BA, Harper JW (2014) Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis. Mol Cell 56: 360-375
– reference: Weihofen A, Thomas KJ, Ostaszewski BL, Cookson MR, Selkoe DJ (2009) Pink1 forms a multiprotein complex with Miro and Milton, linking Pink1 function to mitochondrial trafficking. Biochemistry 48: 2045-2052
– reference: Yamano K, Fogel AI, Wang C, van der Bliek AM, Youle RJ (2014) Mitochondrial Rab GAPs govern autophagosome biogenesis during mitophagy. eLife 3: e01612
– reference: Velankar S, Dana JM, Jacobsen J, van Ginkel G, Gane PJ, Luo J, Oldfield TJ, O'Donovan C, Martin MJ, Kleywegt GJ (2013) SIFTS: Structure Integration with Function, Taxonomy and Sequences resource. Nucleic Acids Res 41: D483-D489
– reference: Guo Z, Hou X, Goody RS, Itzen A (2013) Intermediates in the guanine nucleotide exchange reaction of Rab8 protein catalyzed by guanine nucleotide exchange factors Rabin8 and GRAB. J Biol Chem 288: 32466-32474
– reference: Narendra DP, Wang C, Youle RJ, Walker JE (2013) PINK1 rendered temperature sensitive by disease-associated and engineered mutations. Hum Mol Genet 22: 2572-2589
– reference: Narendra D, Tanaka A, Suen DF, Youle RJ (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183: 795-803
– reference: Sarraf SA, Raman M, Guarani-Pereira V, Sowa ME, Huttlin EL, Gygi SP, Harper JW (2013) Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature 496: 372-376
– reference: Clark IE, Dodson MW, Jiang C, Cao JH, Huh JR, Seol JH, Yoo SJ, Hay BA, Guo M (2006) Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441: 1162-1166
– reference: Ferrer-Acosta Y, Rodriguez Cruz EN, Vaquer Adel C, Vega IE (2013a) Functional and structural analysis of the conserved EFhd2 protein. Protein Pept Lett 20: 573-583
– reference: Geisler S, Holmstrom KM, Skujat D, Fiesel FC, Rothfuss OC, Kahle PJ, Springer W (2010) PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol 12: 119-131
– reference: Pickrell AM, Youle RJ (2015) The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease. Neuron 85: 257-273
– reference: Pereira-Leal JB, Seabra MC (2000) The mammalian Rab family of small GTPases: definition of family and subfamily sequence motifs suggests a mechanism for functional specificity in the Ras superfamily. J Mol Biol 301: 1077-1087
– reference: Cox J, Mann M (2012) 1D and 2D annotation enrichment: a statistical method integrating quantitative proteomics with complementary high-throughput data. BMC Bioinformatics 13(Suppl 16): S12
– volume: 13
  start-page: 67
  year: 2012
  end-page: 73
  ident: CR21
  article-title: Illuminating the functional and structural repertoire of human TBC/RABGAPs
  publication-title: Nat Rev Mol Cell Biol
– volume: 13
  start-page: 3268
  year: 2002
  end-page: 3280
  ident: CR27
  article-title: A Rab8‐specific GDP/GTP exchange factor is involved in actin remodeling and polarized membrane transport
  publication-title: Mol Biol Cell
– volume: 12
  start-page: 2414
  year: 2013
  end-page: 2421
  ident: CR81
  article-title: Identification of missing proteins in the neXtProt database and unregistered phosphopeptides in the PhosphoSitePlus database as part of the Chromosome‐centric Human Proteome Project
  publication-title: J Proteome Res
– volume: 126
  start-page: 1271
  year: 2003
  end-page: 1278
  ident: CR68
  article-title: Parkin mutations are frequent in patients with isolated early‐onset parkinsonism
  publication-title: Brain
– volume: 22
  start-page: 5625
  year: 2012
  end-page: 5629
  ident: CR73
  article-title: GSK2578215A; a potent and highly selective 2‐arylmethyloxy‐5‐substituent‐N‐arylbenzamide LRRK2 kinase inhibitor
  publication-title: Bioorg Med Chem Lett
– volume: 29
  start-page: 962
  year: 2010
  end-page: 990
  ident: CR84
  article-title: Subcellular phosphoproteomics
  publication-title: Mass Spectrom Rev
– volume: 65
  start-page: 190
  year: 2009
  end-page: 195
  ident: CR4
  article-title: Chaperone‐assisted production of active human Rab8A GTPase in Escherichia coli
  publication-title: Protein Expr Purif
– volume: 392
  start-page: 605
  year: 1998
  end-page: 608
  ident: CR42
  article-title: Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism
  publication-title: Nature
– volume: 4
  start-page: 1410
  year: 2013
  ident: CR76
  article-title: Selective escape of proteins from the mitochondria during mitophagy
  publication-title: Nat Commun
– volume: 48
  start-page: 2045
  year: 2009
  end-page: 2052
  ident: CR94
  article-title: Pink1 forms a multiprotein complex with Miro and Milton, linking Pink1 function to mitochondrial trafficking
  publication-title: Biochemistry
– volume: 52
  start-page: 849
  year: 2002
  end-page: 853
  ident: CR41
  article-title: Clinical and subclinical dopaminergic dysfunction in PARK6‐linked parkinsonism: an 18F‐dopa PET study
  publication-title: Ann Neurol
– volume: 96
  start-page: 363
  year: 1999
  end-page: 374
  ident: CR64
  article-title: Structural basis of Rab effector specificity: crystal structure of the small G protein Rab3A complexed with the effector domain of rabphilin‐3A
  publication-title: Cell
– volume: 22
  start-page: 2829
  year: 2013
  end-page: 2841
  ident: CR100
  article-title: TRAP1 rescues PINK1 loss‐of‐function phenotypes
  publication-title: Hum Mol Genet
– volume: 4
  start-page: 130213
  year: 2014
  ident: CR36
  article-title: Phosphorylation of Parkin at Serine65 is essential for activation: elaboration of a Miro1 substrate‐based assay of Parkin E3 ligase activity
  publication-title: Open Biol
– volume: 12
  start-page: 260
  year: 2013
  end-page: 271
  ident: CR101
  article-title: Toward a comprehensive characterization of a human cancer cell phosphoproteome
  publication-title: J Proteome Res
– volume: 96
  start-page: 253
  year: 2014
  end-page: 262
  ident: CR3
  article-title: An enzyme assisted RP‐RPLC approach for in‐depth analysis of human liver phosphoproteome
  publication-title: J Proteomics
– volume: 20
  start-page: 573
  year: 2013
  end-page: 583
  ident: CR19
  article-title: Functional and structural analysis of the conserved EFhd2 protein
  publication-title: Protein Pept Lett
– volume: 357
  start-page: 289
  year: 2006
