Generation of DNA single-strand displacement by compromised nucleotide excision repair
Nucleotide excision repair (NER) is a precisely coordinated process essential to avoid DNA damage‐induced cellular malfunction and mutagenesis. Here, we investigate the mechanistic details and effects of the NER machinery when it is compromised by a pathologically significant mutation in a subunit o...
Saved in:
Published in | The EMBO journal Vol. 31; no. 17; pp. 3550 - 3563 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
29.08.2012
Nature Publishing Group UK Springer Nature B.V Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 0261-4189 1460-2075 1460-2075 |
DOI | 10.1038/emboj.2012.193 |
Cover
Loading…
Abstract | Nucleotide excision repair (NER) is a precisely coordinated process essential to avoid DNA damage‐induced cellular malfunction and mutagenesis. Here, we investigate the mechanistic details and effects of the NER machinery when it is compromised by a pathologically significant mutation in a subunit of the repair/transcription factor TFIIH, namely XPD. In contrast to previous studies, we find that no single‐ or double‐strand DNA breaks are produced at early time points after UV irradiation of cells bearing a specific XPD mutation, despite the presence of a clear histone H2AX phosphorylation (γH2AX) signal in the UV‐exposed areas. We show that the observed γH2AX signal can be explained by the presence of longer single‐strand gaps possibly generated by strand displacement. Our
in vivo
measurements also indicate a strongly reduced TFIIH‐XPG binding that could promote single‐strand displacement at the site of UV lesions. This finding not only highlights the crucial role of XPG's interactions with TFIIH for proper NER, but also sheds new light on how a faulty DNA repair process can induce extreme genomic instability in human patients.
Strong tumorigenic effects of a particular mutation in the key nucleotide excision repair factor XPD may not be due to DNA break generation, but caused by inefficient excision steps resulting in long single‐strand gaps and genomic instability. |
---|---|
AbstractList | Nucleotide excision repair (NER) is a precisely coordinated process essential to avoid DNA damage-induced cellular malfunction and mutagenesis. Here, we investigate the mechanistic details and effects of the NER machinery when it is compromised by a pathologically significant mutation in a subunit of the repair/transcription factor TFIIH, namely XPD. In contrast to previous studies, we find that no single- or double-strand DNA breaks are produced at early time points after UV irradiation of cells bearing a specific XPD mutation, despite the presence of a clear histone H2AX phosphorylation (γH2AX) signal in the UV-exposed areas. We show that the observed γH2AX signal can be explained by the presence of longer single-strand gaps possibly generated by strand displacement. Our in vivo measurements also indicate a strongly reduced TFIIH-XPG binding that could promote single-strand displacement at the site of UV lesions. This finding not only highlights the crucial role of XPG's interactions with TFIIH for proper NER, but also sheds new light on how a faulty DNA repair process can induce extreme genomic instability in human patients. Nucleotide excision repair (NER) is a precisely coordinated process essential to avoid DNA damage‐induced cellular malfunction and mutagenesis. Here, we investigate the mechanistic details and effects of the NER machinery when it is compromised by a pathologically significant mutation in a subunit of the repair/transcription factor TFIIH, namely XPD. In contrast to previous studies, we find that no single‐ or double‐strand DNA breaks are produced at early time points after UV irradiation of cells bearing a specific XPD mutation, despite the presence of a clear histone H2AX phosphorylation (γH2AX) signal in the UV‐exposed areas. We show that the observed γH2AX signal can be explained by the presence of longer single‐strand gaps possibly generated by strand displacement. Our in vivo measurements also indicate a strongly reduced TFIIH‐XPG binding that could promote single‐strand displacement at the site of UV lesions. This finding not only highlights the crucial role of XPG's interactions with TFIIH