  end-page: 298
  ident: CR18
  article-title: Thermofluor‐based high‐throughput stability optimization of proteins for structural studies
  publication-title: Anal Biochem
– volume: 12
  start-page: 2449
  year: 2013
  end-page: 2457
  ident: CR74
  article-title: Hydrophilic strong anion exchange (hSAX) chromatography for highly orthogonal peptide separation of complex proteomes
  publication-title: J Proteome Res
– volume: 107
  start-page: 378
  year: 2010
  end-page: 383
  ident: CR88
  article-title: PINK1‐dependent recruitment of Parkin to mitochondria in mitophagy
  publication-title: Proc Natl Acad Sci USA
– volume: 4
  start-page: rs5
  year: 2011
  ident: CR40
  article-title: Quantitative phosphoproteomics identifies substrates and functional modules of Aurora and Polo‐like kinase activities in mitotic cells
  publication-title: Sci Signal
– volume: 191
  start-page: 933
  year: 2010
  end-page: 942
  ident: CR33
  article-title: Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL
  publication-title: J Cell Biol
– volume: 3
  start-page: ra3
  year: 2010
  ident: CR61
  article-title: Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis
  publication-title: Sci Signal
– volume: 41
  start-page: D1063
  year: 2013
  end-page: D1069
  ident: CR89
  article-title: The PRoteomics IDEntifications (PRIDE) database and associated tools: status in 2013
  publication-title: Nucleic Acids Res
– volume: 105
  start-page: 145
  year: 2008
  end-page: 150
  ident: CR24
  article-title: The Parkinson's disease protein alpha‐synuclein disrupts cellular Rab homeostasis
  publication-title: Proc Natl Acad Sci USA
– volume: 1
  start-page: 110012
  year: 2011
  ident: CR96
  article-title: Discovery of catalytically active orthologues of the Parkinson's disease kinase PINK1: analysis of substrate specificity and impact of mutations
  publication-title: Open Biol
– volume: 125
  start-page: 921
  year: 2013
  end-page: 931
  ident: CR20
  article-title: EFhd2 is a novel amyloid protein associated with pathological tau in Alzheimer's disease
  publication-title: J Neurochem
– volume: 301
  start-page: 1077
  year: 2000
  end-page: 1087
  ident: CR67
  article-title: The mammalian Rab family of small GTPases: definition of family and subfamily sequence motifs suggests a mechanism for functional specificity in the Ras superfamily
  publication-title: J Mol Biol
– volume: 34
  start-page: 307
  year: 2015
  end-page: 325
  ident: CR93
  article-title: Ubiquitin Ser65 phosphorylation affects ubiquitin structure, chain assembly and hydrolysis
  publication-title: EMBO J
– volume: 20
  start-page: 867
  year: 2011
  end-page: 879
  ident: CR15
  article-title: PINK1 cleavage at position A103 by the mitochondrial protease PARL
  publication-title: Hum Mol Genet
– volume: 33
  start-page: 627
  year: 2009
  end-page: 638
  ident: CR22
  article-title: PINK1‐associated Parkinson's disease is caused by neuronal vulnerability to calcium‐induced cell death
  publication-title: Mol Cell
– volume: 430
  start-page: 405
  year: 2010
  end-page: 413
  ident: CR17
  article-title: Inhibition of LRRK2 kinase activity leads to dephosphorylation of Ser(910)/Ser(935), disruption of 14‐3‐3 binding and altered cytoplasmic localization
  publication-title: Biochem J
– volume: 30
  start-page: 143
  year: 2009
  end-page: 154
  ident: CR85
  article-title: The phagosomal proteome in interferon‐gamma‐activated macrophages
  publication-title: Immunity
– volume: 117
  start-page: 856
  year: 2011
  end-page: 867
  ident: CR53
  article-title: The mitochondrial intramembrane protease PARL cleaves human Pink1 to regulate Pink1 trafficking
  publication-title: J Neurochem
– volume: 441
  start-page: 1162
  year: 2006
  end-page: 1166
  ident: CR10
  article-title: Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin
  publication-title: Nature
– volume: 12
  start-page: 119
  year: 2010
  end-page: 131
  ident: CR23
  article-title: PINK1/Parkin‐mediated mitophagy is dependent on VDAC1 and p62/SQSTM1
  publication-title: Nat Cell Biol
– volume: 496
  start-page: 372
  year: 2013
  end-page: 376
  ident: CR78
  article-title: Landscape of the PARKIN‐dependent ubiquitylome in response to mitochondrial depolarization
  publication-title: Nature
– volume: 3
  start-page: 658
  year: 2012
  end-page: 662
  ident: CR9
  article-title: Brain Penetrant LRRK2 Inhibitor
  publication-title: ACS Med Chem Lett
– volume: 42
  start-page: D292
  year: 2014
  end-page: D296
  ident: CR2
  article-title: PDBsum additions
  publication-title: Nucleic Acids Res
– volume: 12
  start-page: 2277
  year: 2003
  end-page: 2291
  ident: CR31
  article-title: Parkin gene inactivation alters behaviour and dopamine neurotransmission in the mouse
  publication-title: Hum Mol Genet
– volume: 33
  start-page: 2142
  year: 2014
  end-page: 2156
  ident: CR83
  article-title: A new pathway for mitochondrial quality control: mitochondrial‐derived vesicles
  publication-title: EMBO J
– volume: 205
  start-page: 143
  year: 2014
  end-page: 153
  ident: CR35
  article-title: PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity
  publication-title: J Cell Biol
– volume: 13
  start-page: 119
  year: 2002
  end-page: 130
  ident: CR6
  article-title: Identification of protein phosphorylation sites by a combination of mass spectrometry and solid phase Edman sequencing
  publication-title: J Biomol Tech
– volume: 25
  start-page: 1189
  year: 2009
  end-page: 1191
  ident: CR92
  article-title: Jalview Version 2–a multiple sequence alignment editor and analysis workbench
  publication-title: Bioinformatics
– volume: 127
  start-page: 1018
  year: 2014
  end-page: 1032
  ident: CR32
  article-title: RAB26 coordinates lysosome traffic and mitochondrial localization
  publication-title: J Cell Sci
– volume: 14
  start-page: 1334
  year: 2015
  end-page: 1349
  ident: CR16
  article-title: Quantitative proteome analysis of temporally‐resolved phagosomes following uptake via key phagocytic receptors
  publication-title: Mol Cell Proteomics
– volume: 11
  start-page: 496
  year: 2015
  end-page: 503
  ident: CR75
  article-title: Efficient genetic encoding of phosphoserine and its nonhydrolyzable analog
  publication-title: Nat Chem Biol
– volume: 41
  start-page: D483
  year: 2013
  end-page: D489
  ident: CR87
  article-title: SIFTS: Structure Integration with Function, Taxonomy and Sequences resource
  publication-title: Nucleic Acids Res
– volume: 7
  start-page: 971
  year: 2008
  end-page: 980
  ident: CR52
  article-title: Hydrophilic interaction chromatography reduces the complexity of the phosphoproteome and improves global phosphopeptide isolation and detection
  publication-title: Mol Cell Proteomics
– volume: 23
  start-page: 6779
  year: 2014
  end-page: 6796
  ident: CR25
  article-title: LRRK2 delays degradative receptor trafficking by impeding late endosomal budding through decreasing Rab7 activity
  publication-title: Hum Mol Genet
– volume: 105
  start-page: 7070
  year: 2008
  end-page: 7075
  ident: CR99
  article-title: Pink1 regulates mitochondrial dynamics through interaction with the fission/fusion machinery
  publication-title: Proc Natl Acad Sci USA
– volume: 288
  start-page: 32466
  year: 2013
  end-page: 32474
  ident: CR26
  article-title: Intermediates in the guanine nucleotide exchange reaction of Rab8 protein catalyzed by guanine nucleotide exchange factors Rabin8 and GRAB
  publication-title: J Biol Chem
– volume: 25
  start-page: 1605
  year: 2004
  end-page: 1612
  ident: CR69
  article-title: UCSF Chimera–a visualization system for exploratory research and analysis
  publication-title: J Comput Chem
– volume: 4
  start-page: 873
  year: 2005
  end-page: 886
  ident: CR46
  article-title: Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns
  publication-title: Mol Cell Proteomics
– volume: 2
  start-page: 1002
  year: 2012
  ident: CR80
  article-title: PINK1‐mediated phosphorylation of the Parkin ubiquitin‐like domain primes mitochondrial translocation of Parkin and regulates mitophagy
  publication-title: Sci Rep
– volume: 3
  start-page: e01612
  year: 2014
  ident: CR97
  article-title: Mitochondrial Rab GAPs govern autophagosome biogenesis during mitophagy
  publication-title: eLife
– volume: 339
  start-page: 819
  year: 2013
  end-page: 823
  ident: CR11
  article-title: Multiplex genome engineering using CRISPR/Cas systems
  publication-title: Science
– volume: 58
  start-page: 236
  year: 2008
  end-page: 246
  ident: CR59
  article-title: Rab GTPases and their roles in brain neurons and glia
  publication-title: Brain Res Rev
– volume: 133
  start-page: 1128
  year: 2010
  end-page: 1142
  ident: CR77
  article-title: PINK1‐linked parkinsonism is associated with Lewy body pathology
  publication-title: Brain
– volume: 1853
  start-page: 2791
  year: 2015
  end-page: 2796
  ident: CR44
  article-title: Molecular mechanisms underlying PINK1 and Parkin catalyzed ubiquitylation of substrates on damaged mitochondria
  publication-title: Biochim Biophys Acta
– volume: 183
  start-page: 795
  year: 2008
  end-page: 803
  ident: CR56
  article-title: Parkin is recruited selectively to impaired mitochondria and promotes their autophagy
  publication-title: J Cell Biol
– volume: 26
  start-page: 1367
  year: 2008
  end-page: 1372
  ident: CR12
  article-title: MaxQuant enables high peptide identification rates, individualized p.p.b.‐range mass accuracies and proteome‐wide protein quantification
  publication-title: Nat Biotechnol
– volume: 9
  start-page: 1758
  year: 2013
  end-page: 1769
  ident: CR98
  article-title: PINK1 is degraded through the N‐end rule pathway
  publication-title: Autophagy
– volume: 4
  start-page: 332
  year: 2003
  end-page: 340
  ident: CR48
  article-title: Public services from the European Bioinformatics Institute
  publication-title: Brief Bioinform
– volume: 105
  start-page: 1638
  year: 2008
  end-page: 1643
  ident: CR71
  article-title: The PINK1/Parkin pathway regulates mitochondrial morphology
  publication-title: Proc Natl Acad Sci USA
– volume: 460
  start-page: 127
  year: 2014
  end-page: 139
  ident: CR37
  article-title: Parkin is activated by PINK1‐dependent phosphorylation of ubiquitin at Ser65
  publication-title: Biochem J
– volume: 8
  start-page: 1583
  year: 2014
  end-page: 1594
  ident: CR79
  article-title: Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr‐based signaling
  publication-title: Cell Rep
– volume: 441
  start-page: 1157
  year: 2006
  end-page: 1161
  ident: CR66
  article-title: Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin
  publication-title: Nature
– volume: 510
  start-page: 162
  year: 2014
  end-page: 166
  ident: CR45
  article-title: Ubiquitin is phosphorylated by PINK1 to activate parkin
  publication-title: Nature
– volume: 282
  start-page: 215
  year: 2015
  end-page: 223
  ident: CR39
  article-title: PINK1 and Parkin ‐ mitochondrial interplay between phosphorylation and ubiquitylation in Parkinson's disease
  publication-title: FEBS J
– volume: 11
  start-page: e1004130
  year: 2015
  ident: CR65
  article-title: Neuroblastoma Tyrosine Kinase Signaling Networks Involve FYN and LYN in Endosomes and Lipid Rafts
  publication-title: PLoS Comput Biol
– volume: 282
  start-page: 36354
  year: 2007
  end-page: 36361
  ident: CR82
  article-title: TBC1D20 is a Rab1 GTPase‐activating protein that mediates hepatitis C virus replication
  publication-title: J Biol Chem
– volume: 46
  start-page: 989
  year: 2014
  end-page: 993
  ident: CR55
  article-title: Large‐scale meta‐analysis of genome‐wide association data identifies six new risk loci for Parkinson's disease
  publication-title: Nat Genet
– volume: 91
  start-page: 119
  year: 2011
  end-page: 149
  ident: CR29
  article-title: Role of Rab GTPases in membrane traffic and cell physiology
  publication-title: Physiol Rev
– volume: 16
  start-page: 939
  year: 2015
  end-page: 954
  ident: CR38
  article-title: Binding to serine 65‐phosphorylated ubiquitin primes Parkin for optimal PINK1‐dependent phosphorylation and activation
  publication-title: EMBO Rep
– volume: 8
  start-page: e1002537
  year: 2012
  ident: CR47
  article-title: Parkinson's disease‐associated kinase PINK1 regulates Miro protein level and axonal transport of mitochondria