for proper NER, but also sheds new light on how a faulty DNA repair process can induce extreme genomic instability in human patients. Strong tumorigenic effects of a particular mutation in the key nucleotide excision repair factor XPD may not be due to DNA break generation, but caused by inefficient excision steps resulting in long single‐strand gaps and genomic instability. Nucleotide excision repair (NER) is a precisely coordinated process essential to avoid DNA damage-induced cellular malfunction and mutagenesis. Here, we investigate the mechanistic details and effects of the NER machinery when it is compromised by a pathologically significant mutation in a subunit of the repair/transcription factor TFIIH, namely XPD. In contrast to previous studies, we find that no single- or double-strand DNA breaks are produced at early time points after UV irradiation of cells bearing a specific XPD mutation, despite the presence of a clear histone H2AX phosphorylation (γH2AX) signal in the UV-exposed areas. We show that the observed γH2AX signal can be explained by the presence of longer single-strand gaps possibly generated by strand displacement. Our in vivo measurements also indicate a strongly reduced TFIIH-XPG binding that could promote single-strand displacement at the site of UV lesions. This finding not only highlights the crucial role of XPG's interactions with TFIIH for proper NER, but also sheds new light on how a faulty DNA repair process can induce extreme genomic instability in human patients. [PUBLICATION ABSTRACT] Nucleotide excision repair (NER) is a precisely coordinated process essential to avoid DNA damage‐induced cellular malfunction and mutagenesis. Here, we investigate the mechanistic details and effects of the NER machinery when it is compromised by a pathologically significant mutation in a subunit of the repair/transcription factor TFIIH, namely XPD. In contrast to previous studies, we find that no single‐ or double‐strand DNA breaks are produced at early time points after UV irradiation of cells bearing a specific XPD mutation, despite the presence of a clear histone H2AX phosphorylation (γH2AX) signal in the UV‐exposed areas. We show that the observed γH2AX signal can be explained by the presence of longer single‐strand gaps possibly generated by strand displacement. Our in vivo measurements also indicate a strongly reduced TFIIH‐XPG binding that could promote single‐strand displacement at the site of UV lesions. This finding not only highlights the crucial role of XPG's interactions with TFIIH for proper NER, but also sheds new light on how a faulty DNA repair process can induce extreme genomic instability in human patients. Strong tumorigenic effects of a particular mutation in the key nucleotide excision repair factor XPD may not be due to DNA break generation, but caused by inefficient excision steps resulting in long single‐strand gaps and genomic instability. Strong tumorigenic effects of a particular mutation in the key nucleotide excision repair factor XPD may not be due to DNA break generation, but caused by inefficient excision steps resulting in long single-strand gaps and genomic instability. Nucleotide excision repair (NER) is a precisely coordinated process essential to avoid DNA damage-induced cellular malfunction and mutagenesis. Here, we investigate the mechanistic details and effects of the NER machinery when it is compromised by a pathologically significant mutation in a subunit of the repair/transcription factor TFIIH, namely XPD. In contrast to previous studies, we find that no single- or double-strand DNA breaks are produced at early time points after UV irradiation of cells bearing a specific XPD mutation, despite the presence of a clear histone H2AX phosphorylation (γH2AX) signal in the UV-exposed areas. We show that the observed γH2AX signal can be explained by the presence of longer single-strand gaps possibly generated by strand displacement. Our in vivo measurements also indicate a strongly reduced TFIIH-XPG binding that could promote single-strand displacement at the site of UV lesions. This finding not only highlights the crucial role of XPG's interactions with TFIIH for proper NER, but also sheds new light on how a faulty DNA repair process can induce extreme genomic instability in human patients. Nucleotide excision repair (NER) is a precisely coordinated process essential to avoid DNA damage-induced cellular malfunction and mutagenesis. Here, we investigate the mechanistic details and effects of the NER machinery when it is compromised by a pathologically significant mutation in a subunit of the repair/transcription factor TFIIH, namely XPD. In contrast to previous studies, we find that no single- or double-strand DNA breaks are produced at early time points after UV irradiation of cells bearing a specific XPD mutation, despite the presence of a clear histone H2AX phosphorylation (γH2AX) signal in the UV-exposed areas. We show that the observed γH2AX signal can be explained by the presence of longer single-strand gaps possibly generated by strand displacement. Our in vivo measurements also indicate a strongly reduced TFIIH-XPG binding that could promote single-strand displacement at the site of UV lesions. This finding not only highlights the crucial role of XPG's interactions with TFIIH for proper NER, but also sheds new light on how a faulty DNA repair process can induce extreme genomic instability in human patients.Nucleotide excision repair (NER) is a precisely coordinated process essential to avoid DNA damage-induced cellular malfunction and mutagenesis. Here, we investigate the mechanistic details and effects of the NER machinery when it is compromised by a pathologically significant mutation in a subunit of the repair/transcription factor TFIIH, namely XPD. In contrast to previous studies, we find that no single- or double-strand DNA breaks are produced at early time points after UV irradiation of cells bearing a specific XPD mutation, despite the presence of a clear histone H2AX phosphorylation (γH2AX) signal in the UV-exposed areas. We show that the observed γH2AX signal can be explained by the presence of longer single-strand gaps possibly generated by strand displacement. Our in vivo measurements also indicate a strongly reduced TFIIH-XPG binding that could promote single-strand displacement at the site of UV lesions. This finding not only highlights the crucial role of XPG's interactions with TFIIH for proper NER, but also sheds new light on how a faulty DNA repair process can induce extreme genomic instability in human patients. Nucleotide excision repair (NER) is a precisely coordinated process essential to avoid DNA damage-induced cellular malfunction and mutagenesis. Here, we investigate the mechanistic details and effects of the NER machinery when it is compromised by a pathologically significant mutation in a subunit of the repair/transcription factor TFIIH, namely XPD. In contrast to previous studies, we find that no single- or double-strand DNA breaks are produced at early time points after UV irradiation of cells bearing a specific XPD mutation, despite the presence of a clear histone H2AX phosphorylation ( gamma H2AX) signal in the UV-exposed areas. We show that the observed gamma H2AX signal can be explained by the presence of longer single-strand gaps possibly generated by strand displacement. Our in vivo measurements also indicate a strongly reduced TFIIH-XPG binding that could promote single-strand displacement at the site of UV lesions. This finding not only highlights the crucial role of XPG's interactions with TFIIH for proper NER, but also sheds new light on how a faulty DNA repair process can induce extreme genomic instability in human patients. |
Author | Mourgues, Sophie Giglia‐Mari, Giuseppina Mourcet, Amandine Mari, Pierre‐Olivier Vermeulen, Wim Nonnekens, Julie Godon, Camille Coin, Fréderic |
Author_xml | – sequence: 1 givenname: Camille surname: Godon fullname: Godon, Camille organization: Department of Cancer Biology, CNRS, IPBS, Toulouse, France – sequence: 2 givenname: Sophie surname: Mourgues fullname: Mourgues, Sophie organization: Department of Cancer Biology, CNRS, IPBS, Toulouse, France – sequence: 3 givenname: Julie surname: Nonnekens fullname: Nonnekens, Julie organization: Department of Cancer Biology, CNRS, IPBS, Toulouse, France – sequence: 4 givenname: Amandine surname: Mourcet fullname: Mourcet, Amandine organization: Department of Cancer Biology, CNRS, IPBS, Toulouse, France – sequence: 5 givenname: Fréderic surname: Coin