  publication-title: PLoS Genet
– volume: 52
  start-page: 221
  year: 2013
  end-page: 233
  ident: CR7
  article-title: Cooperative control of holliday junction resolution and DNA repair by the SLX1 and MUS81‐EME1 nucleases
  publication-title: Mol Cell
– volume: 77
  start-page: 425
  year: 2013
  end-page: 439
  ident: CR50
  article-title: RAB7L1 interacts with LRRK2 to modify intraneuronal protein sorting and Parkinson's disease risk
  publication-title: Neuron
– volume: 304
  start-page: 1158
  year: 2004
  end-page: 1160
  ident: CR86
  article-title: Hereditary early‐onset Parkinson's disease caused by mutations in PINK1
  publication-title: Science
– volume: 56
  start-page: 360
  year: 2014
  end-page: 375
  ident: CR63
  article-title: Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis
  publication-title: Mol Cell
– volume: 41
  start-page: e121
  year: 2013
  ident: CR54
  article-title: Challenges in homology search: HMMER3 and convergent evolution of coiled‐coil regions
  publication-title: Nucleic Acids Res
– volume: 147
  start-page: 893
  year: 2011
  end-page: 906
  ident: CR91
  article-title: PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility
  publication-title: Cell
– volume: 8
  start-page: e1000298
  year: 2010
  ident: CR57
  article-title: PINK1 is selectively stabilized on impaired mitochondria to activate Parkin
  publication-title: PLoS Biol
– volume: 70
  start-page: 190
  year: 2014
  end-page: 203
  ident: CR14
  article-title: Phenotypic characterization of recessive gene knockout rat models of Parkinson's disease
  publication-title: Neurobiol Dis
– volume: 42
  start-page: D231
  year: 2014
  end-page: D239
  ident: CR72
  article-title: eggNOG v4.0: nested orthology inference across 3686 organisms
  publication-title: Nucleic Acids Res
– volume: 95
  start-page: 729
  year: 2014
  end-page: 735
  ident: CR95
  article-title: Mutations in RAB39B cause X‐linked intellectual disability and early‐onset Parkinson disease with alpha‐synuclein pathology
  publication-title: Am J Hum Genet
– volume: 158
  start-page: 659
  year: 2002
  end-page: 668
  ident: CR1
  article-title: Rab32 is an A‐kinase anchoring protein and participates in mitochondrial dynamics
  publication-title: J Cell Biol
– volume: 284
  start-page: 22938
  year: 2009
  end-page: 22951
  ident: CR49
  article-title: Loss of parkin or PINK1 function increases Drp1‐dependent mitochondrial fragmentation
  publication-title: J Biol Chem
– volume: 13
  start-page: S12
  issue: Suppl 16
  year: 2012
  ident: CR13
  article-title: 1D and 2D annotation enrichment: a statistical method integrating quantitative proteomics with complementary high‐throughput data
  publication-title: BMC Bioinformatics
– volume: 3
  start-page: 1016
  year: 2012
  ident: CR60
  article-title: PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria
  publication-title: Nat Commun
– volume: 289
  start-page: 19420
  year: 2014
  end-page: 19434
  ident: CR62
  article-title: Phosphorylation of Rab5a protein by protein kinase C is crucial for T‐cell migration
  publication-title: J Biol Chem
– volume: 2
  start-page: 120080
  year: 2012
  ident: CR43
  article-title: PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65
  publication-title: Open Biol
– volume: 189
  start-page: 211
  year: 2010
  end-page: 221
  ident: CR51
  article-title: PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy
  publication-title: J Cell Biol
– volume: 22
  start-page: 2572
  year: 2013
  end-page: 2589
  ident: CR58
  article-title: PINK1 rendered temperature sensitive by disease‐associated and engineered mutations
  publication-title: Hum Mol Genet
– volume: 30
  start-page: 1659
  year: 2011
  end-page: 1670
  ident: CR28
  article-title: A structural basis for Lowe syndrome caused by mutations in the Rab‐binding domain of OCRL1
  publication-title: EMBO J
– volume: 29
  start-page: 3571
  year: 2010
  end-page: 3589
  ident: CR34
  article-title: Inhibition of mitochondrial fusion by alpha‐synuclein is rescued by PINK1, Parkin and DJ‐1
  publication-title: EMBO J
– volume: 6
  start-page: a022616
  year: 2014
  ident: CR90
  article-title: Rab proteins and the compartmentalization of the endosomal system
  publication-title: Cold Spring Harb Perspect Biol
– volume: 129
  start-page: 686
  year: 2006
  end-page: 694
  ident: CR30
  article-title: Mutational analysis of the PINK1 gene in early‐onset parkinsonism in Europe and North Africa
  publication-title: Brain
– volume: 85
  start-page: 257
  year: 2015
  end-page: 273
  ident: CR70
  article-title: The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease
  publication-title: Neuron
– volume: 35
  start-page: 890
  year: 2015
  end-page: 905
  ident: CR8
  article-title: A53T human alpha‐synuclein overexpression in transgenic mice induces pervasive mitochondria macroautophagy defects preceding dopamine neuron degeneration
  publication-title: J Neurosci
– volume: 285
  start-page: 31590
  year: 2010
  end-page: 31602
  ident: CR5
  article-title: Rab32 modulates apoptosis onset and mitochondria‐associated membrane (MAM) properties
  publication-title: J Biol Chem
– volume: 35
  start-page: 890
  year: 2015
  end-page: 905
  article-title: A53T human alpha‐synuclein overexpression in transgenic mice induces pervasive mitochondria macroautophagy defects preceding dopamine neuron degeneration
  publication-title: J Neurosci
– volume: 56
  start-page: 360
  year: 2014
  end-page: 375
  article-title: Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis
  publication-title: Mol Cell
– volume: 22
  start-page: 2829
  year: 2013
  end-page: 2841
  article-title: TRAP1 rescues PINK1 loss‐of‐function phenotypes
  publication-title: Hum Mol Genet
– volume: 20
  start-page: 867
  year: 2011
  end-page: 879
  article-title: PINK1 cleavage at position A103 by the mitochondrial protease PARL
  publication-title: Hum Mol Genet
– volume: 191
  start-page: 933
  year: 2010
  end-page: 942
  article-title: Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL
  publication-title: J Cell Biol
– volume: 6
  start-page: a022616
  year: 2014
  article-title: Rab proteins and the compartmentalization of the endosomal system