fullname: Coin, Fréderic organization: Department of Functional Genomics, IGBMC, CNRS/INSERM/ULP, Illkirch Graffenstaden, France – sequence: 6 givenname: Wim surname: Vermeulen fullname: Vermeulen, Wim organization: Department of Genetics, Erasmus MC, GE Rotterdam, The Netherlands – sequence: 7 givenname: Pierre-Olivier surname: Mari fullname: Mari, Pierre-Olivier organization: Department of Cancer Biology, CNRS, IPBS, Toulouse, France – sequence: 8 givenname: Giuseppina surname: Giglia-Mari fullname: Giglia-Mari, Giuseppina email: ambra.mari@ipbs.fr organization: Department of Cancer Biology, CNRS, IPBS, Toulouse, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22863773$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUU1v1DAQtVAR3W65ckSRuHDJ1o4d27kglaVdqMpyoHzcLCeZ3XpJ7GAn0P33ON12VSoOnDzWvPfmzbwjdGCdBYReEDwjmMoTaEu3mWWYZDNS0CdoQhjHaYZFfoAmOOMkZUQWh-gohA3GOJeCPEOHWSY5FYJO0NcFWPC6N84mbpW8W54mwdh1A2novbZ1UpvQNbqCFmyflNukcm3nXWsC1IkdqgZcb2pI4KYyYRTx0Gnjj9HTlW4CPL97p-jL-dnV_H16-WnxYX56mV7nmaCpZBnLqQAshCSwIjXPuRa6JGylS5BVSSTlNTBJtCxkWVDGNEjQUgLOSI3pFL3Z6XZD2UJdRZNeN6rzptV-q5w26u-ONddq7X4pymg8QBEFXt8JePdzgNCruFoFTaMtuCEogsehNB7yP6BUcI6LCJ-iV4-gGzd4Gy8xouJONE6PqJcPze9d36cTAWIH-G0a2O77BN-qqNvs1Zi9itmrs49vL8ZPrCPzZMcMkWTX4B8a-Bc7MtIdw4QebvaztP-huKAiV9-WC7VYLuefv1-dK0L_AFCFw70 |
CODEN | EMJODG |
ContentType | Journal Article |
Copyright | European Molecular Biology Organization 2012 Copyright © 2012 European Molecular Biology Organization Copyright Nature Publishing Group Aug 29, 2012 Copyright © 2012, European Molecular Biology Organization 2012 European Molecular Biology Organization |
Copyright_xml | – notice: European Molecular Biology Organization 2012 – notice: Copyright © 2012 European Molecular Biology Organization – notice: Copyright Nature Publishing Group Aug 29, 2012 – notice: Copyright © 2012, European Molecular Biology Organization 2012 European Molecular Biology Organization |
DBID | BSCLL CGR CUY CVF ECM EIF NPM 3V. 7QG 7QL 7QP 7T5 7TK 7TM 7TO 7U9 7X7 7XB 88A 88E 8AO 8C1 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI BKSAR C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. LK8 M0S M1P M2O M7N M7P MBDVC P64 PCBAR PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 5PM |
DOI | 10.1038/emboj.2012.193 |
DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection (ProQuest) Earth, Atmospheric & Aquatic Science Collection (ProQuest) Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Proquest Medical Database Research Library Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Research Library ProQuest Public Health ProQuest Central Basic ProQuest SciTech Collection ProQuest Medical Library Animal Behavior Abstracts Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Research Library Prep MEDLINE - Academic Nucleic Acids Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
DocumentTitleAlternate | UV-induced strand displacement in TFIIHXP/CS cells |
EISSN | 1460-2075 |
EndPage | 3563 |
ExternalDocumentID | PMC3433779 2754671121 22863773 EMBJ2012193 10_1038_emboj_2012_193 ark_67375_WNG_GNNCSXTF_1 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -Q- -~X 0R~ 123 1OC 24P 29G 2WC 33P 36B 39C 3V. 4.4 53G 5VS 70F 7X7 88A 88E 8AO 8C1 8CJ 8FE 8FH 8FI 8FJ 8G5 8R4 8R5 A8Z AAESR AAEVG AAHBH AAHHS AAIHA AANLZ AASGY AAXRX AAZKR ABCUV ABJNI ABLJU ABUWG ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACSMW ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AENEX AEQDE AEUYR AFBPY AFFNX AFGKR AFKRA AFPWT AFRAH AFZJQ AHMBA AIAGR AIURR AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AOIJS ASPBG AUFTA AVWKF AZFZN AZQEC AZVAB BAWUL BBNVY BDRZF BENPR BFHJK BHPHI BKSAR BMNLL BMXJE BPHCQ BRXPI BSCLL BTFSW BVXVI C1A C6C CCPQU COF CS3 D1J DCZOG DIK DPXWK DRFUL DRSTM DU5 DWQXO E3Z EBD EBLON EBS EJD EMB EMOBN ESTFP F5P FEDTE FYUFA G-S GNUQQ GODZA GROUPED_DOAJ GUQSH GX1 H13 HCIFZ HH5 HK~ HMCUK HVGLF HYE KQ8 LATKE LEEKS LH4 LITHE LK8 LOXES LUTES LW6 LYRES M0L M1P M2O M7P MEWTI MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM MY~ O9- OK1 P2P P2W PCBAR PQQKQ PROAC PSQYO Q2X RHF RHI RIG RNS ROL RPM SV3 TN5 TR2 UKHRP WBKPD WH7 WIH WIK WIN WOHZO WXSBR WYJ YSK ZCA ZZTAW ~KM AAJSJ AANHP AAYCA ACRPL ACYXJ ADNMO AEUYN AFWVQ AAMMB AASML ABZEH AEFGJ AGQPQ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NAO NPM PHGZM PHGZT PJZUB PPXIY PQGLB 7QG 7QL 7QP 7T5 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-h5273-8424537e07781ef1d656a7ab14fabe8cb1836de481a898b9344ae8ea88e021d03 |
IEDL.DBID | AAJSJ |
ISSN | 0261-4189 1460-2075 |
IngestDate | Thu Aug 21 18:12:10 EDT 2025 Fri Sep 05 03:32:15 EDT 2025 Fri Sep 05 07:52:43 EDT 2025 Fri Jul 25 10:45:09 EDT 2025 Mon Jul 21 05:56:02 EDT 2025 Wed Jan 22 16:54:59 EST 2025 Fri Feb 21 02:37:01 EST 2025 Wed Oct 30 09:56:05 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Keywords | Exo1 γH2AX nucleotide excision repair XPD helicase XPG endonuclease |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-h5273-8424537e07781ef1d656a7ab14fabe8cb1836de481a898b9344ae8ea88e021d03 |
Notes | istex:904E800F29CFE9FB84F5C5BB9A0D264D159FC293 ArticleID:EMBJ2012193 ark:/67375/WNG-GNNCSXTF-1 Supplementary DataReview Process File ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 These authors contributed equally to this work |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/3433779 |
PMID | 22863773 |
PQID | 1038363337 |
PQPubID | 35985 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3433779 proquest_miscellaneous_1093443261 proquest_miscellaneous_1037660944 proquest_journals_1038363337 pubmed_primary_22863773 wiley_primary_10_1038_emboj_2012_193_EMBJ2012193 springer_journals_10_1038_emboj_2012_193 istex_primary_ark_67375_WNG_GNNCSXTF_1 |
PublicationCentury | 2000 |
PublicationDate | August 29, 2012 |
PublicationDateYYYYMMDD | 2012-08-29 |
PublicationDate_xml | – month: 08 year: 2012 text: August 29, 2012 day: 29 |
PublicationDecade | 2010 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK – name: London – name: England – name: New York |
PublicationTitle | The EMBO journal |
PublicationTitleAbbrev | EMBO J |
PublicationTitleAlternate | EMBO J |
PublicationYear | 2012 |
Publisher | John Wiley & Sons, Ltd Nature Publishing Group UK Springer Nature B.V Nature Publishing Group |
Publisher_xml | – name: John Wiley & Sons, Ltd – name: Nature Publishing Group UK – name: Springer Nature B.V – name: Nature Publishing Group |
References | van Hoffen A, Kalle WH, de Jong-Versteeg A, Lehmann AR, van Zeeland AA, Mullenders LH (1999) Cells from XP-D and XP-D-CS patients exhibit equally inefficient repair of UV-induced damage in transcribed genes but different capacity to recover UV-inhibited transcription. Nucleic Acids Res 27: 2898-2904 Hanawalt PC (1994) Transcription-coupled repair and human disease. Science 266: 1957-1958 Ito S, Kuraoka I, Chymkowitch P, Compe E, Takedachi A, Ishigami C, Coin F, Egly JM, Tanaka K (2007) XPG stabilizes TFIIH, allowing transactivation of nuclear receptors: implications for Cockayne syndrome in XP-G/CS patients. Mol Cell 26: 231-243 Krasikova YS, Rechkunova NI, Maltseva EA, Petruseva IO, Lavrik OI (2010) Localization of xeroderma pigmentosum group A protein and replication protein A on damaged DNA in nucleotide excision repair. Nucleic Acids Res 38: 8083-8094 Essers J, Theil AF, Baldeyron C, van Cappellen WA, Houtsmuller AB, Kanaar R, Vermeulen W (2005) Nuclear dynamics of PCNA in DNA replication and repair. Mol Cell Biol 25: 9350-9359 Hammel M, Yu Y, Mahaney BL, Cai B, Ye R, Phipps BM, Rambo RP, Hura GL, Pelikan M, So S, Abolfath RM, Chen DJ, Lees-Miller SP, Tainer JA (2010) Ku and DNA-dependent protein kinase dynamic conformations and assembly regulate DNA binding and the initial non-homologous end joining complex. J Biol Chem 285: 1414-1423 van Vuuren AJ, Appeldoorn E, Odijk H, Yasui A, Jaspers NG, Bootsma D, Hoeijmakers JH (1993) Evidence for a repair enzyme complex involving ERCC1 and complementing activities of ERCC4, ERCC11 and xeroderma pigmentosum group F. EMBO J 12: 3693-3701 Hoogstraten D, Bergink S, Ng JM, Verbiest VH, Luijsterburg MS, Geverts B, Raams A, Dinant C, Hoeijmakers JH, Vermeulen W, Houtsmuller AB (2008) Versatile DNA damage detection by the global genome nucleotide excision repair protein XPC. J Cell Sci 121: 2850-2859 Coin F, Oksenych V, Mocquet V, Groh S, Blattner C, Egly JM (2008) Nucleotide excision repair driven by the dissociation of CAK from TFIIH. Mol Cell 31: 9-20 Fousteri M, Mullenders LH (2008) Transcription-coupled nucleotide excision repair in mammalian cells: molecular mechanisms and biological effects. Cell Res 