  publication-title: Cold Spring Harb Perspect Biol
– volume: 133
  start-page: 1128
  year: 2010
  end-page: 1142
  article-title: PINK1‐linked parkinsonism is associated with Lewy body pathology
  publication-title: Brain
– volume: 510
  start-page: 162
  year: 2014
  end-page: 166
  article-title: Ubiquitin is phosphorylated by PINK1 to activate parkin
  publication-title: Nature
– volume: 77
  start-page: 425
  year: 2013
  end-page: 439
  article-title: RAB7L1 interacts with LRRK2 to modify intraneuronal protein sorting and Parkinson's disease risk
  publication-title: Neuron
– volume: 105
  start-page: 7070
  year: 2008
  end-page: 7075
  article-title: Pink1 regulates mitochondrial dynamics through interaction with the fission/fusion machinery
  publication-title: Proc Natl Acad Sci USA
– volume: 3
  start-page: 1016
  year: 2012
  article-title: PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria
  publication-title: Nat Commun
– volume: 96
  start-page: 253
  year: 2014
  end-page: 262
  article-title: An enzyme assisted RP‐RPLC approach for in‐depth analysis of human liver phosphoproteome
  publication-title: J Proteomics
– volume: 12
  start-page: 2449
  year: 2013
  end-page: 2457
  article-title: Hydrophilic strong anion exchange (hSAX) chromatography for highly orthogonal peptide separation of complex proteomes
  publication-title: J Proteome Res
– volume: 205
  start-page: 143
  year: 2014
  end-page: 153
  article-title: PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity
  publication-title: J Cell Biol
– volume: 392
  start-page: 605
  year: 1998
  end-page: 608
  article-title: Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism
  publication-title: Nature
– volume: 107
  start-page: 378
  year: 2010
  end-page: 383
  article-title: PINK1‐dependent recruitment of Parkin to mitochondria in mitophagy
  publication-title: Proc Natl Acad Sci USA
– volume: 126
  start-page: 1271
  year: 2003
  end-page: 1278
  article-title: Parkin mutations are frequent in patients with isolated early‐onset parkinsonism
  publication-title: Brain
– volume: 65
  start-page: 190
  year: 2009
  end-page: 195
  article-title: Chaperone‐assisted production of active human Rab8A GTPase in Escherichia coli
  publication-title: Protein Expr Purif
– volume: 95
  start-page: 729
  year: 2014
  end-page: 735
  article-title: Mutations in RAB39B cause X‐linked intellectual disability and early‐onset Parkinson disease with alpha‐synuclein pathology
  publication-title: Am J Hum Genet
– volume: 339
  start-page: 819
  year: 2013
  end-page: 823
  article-title: Multiplex genome engineering using CRISPR/Cas systems
  publication-title: Science
– volume: 158
  start-page: 659
  year: 2002
  end-page: 668
  article-title: Rab32 is an A‐kinase anchoring protein and participates in mitochondrial dynamics
  publication-title: J Cell Biol
– volume: 1853
  start-page: 2791
  year: 2015
  end-page: 2796
  article-title: Molecular mechanisms underlying PINK1 and Parkin catalyzed ubiquitylation of substrates on damaged mitochondria
  publication-title: Biochim Biophys Acta
– volume: 496
  start-page: 372
  year: 2013
  end-page: 376
  article-title: Landscape of the PARKIN‐dependent ubiquitylome in response to mitochondrial depolarization
  publication-title: Nature
– volume: 22
  start-page: 2572
  year: 2013
  end-page: 2589
  article-title: PINK1 rendered temperature sensitive by disease‐associated and engineered mutations
  publication-title: Hum Mol Genet
– volume: 1
  start-page: 110012
  year: 2011
  article-title: Discovery of catalytically active orthologues of the Parkinson's disease kinase PINK1: analysis of substrate specificity and impact of mutations
  publication-title: Open Biol
– volume: 13
  start-page: S12
  issue: Suppl 16
  year: 2012
  article-title: 1D and 2D annotation enrichment: a statistical method integrating quantitative proteomics with complementary high‐throughput data
  publication-title: BMC Bioinformatics
– volume: 29
  start-page: 3571
  year: 2010
  end-page: 3589
  article-title: Inhibition of mitochondrial fusion by alpha‐synuclein is rescued by PINK1, Parkin and DJ‐1
  publication-title: EMBO J
– volume: 4
  start-page: 1410
  year: 2013
  article-title: Selective escape of proteins from the mitochondria during mitophagy
  publication-title: Nat Commun
– volume: 16
  start-page: 939
  year: 2015
  end-page: 954
  article-title: Binding to serine 65‐phosphorylated ubiquitin primes Parkin for optimal PINK1‐dependent phosphorylation and activation
  publication-title: EMBO Rep
– volume: 11
  start-page: 496
  year: 2015
  end-page: 503
  article-title: Efficient genetic encoding of phosphoserine and its nonhydrolyzable analog
  publication-title: Nat Chem Biol
– volume: 441
  start-page: 1162
  year: 2006
  end-page: 1166
  article-title: Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin
  publication-title: Nature
– volume: 282
  start-page: 36354
  year: 2007
  end-page: 36361
  article-title: TBC1D20 is a Rab1 GTPase‐activating protein that mediates hepatitis C virus replication
  publication-title: J Biol Chem
– volume: 129
  start-page: 686
  year: 2006
  end-page: 694
  article-title: Mutational analysis of the PINK1 gene in early‐onset parkinsonism in Europe and North Africa
  publication-title: Brain
– volume: 42
  start-page: D292
  year: 2014
  end-page: D296
  article-title: PDBsum additions
  publication-title: Nucleic Acids Res
– volume: 183
  start-page: 795
  year: 2008
  end-page: 803
  article-title: Parkin is recruited selectively to impaired mitochondria and promotes their autophagy
  publication-title: J Cell Biol
– volume: 3
  start-page: 658
  year: 2012
  end-page: 662
  article-title: Brain Penetrant LRRK2 Inhibitor
  publication-title: ACS Med Chem Lett
– volume: 12
  start-page: 2414
  year: 2013
  end-page: 2421
  article-title: Identification of missing proteins in the neXtProt database and unregistered phosphopeptides in the PhosphoSitePlus database as part of the Chromosome‐centric Human Proteome Project
  publication-title: J Proteome Res
– volume: 70
  start-page: 190
  year: 2014
  end-page: 203
  article-title: Phenotypic characterization of recessive gene knockout rat models of Parkinson's disease
  publication-title: Neurobiol Dis
– volume: 189
  start-page: 211
  year: 2010
  end-page: 221
  article-title: PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy
  publication-title: J Cell Biol
– volume: 288
  start-page: 32466
  year: 2013
  end-page: 32474
  article-title: Intermediates in the guanine nucleotide exchange reaction of Rab8 protein catalyzed by guanine nucleotide exchange factors Rabin8 and GRAB
  publication-title: J Biol Chem
– volume: 52
  start-page: 849
  year: 2002
  end-page: 853
  article-title: Clinical and subclinical dopaminergic dysfunction in PARK6‐linked parkinsonism: an 18F‐dopa PET study
  publication-title: Ann Neurol
– volume: 4
  start-page: rs5
  year: 2011
  article-title: Quantitative phosphoproteomics identifies substrates and functional modules of Aurora and Polo‐like kinase activities in mitotic cells
  publication-title: Sci Signal
– volume: 30
  start-page: 1659
  year: 2011
  end-page: 1670
  article-title: A structural basis for Lowe syndrome caused by mutations in the Rab‐binding domain of OCRL1
  publication-title: EMBO J
– volume: 91
  start-page: 119
  year: 2011
  end-page: 149
  article-title: Role of Rab GTPases in membrane traffic and cell physiology
  publication-title: Physiol Rev
– volume: 9
  start-page: 1758
  year: 2013
  end-page: 1769
  article-title: PINK1 is degraded through the N‐end rule pathway
  publication-title: Autophagy
– volume: 22
  start-page: 5625
  year: 2012
  end-page: 5629
  article-title: GSK2578215A; a potent and highly selective 2‐arylmethyloxy‐5‐substituent‐N‐arylbenzamide LRRK2 kinase inhibitor
  publication-title: Bioorg Med Chem Lett
– volume: 4
  start-page: 130213
  year: 2014a
  article-title: Phosphorylation of Parkin at Serine65 is essential for activation: elaboration of a Miro1 substrate‐based assay of Parkin E3 ligase activity
  publication-title: Open Biol
– volume: 301
  start-page: 1077
  year: 2000
  end-page: 1087
  article-title: The mammalian Rab family of small GTPases: definition of family and subfamily sequence motifs suggests a mechanism for functional specificity in the Ras superfamily
  publication-title: J Mol Biol
– volume: 85
  start-page: 257
  year: 2015
  end-page: 273
  article-title: The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease
  publication-title: Neuron
– volume: 357
  start-page: 289
  year: 2006
  end-page: 298
  article-title: Thermofluor‐based high‐throughput stability optimization of proteins for structural studies
  publication-title: Anal Biochem
– volume: 7
  start-page: 971
  year: 2008
  end-page: 980
  article-title: Hydrophilic interaction chromatography reduces the complexity of the phosphoproteome and improves global phosphopeptide isolation and detection
  publication-title: Mol Cell Proteomics
– volume: 96
  start-page: 363
  year: 1999
  end-page: 374
  article-title: Structural basis of Rab effector specificity: crystal structure of the small G protein Rab3A complexed with the effector domain of rabphilin‐3A
  publication-title: Cell
– volume: 117
  start-page: 856
  year: 2011
  end-page: 867
  article-title: The mitochondrial intramembrane protease PARL cleaves human Pink1 to regulate Pink1 trafficking
  publication-title: J Neurochem
– volume: 12
  start-page: 260
  year: 2013
  end-page: 271
  article-title: Toward a comprehensive characterization of a human cancer cell phosphoproteome
  publication-title: J Proteome Res
– volume: 125
  start-page: 921
  year: 2013b
  end-page: 931
  article-title: EFhd2 is a novel amyloid protein associated with pathological tau in Alzheimer's disease
  publication-title: J Neurochem
– volume: 25
  start-page: 1605
  year: 2004
  end-page: 1612
  article-title: UCSF Chimera–a visualization system for exploratory research and analysis
  publication-title: J Comput Chem
– volume: 285
  start-page: 31590
  year: 2010
  end-page: 31602
  article-title: Rab32 modulates apoptosis onset and mitochondria‐associated membrane (MAM) properties
  publication-title: J Biol Chem
– volume: 23
  start-page: 6779
  year: 2014
  end-page: 6796
  article-title: LRRK2 delays degradative receptor trafficking by impeding late endosomal budding through decreasing Rab7 activity
  publication-title: Hum Mol Genet
– volume: 48
  start-page: 2045
  year: 2009
  end-page: 2052
  article-title: Pink1 forms a multiprotein complex with Miro and Milton, linking Pink1 function to mitochondrial trafficking
  publication-title: Biochemistry
– volume: 33
  start-page: 627
  year: 2009
  end-page: 638
  article-title: PINK1‐associated Parkinson's disease is caused by neuronal vulnerability to calcium‐induced cell death
  publication-title: Mol Cell
– volume: 13
  start-page: 3268
  year: 2002
  end-page: 3280
  article-title: A Rab8‐specific GDP/GTP exchange factor is involved in actin remodeling and polarized membrane transport
  publication-title: Mol Biol Cell
– volume: 289
  start-page: 19420
  year: 2014
  end-page: 19434
  article-title: Phosphorylation of Rab5a protein by protein kinase C is crucial for T‐cell migration
  publication-title: J Biol Chem
– volume: 26
  start-page: 1367
  year: 2008
  end-page: 1372
  article-title: MaxQuant enables high peptide identification rates, individualized p.p.b.‐range mass accuracies and proteome‐wide protein quantification
  publication-title: Nat Biotechnol
– volume: 3
  start-page: ra3
  year: 2010
  article-title: Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis
  publication-title: Sci Signal
– volume: 33
  start-page: 2142
  year: 2014
  end-page: 2156
  article-title: A new pathway for mitochondrial quality control: mitochondrial‐derived vesicles
  publication-title: EMBO J
– volume: 11
  start-page: e1004130
  year: 2015
  article-title: Neuroblastoma Tyrosine Kinase Signaling Networks Involve FYN and LYN in Endosomes and Lipid Rafts
  publication-title: PLoS Comput Biol
– volume: 46
  start-page: 989
  year: 2014
  end-page: 993
  article-title: Large‐scale meta‐analysis of genome‐wide association data identifies six new risk loci for Parkinson's disease