18: 73-84 Mone MJ, Volker M, Nikaido O, Mullenders LH, van Zeeland AA, Verschure PJ, Manders EM, van Driel R (2001) Local UV-induced DNA damage in cell nuclei results in local transcription inhibition. EMBO Rep 2: 1013-1017 Moser J, Kool H, Giakzidis I, Caldecott K, Mullenders LH, Fousteri MI (2007) Sealing of chromosomal DNA nicks during nucleotide excision repair requires XRCC1 and DNA ligase III alpha in a cell-cycle-specific manner. Mol Cell 27: 311-323 Lieber MR (1997) The FEN-1 family of structure-specific nucleases in eukaryotic DNA replication, recombination and repair. Bioessays 19: 233-240 Keriel A, Stary A, Sarasin A, Rochette-Egly C, Egly JM (2002) XPD mutations prevent TFIIH-dependent transactivation by nuclear receptors and phosphorylation of RARalpha. Cell 109: 125-135 Giannattasio M, Follonier C, Tourriere H, Puddu F, Lazzaro F, Pasero P, Lopes M, Plevani P, Muzi-Falconi M (2010) Exo1 competes with repair synthesis, converts NER intermediates to long ssDNA gaps, and promotes checkpoint activation. Mol Cell 40: 50-62 Hoogstraten D, Nigg AL, Heath H, Mullenders LH, van Driel R, Hoeijmakers JH, Vermeulen W, Houtsmuller AB (2002) Rapid switching of TFIIH between RNA polymerase I and II transcription and DNA repair in vivo. Mol Cell 10: 1163-1174 Zotter A, Luijsterburg MS, Warmerdam DO, Ibrahim S, Nigg A, van Cappellen WA, Hoeijmakers JH, van Driel R, Vermeulen W, Houtsmuller AB (2006) Recruitment of the nucleotide excision repair endonuclease XPG to sites of UV-induced dna damage depends on functional TFIIH. Mol Cell Biol 26: 8868-8879 Bootsma D, Hoeijmakers JH (1993) DNA repair. Engagement with transcription. Nature 363: 114-115 Kraemer KH, Patronas NJ, Schiffmann R, Brooks BP, Tamura D, Digiovanna JJ (2007) Xeroderma pigmentosum, trichothiodystrophy and Cockayne syndrome: a complex genotype-phenotype relationship.. Neuroscience 145: 1388-1396 Vrouwe MG, Pines A, Overmeer RM, Hanada K, Mullenders LH (2011) UV-induced photolesions elicit ATR-kinase-dependent signaling in non-cycling cells through nucleotide excision repair-dependent and -independent pathways. J Cell Sci 124: 435-446 Sugasawa K, Ng JM, Masutani C, Iwai S, van der Spek PJ, Eker AP, Hanaoka F, Bootsma D, Hoeijmakers JH (1998) Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair. Mol Cell 2: 223-232 Hwang JR, Moncollin V, Vermeulen W, Seroz T, van Vuuren H, Hoeijmakers JH, Egly JM (1996) A 3′→5′ XPB helicase defect in repair/transcription factor TFIIH of xeroderma pigmentosum group B affects both DNA repair and transcription. J Biol Chem 271: 15898-15904 Coin F, Bergmann E, Tremeau-Bravard A, Egly JM (1999) Mutations in XPB and XPD helicases found in xeroderma pigmentosum patients impair the transcription function of TFIIH. EMBO J 18: 1357-1366 Santagati F, Botta E, Stefanini M, Pedrini AM (2001) Different dynamics in nuclear entry of subunits of the repair/transcription factor TFIIH. Nucleic Acids Res 29: 1574-1581 Tishkoff DX, Amin NS, Viars CS, Arden KC, Kolodner RD (1998) Identification of a human gene encoding a homologue of Saccharomyces cerevisiae EXO1, an exonuclease implicated in mismatch repair and recombination. Cancer Res 58: 5027-5031 Feaver WJ, Svejstrup JQ, Henry NL, Kornberg RD (1994) Relationship of CDK-activating kinase and RNA polymerase II CTD kinase TFIIH/TFIIK. Cell 79: 1103-1109 Volker M, Mone MJ, Karmakar P, van Hoffen A, Schul W, Vermeulen W, Hoeijmakers JH, van Driel R, van Zeeland AA, Mullenders LH (2001) Sequential assembly of the nucleotide excision repair factors in vivo. Mol Cell 8: 213-224 Giglia-Mari G, Theil AF, Mari PO, Mourgues S, Nonnekens J, Andrieux LO, de Wit J, Miquel C, Wijgers N, Maas A, Fousteri M, Hoeijmakers JH, Vermeulen W (2009) Differentiation driven changes in the dynamic organization of Basal transcription initiation. PLoS Biol 7: e1000220 Dupuy JM, Lafforet D, Rachman F (1974) Xeroderma pigmentosum with liver involvement. Helv Paediatr Acta 29: 213-219 Sertic S, Pizzi S, Cloney R, Lehmann AR, Marini F, Plevani P, Muzi-Falconi M (2011) Human exonuclease 1 connects nucleotide excision repair (NER) processing with checkpoint activation in response to UV irradiation. Proc Natl Acad Sci USA 108: 13647-13652 Douki T, Cadet J (1992) Far-UV photochemistry and photosensitization of 