  publication-title: Nat Genet
– volume: 42
  start-page: D231
  year: 2014
  end-page: D239
  article-title: eggNOG v4.0: nested orthology inference across 3686 organisms
  publication-title: Nucleic Acids Res
– volume: 13
  start-page: 119
  year: 2002
  end-page: 130
  article-title: Identification of protein phosphorylation sites by a combination of mass spectrometry and solid phase Edman sequencing
  publication-title: J Biomol Tech
– volume: 8
  start-page: 1583
  year: 2014
  end-page: 1594
  article-title: Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr‐based signaling
  publication-title: Cell Rep
– volume: 20
  start-page: 573
  year: 2013a
  end-page: 583
  article-title: Functional and structural analysis of the conserved EFhd2 protein
  publication-title: Protein Pept Lett
– volume: 4
  start-page: 332
  year: 2003
  end-page: 340
  article-title: Public services from the European Bioinformatics Institute
  publication-title: Brief Bioinform
– volume: 304
  start-page: 1158
  year: 2004
  end-page: 1160
  article-title: Hereditary early‐onset Parkinson's disease caused by mutations in PINK1
  publication-title: Science
– volume: 52
  start-page: 221
  year: 2013
  end-page: 233
  article-title: Cooperative control of holliday junction resolution and DNA repair by the SLX1 and MUS81‐EME1 nucleases
  publication-title: Mol Cell
– volume: 8
  start-page: e1002537
  year: 2012
  article-title: Parkinson's disease‐associated kinase PINK1 regulates Miro protein level and axonal transport of mitochondria
  publication-title: PLoS Genet
– volume: 460
  start-page: 127
  year: 2014b
  end-page: 139
  article-title: Parkin is activated by PINK1‐dependent phosphorylation of ubiquitin at Ser65
  publication-title: Biochem J
– volume: 58
  start-page: 236
  year: 2008
  end-page: 246
  article-title: Rab GTPases and their roles in brain neurons and glia
  publication-title: Brain Res Rev
– volume: 13
  start-page: 67
  year: 2012
  end-page: 73
  article-title: Illuminating the functional and structural repertoire of human TBC/RABGAPs
  publication-title: Nat Rev Mol Cell Biol
– volume: 2
  start-page: 1002
  year: 2012
  article-title: PINK1‐mediated phosphorylation of the Parkin ubiquitin‐like domain primes mitochondrial translocation of Parkin and regulates mitophagy
  publication-title: Sci Rep
– volume: 41
  start-page: D1063
  year: 2013
  end-page: D1069
  article-title: The PRoteomics IDEntifications (PRIDE) database and associated tools: status in 2013
  publication-title: Nucleic Acids Res
– volume: 14
  start-page: 1334
  year: 2015
  end-page: 1349
  article-title: Quantitative proteome analysis of temporally‐resolved phagosomes following uptake via key phagocytic receptors
  publication-title: Mol Cell Proteomics
– volume: 4
  start-page: 873
  year: 2005
  end-page: 886
  article-title: Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns
  publication-title: Mol Cell Proteomics
– volume: 12
  start-page: 119
  year: 2010
  end-page: 131
  article-title: PINK1/Parkin‐mediated mitophagy is dependent on VDAC1 and p62/SQSTM1
  publication-title: Nat Cell Biol
– volume: 2
  start-page: 120080
  year: 2012
  article-title: PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65
  publication-title: Open Biol
– volume: 41
  start-page: D483
  year: 2013
  end-page: D489
  article-title: SIFTS: Structure Integration with Function, Taxonomy and Sequences resource
  publication-title: Nucleic Acids Res
– volume: 282
  start-page: 215
  year: 2015
  end-page: 223
  article-title: PINK1 and Parkin ‐ mitochondrial interplay between phosphorylation and ubiquitylation in Parkinson's disease
  publication-title: FEBS J
– volume: 12
  start-page: 2277
  year: 2003
  end-page: 2291
  article-title: Parkin gene inactivation alters behaviour and dopamine neurotransmission in the mouse
  publication-title: Hum Mol Genet
– volume: 127
  start-page: 1018
  year: 2014
  end-page: 1032
  article-title: RAB26 coordinates lysosome traffic and mitochondrial localization
  publication-title: J Cell Sci
– volume: 34
  start-page: 307
  year: 2015
  end-page: 325
  article-title: Ubiquitin Ser65 phosphorylation affects ubiquitin structure, chain assembly and hydrolysis
  publication-title: EMBO J
– volume: 284
  start-page: 22938
  year: 2009
  end-page: 22951
  article-title: Loss of parkin or PINK1 function increases Drp1‐dependent mitochondrial fragmentation
  publication-title: J Biol Chem
– volume: 30
  start-page: 143
  year: 2009
  end-page: 154
  article-title: The phagosomal proteome in interferon‐gamma‐activated macrophages
  publication-title: Immunity
– volume: 105
  start-page: 1638
  year: 2008
  end-page: 1643
  article-title: The PINK1/Parkin pathway regulates mitochondrial morphology
  publication-title: Proc Natl Acad Sci USA
– volume: 25
  start-page: 1189
  year: 2009
  end-page: 1191
  article-title: Jalview Version 2–a multiple sequence alignment editor and analysis workbench
  publication-title: Bioinformatics
– volume: 105
  start-page: 145
  year: 2008
  end-page: 150
  article-title: The Parkinson's disease protein alpha‐synuclein disrupts cellular Rab homeostasis
  publication-title: Proc Natl Acad Sci USA
– volume: 430
  start-page: 405
  year: 2010
  end-page: 413
  article-title: Inhibition of LRRK2 kinase activity leads to dephosphorylation of Ser(910)/Ser(935), disruption of 14‐3‐3 binding and altered cytoplasmic localization
  publication-title: Biochem J
– volume: 147
  start-page: 893
  year: 2011
  end-page: 906
  article-title: PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility
  publication-title: Cell
– volume: 29
  start-page: 962
  year: 2010
  end-page: 990
  article-title: Subcellular phosphoproteomics
  publication-title: Mass Spectrom Rev
– volume: 41
  start-page: e121
  year: 2013
  article-title: Challenges in homology search: HMMER3 and convergent evolution of coiled‐coil regions
  publication-title: Nucleic Acids Res
– volume: 8
  start-page: e1000298
  year: 2010
  article-title: PINK1 is selectively stabilized on impaired mitochondria to activate Parkin
  publication-title: PLoS Biol
– volume: 3
  start-page: e01612
  year: 2014
  article-title: Mitochondrial Rab GAPs govern autophagosome biogenesis during mitophagy
  publication-title: eLife
– volume: 441
  start-page: 1157
  year: 2006
  end-page: 1161
  article-title: Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin
  publication-title: Nature
– reference: 27115692 - Curr Biol. 2016 Apr 25;26(8):R332-4. doi: 10.1016/j.cub.2016.03.001.
SSID ssj0005871
Score 2.5407438
Snippet Mutations in the PTEN‐induced kinase 1 (PINK1) are causative of autosomal recessive Parkinson's disease (PD). We have previously reported that PINK1 is...
Mutations in the PTEN-induced kinase 1 (PINK1) are causative of autosomal recessive Parkinson's disease (PD). We have previously reported that PINK1 is...
Mutations in the PTEN ‐induced kinase 1 ( PINK 1) are causative of autosomal recessive Parkinson's disease ( PD ). We have previously reported that PINK 1 is...
SourceID pubmedcentral
hal
proquest
pubmed
wiley
springer
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 2840
SubjectTerms Amino Acid Substitution
Biochemistry, Molecular Biology
EMBO20
EMBO22
EMBO31
Enzyme Activation - genetics
Enzymes
Germinal Center Kinases
HEK293 Cells
HeLa Cells
Humans
Life Sciences
Mutation
Mutation, Missense
Oncogene Proteins - genetics
Oncogene Proteins - metabolism
Parkinson's disease
Parkinsonian Disorders - genetics
Parkinsonian Disorders - metabolism
Parkinsonian Disorders - pathology
phosphoproteomics
Phosphorylation
Phosphorylation - genetics
PINK1
Protein Kinases - genetics
Protein Kinases - metabolism
Protein Serine-Threonine Kinases - genetics
Protein Serine-Threonine Kinases - metabolism
Proteomics
rab GTP-Binding Proteins - genetics
rab GTP-Binding Proteins - metabolism
Rab GTPases
Resource
SummonAdditionalLinks – databaseName: SpringerOpen Free (Free internet resource, activated by CARLI)
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT9UwFD5RiNEXo6g4RVONMfFhcbttd9dHWODegBBCLkp8adrbNkNlIwyI_nvP2XYnN-KDyR62temW07Oe76xfvwK8kzZxyoRxjLE5j4WZu9iYMI-DFXkmZEiSQIuT9w-y6bHYPZEnvUgSrYW5OX8vR3L00Z_Zb8TAkgoPfhdWZcozct8iK_5wOfI2s2p_pog0V72Gzy0NYAgpifG4Skb8eRus_JsdOUyRLgPYNgLtPIKHPXRkm11fP4Y7vlqDe91mkr_W4H6x2LvtCXw-LOvmvKxbFQZad8xwdMCMFdtnp64jCPmGHRnLJrNDDGQNMw2r6mv_gzn630z88zPW0cQbVgeG2f9e-hSOd7ZnxTTud1CISwRqPMbAY3MpPMZw7khmJgSEJD53Ujnj04CjXe4Sn6WBB48mIs4bSZBZ68eIjAJ_BitVXfnnwKT1Yi6EDcFhBiKCcYrU3hRmuFzwjEfwFg2rzzuNDE2q1dPNT5ruUQykVq_TCN63dh-qmYvvxCwbS_3lYKKTraPJ3tci1bMINhYdo_uPqtGYPGU5YjSlIngzFKNlaY7DVL6-ojocBxXEgEkE610_Dg9D7EecAywZL_Xw0ksvl1SnZSu5TapzissIPix84cZrYRpFnqbJ0_TgaRHw1lmG1v9RT2_vb-0OVy_-4wkv4QGd08rIdLQBK5cXV_4VQqRL-7r9PH4DHkIHAw
  priority: 102
  providerName: Springer Nature
Title Phosphoproteomic screening identifies Rab GTPases as novel downstream targets of PINK1
URI https://api.istex.fr/ark:/67375/WNG-0BRGKZC1-T/fulltext.pdf
https://link.springer.com/article/10.15252/embj.201591593
https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembj.201591593
https://www.ncbi.nlm.nih.gov/pubmed/26471730
https://www.proquest.com/docview/1746802599
https://www.proquest.com/docview/1733194350
https://hal.sorbonne-universite.fr/hal-01285599
https://pubmed.ncbi.nlm.nih.gov/PMC4654935
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwED7BJgQvEwwYYQMZhJB4iEhmJ00et2hr2VhVTR0gXiy7tpUBS6Zlm7Z_z53TBCLgBamq2tq5Ruez78757jPAm0RHJlduFKJvzkKhFiZUyi1Cp0WWisRFkaPi5KNpOjkRB1-SDk1ItTAtP0S_4UYzw6_XNMGVbroTe4g11J7pb4TNSnJ88buwSgW2RJ-_LWa_UB6Zz7n8NouIs3zJ7kMi3g8FoHMpCQu5Suq9-VvA-Sdusn94OgxtvW_afwhry6CS7bRW8Aju2God7rXHTN6uw_2iO9XtMXyalXVzXtaen4EqkhmuG5jLonx2alrokG3YsdJsPJ-hi2uYalhVX9sfzNBONCHTz1gLIG9Y7djsw_QwfgIn-3vzYhIuz1YISwzheIguSWeJsOjduSECGucwWLGZSXKjbOxwHcxMZNPYcWdRRYSGI3Iyre0IYybHn8JKVVf2GbBEW7EQQjtnMDcRTpmceOByzH254CkP4DUqVp637BmS-KwnOx8l_UbekaRexwG89Xrvu6mL74Q5GyXy83Qso93j8eHXIpbzALa6gZHL6dZITKvSDKO3PA_gVd-MmqWnH6qy9RX14bjcYHQYBbDRjmP_ZxgVEhoBW0aDER7c9LClOi09GTfx0eU8CeBdZwu_3RYmWGRpkixN9pYWAPfG0kv_Rz-5d7R70H97_l9XbcID-kzVk_H2FqxcXlzZFxhGXeqXfqLge5EWPwHV5xNh
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_BJrS9IBgfCwwwCCHxEJHUztfjVm0tW1tVUwcTL5Zd28o2lkzLNm3_PXdJGxYBL0h5aexco_Od73fO-WeAj5EOTKZc4mNsTn2h5sZXys19p0Uai8gFgaPNyeNJPDwS-8fR8b29MA0_RLvgRp5Rz9fk4LQgvTyyh2hD7bk-peKsKMOLP4RVEfcScs6emP4u80jrpKteZxFhmi3ofUjEl64AjC45FUOukn5v_4Y4_yycbL-edrFtHZz2nsDjBapk240ZPIUHttiAR805k3cbsNZfHuv2DL5N87K6yMuaoIG2JDOcODCZRfnsxDS1Q7Zih0qzwWyKMa5iqmJFeWN_MkNL0VSafs6aCvKKlY5Nv04OwudwtLc76w_9xeEKfo4YjvsYk3QaCYvhnRtioHEO0YpNTZQZZUOHE2FqAhuHjjuLKqJyOGIn09omCJocfwErRVnYTWCRtmIuhHbOYHIinDIZEcFlmPxywWPuwQdUrLxo6DMkEVoPt0eS7lF4JKk3oQefar233dTlGRWdJZH8PhnIYOdwcPCjH8qZB1vLgZELf6sk5lVxivAtyzx43zajZunzhypseU19OM43CA8DD14249j-GcJCKkfAlqQzwp2X7rYUJ3nNxk2EdBmPPPi8tIV7r4UZFlmaJEuTraV5wGtjaaX_o5_cHe_st79e_ddT72BtOBuP5Aht4TWs033aShn2tmDl6vLavkFMdaXf1k7zCzelFfA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD6CTVxeEIxbYIBBCImHiGR22uRxK2vLLlU0dYB4sezaVjZYUi3bBP-ec5wmEAEvSH1p7LrR8bHPd-zPnwFeJzoymXLDEGNzGgq1MKFSbhE6LdKBSFwUOTqcfDgbTI_F3uekZRPSWZhGH6JbcKOR4edrGuBL49obe0g11J7pU-JmJRl--HVY91t-JO4s8l8sj9TnXH6ZRcRptlL3oSbe9RvA4FIQF3KdzPv9b4DzT95kt3nah7Y-No3vwp0VqGTbjRfcg2u23IAbzTWTPzbg1qi91e0-fMyLql4WlddnoBPJDOcNzGWxfXZiGuqQrdmR0mwyzzHE1UzVrKyu7DdmaCWamOlnrCGQ16xyLP8w248fwPF4dz6ahqu7FcICIRwPMSTpNBEWozs3JEDjHIIVm5okM8rGDufB1ER2EDvuLJqI2HAkTqa1HSJmcvwhrJVVaR8DS7QVCyG0cwZzE-GUyUgHLsPclws-4AG8QsPKZaOeIUnPerp9IOkZRUdq9SoO4I23e1dNnX8lztkwkZ9mExntHE32v4xiOQ9gs-0YuRputcS0apAiesuyAF52xWhZ2v1Qpa0uqQ7H6QbRYRTAo6Yfuz9DVEhsBCwZ9nq499L9kvKk8GLcpEeX8SSAt60v_PZamGCRp0nyNNl5WgDcO0vX-j_qyd3Dnb3u25P_-tULuJm_H8sDdIWncJse00HKeGsT1i7OL-0zRFQX-rkfMz8BfvgVIg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phosphoproteomic+screening+identifies+Rab+GTPases+as+novel+downstream+targets+of+PINK1&rft.jtitle=The+EMBO+journal&rft.au=Lai%2C+Yu%E2%80%90Chiang&rft.au=Kondapalli%2C+Chandana&rft.au=Lehneck%2C+Ronny&rft.au=Procter%2C+James+B&rft.date=2015-11-12&rft.issn=0261-4189&rft.eissn=1460-2075&rft.volume=34&rft.issue=22&rft.spage=2840&rft.epage=2861&rft_id=info:doi/10.15252%2Fembj.201591593&rft.externalDBID=10.15252%252Fembj.201591593&rft.externalDocID=EMBJ201591593
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-4189&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-4189&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-4189&client=summon