2′-deoxycytidylyl-(3′-5′)-thymidine: isolation and characterization of the main photoproducts. J Photochem Photobiol B 15: 199-213 Broughton BC, Thompson AF, Harcourt SA, Vermeulen W, Hoeijmakers JH, Botta E, Stefanini M, King MD, Weber CA, Cole J et al (1995) Molecular and cellular analysis of the DNA repair defect in a patient in xeroderma pigmentosum complementation group D who has the clinical features of xeroderma pigmentosum and Cockayne syndrome. Am J Hum Genet 56: 167-174 de Boer J, Andressoo JO, de Wit J, Huijmans J, Beems RB, van Steeg H, Weeda G, van der Horst GT, van Leeuwen W, Themmen AP, Meradji M, Hoeijmakers JH (2002) Premature aging in mice deficient in DNA repair and transcription. Science 296: 1276-1279 Matsumoto M, Yaginuma K, Igarashi A, Imura M, Hasegawa M, Iwabuchi K, Date T, Mori T, Ishizaki K, Yamashita K, Inobe M, Matsunaga T (2007) Perturbed gap-filling synthesis in nucleotide excision repair causes histone H2AX phosphorylation in human quiescent cells. J Cell Sci 120: 1104-1112 Sugasawa K (2010) Regulation of damage recognition in mammalian global genomic nucleotide excision repair. Mutat Res 685: 29-37 Fan L, Fuss JO, Cheng QJ, Arvai AS, Hammel M, Roberts VA, Cooper PK, Tainer JA (2008) XPD helicase structures and activities: insights into the cancer and aging phenotypes from XPD mutations. Cell 133: 789-800 Theron T, Fousteri MI, Volker M, Harries LW, Botta E, Stefanini M, Fujimoto M, Andressoo JO, Mitchell J, Jaspers NG, McDaniel LD, Mullenders LH, Lehmann AR (2005) Transcription-associated breaks in xeroderma pigmentosum group D cells from patients with combined features of xeroderma pigmentosum and Cockayne syndrome. Mol Cell Biol 25: 8368-8378 Ito S, Tan LJ, Andoh D, Narita T, Seki M, Hirano Y, Narita K, Kuraoka I, Hiraoka Y, Tanaka K (2010) MMXD, a TFIIH-independent XPD-MMS19 protein complex involved in chromosome segregation. Mol Cell 39: 632-640 Andressoo JO, Mitchell JR, de Wit J, Hoogstraten D, Volker M, Toussaint W, Speksnijder E, Beems RB, van Steeg H, Jans J, de Zeeuw CI, Jaspers NG, Raams A, Lehmann AR, Vermeulen W, Hoeijmakers JH, van der Horst GT (2006) An Xpd mouse model for the combined xeroderma pigmentosum/Cockayne syndrome exhibiting both cancer predisposition and segmental progeria. Cancer Cell 10: 121-132 Oksenych V, Coin F (2010) The long unwinding road: XPB and XPD helicases in damaged DNA opening. Cell Cycle 9: 90-96 Berneburg M, Lowe JE, Nardo T, Araujo S, Fousteri MI, Green MH, Krutmann J, Wood RD, Stefanini M, Lehmann AR (2000) UV damage causes uncontrolled DNA breakage in cells from patients with combined features of XP-D and Cockayne syndrome. EMBO J 19: 1157-1166 Giglia-Mari G, Miquel C, Theil AF, Mari PO, Hoogstraten D, Ng JM, Dinant C, Hoeijmakers JH, Vermeulen W (2006) Dynamic interaction of TTDA with TFIIH is stabilized by nucleotide excision repair in living cells. PLoS Biol 4: e156 Broughton BC, Berneburg M, Fawcett H, Taylor EM, Arlett CF, Nardo T, Stefanini M, Menefee E, Price VH, Queille S, Sarasin A, Bohnert E, Krutmann J, Davidson R, Kraemer KH, Lehmann AR (2001) Two individuals with features of both xeroderma pigmentosum and trichothiodystrophy highlight the complexity of the clinical outcomes of mutations in the XPD gene. Hum Mol Genet 10: 2539-2547 Weber A, Chung HJ, Springer E, Heitzmann D, Warth R (2010) The TFIIH subunit p89 (XPB) localizes to the centrosome during mitosis. Cell Oncol 32: 121-130 Wolski SC, Kuper J, Hanzelmann P, Truglio JJ, Croteau DL, Van Houten B, Kisker C (2008) Crys Matsumoto, Yaginuma, Igarashi, Imura, Hasegawa, Iwabuchi, Date, Mori, Ishizaki, Yamashita, Inobe, Matsunaga (CR31) 2007; 120 Santagati, Botta, Stefanini, Pedrini (CR37) 2001; 29 Zotter, Luijsterburg, Warmerdam, Ibrahim, Nigg, van Cappellen, Hoeijmakers, van Driel, Vermeulen, Houtsmuller (CR50) 2006; 26 Dupuy, Lafforet, Rachman (CR10) 1974; 29 Liu, Rudolf, Johnson, McMahon, Oke, Carter, McRobbie, Brown, Naismith, White (CR30) 2008; 133 Essers, Theil, Baldeyron, van Cappellen, Houtsmuller, Kanaar, Vermeulen (CR11) 2005; 25 Hoogstraten, Nigg, Heath, Mullenders, van Driel, Hoeijmakers, Vermeulen, Houtsmuller (CR22) 2002; 10 Hanawalt (CR20) 1994; 266 van Vuuren, Appeldoorn, Odijk, Yasui, Jaspers, Bootsma, Hoeijmakers (CR45) 1993; 12 Fan, Fuss, Cheng, Arvai, Hammel, Roberts, Cooper, Tainer (CR12) 2008; 133 Staresincic, Fagbemi, Enzlin, Gourdin, Wijgers, Dunand‐Sauthier, Giglia‐Mari, Clarkson, Vermeulen, Scharer (CR39) 2009; 28 Ito, Kuraoka, Chymkowitch, Compe, Takedachi, Ishigami, Coin, Egly, Tanaka (CR24) 2007; 26 Krasikova, Rechkunova, Maltseva, Petruseva, Lavrik (CR28) 2010; 38 Feaver, Svejstrup, Henry, Kornberg (CR13) 1994; 79 Fousteri, Mullenders (CR14) 2008; 18 Giglia‐Mari, Miquel, Theil, Mari, Hoogstraten, Ng, Dinant, Hoeijmakers, Vermeulen (CR16) 2006; 4 van Hoffen, Kalle, de Jong‐Versteeg, Lehmann, van Zeeland, Mullenders (CR44) 1999; 27 Berneburg, Lowe, Nardo, Araujo, Fousteri, Green, Krutmann, Wood, Stefanini, Lehmann (CR2) 2000; 19 Giannattasio, Follonier, Tourriere, Puddu, Lazzaro, Pasero, Lopes, Plevani, Muzi‐Falconi (CR15) 2010; 40 Hammel, Yu, Mahaney, Cai, Ye, Phipps, Rambo, Hura, Pelikan, So, Abolfath, Chen, Lees‐Miller, Tainer (CR19) 2010; 285 Sertic, Pizzi, Cloney, Lehmann, Marini, Plevani, Muzi‐Falconi (CR38) 2011; 108 Coin, Oksenych, Mocquet, Groh, Blattner, Egly (CR7) 2008; 31 Sandrock, Egly (CR36) 2001; 276 Weber, Chung, Springer, Heitzmann, Warth (CR48) 2010; 32 Wolski, Kuper, Hanzelmann, Truglio, Croteau, Van Houten, Kisker (CR49) 2008; 6 Broughton, Berneburg, Fawcett, Taylor, Arlett, Nardo, Stefanini, Menefee, Price, Queille, Sarasin, Bohnert, Krutmann, Davidson, Kraemer, Lehmann (CR4) 2001; 10 Mone, Volker, Nikaido, Mullenders, van Zeeland, Verschure, Manders, van Driel (CR32) 2001; 2 Ito, Tan, Andoh, Narita, Seki, Hirano, Narita, Kuraoka, Hiraoka, Tanaka (CR25) 2010; 39 Godon, Cordelieres, Biard, Giocanti, Megnin‐Chanet, Hall, Favaudon (CR18) 2008; 36 Sugasawa (CR40) 2010; 685 Kraemer, Patronas, Schiffmann, Brooks, Tamura, Digiovanna (CR27) 2007; 145 Moser, Kool, Giakzidis, Caldecott, Mullenders, Fousteri (CR33) 2007; 27 Theron, Fousteri, Volker, Harries, Botta, Stefanini, Fujimoto, Andressoo, Mitchell, Jaspers, McDaniel, Mullenders, Lehmann (CR42) 2005; 25 de Boer, Andressoo, de Wit, Huijmans, Beems, van Steeg, Weeda, van der Horst, van Leeuwen, Themmen, Meradji, Hoeijmakers (CR8) 2002; 296 Oksenych, Coin (CR35) 2010; 9 Douki, Cadet (CR9) 1992; 15 Ogi, Limsirichaikul, Overmeer, Volker, Takenaka, Cloney, Nakazawa, Niimi, Miki, Jaspers, Mullenders, Yamashita, Fousteri, Lehmann (CR34) 2010; 37 Lieber (CR29) 1997; 19 Coin, Bergmann, Tremeau‐Bravard, Egly (CR6) 1999; 18 Hoogstraten, Bergink, Ng, Verbiest, Luijsterburg, Geverts, Raams, Dinant, Hoeijmakers, Vermeulen, Houtsmuller (CR21) 2008; 121 Giglia‐Mari, Theil, Mari, Mourgues, Nonnekens, Andrieux, de Wit, Miquel, Wijgers, Maas, Fousteri, Hoeijmakers, Vermeulen (CR17) 2009; 7 Bootsma, Hoeijmakers (CR3) 1993; 363 Tishkoff, Amin, Viars, Arden, Kolodner (CR43) 1998; 58 Broughton, Thompson, Harcourt, Vermeulen, Hoeijmakers, Botta, Stefanini, King, Weber, Cole (CR5) 1995; 56 Volker, Mone, Karmakar, van Hoffen, Schul, Vermeulen, Hoeijmakers, van Driel, van Zeeland, Mullenders (CR46) 2001; 8 Sugasawa, Ng, Masutani, Iwai, van der Spek, Eker, Hanaoka, Bootsma, Hoeijmakers (CR41) 1998; 2 Keriel, Stary, Sarasin, Rochette‐Egly, Egly (CR26) 2002; 109 Hwang, Moncollin, Vermeulen, Seroz, van Vuuren, Hoeijmakers, Egly (CR23) 1996; 271 Andressoo, Mitchell, de Wit, Hoogstraten, Volker, Toussaint, Speksnijder, Beems, van Steeg, Jans, de Zeeuw, Jaspers, Raams, Lehmann, Vermeulen, Hoeijmakers, van der Horst (CR1) 2006; 10 Vrouwe, Pines, Overmeer, Hanada, Mullenders (CR47) 2011; 124 2007; 145 2010; 32 2010; 38 2010; 37 2002; 296 2006; 10 2010; 39 2008; 18 1995; 56 1999; 27 2002; 10 2007; 120 2010; 685 2008; 36 2010; 285 2006; 4 2008; 6 1992; 15 2008; 31 2001; 29 2008; 121 1993; 363 2010; 40 2005; 25 2009; 28 1994; 266 2001; 276 1993; 12 2011; 124 2000; 19 2011; 108 1999; 18 2001; 8 2006; 26 1997; 19 1996; 271 1994; 79 2009; 7 2001; 2 1998; 2 2002; 109 2008; 133 1974; 29 2007; 26 2010; 9 1998; 58 2001; 10 2007; 27 19279666 - EMBO J. 2009 Apr 22;28(8):1111-20 20227374 - Mol Cell. 2010 Mar 12;37(5):714-27 1453273 - J Photochem Photobiol B. 1992 Aug 31;15(3):199-213 18578568 - PLoS Biol. 2008 Jun 24;6(6):e149 20016270 - Cell Cycle. 2010 Jan 1;9(1):90-6 17276014 - Neuroscience. 2007 Apr 14;145(4):1388-96 8001136 - Cell. 1994 Dec 16;79(6):1103-9 21808022 - Proc Natl Acad Sci U S A. 2011 Aug 16;108(33):13647-52 18166977 - Cell Res. 2008 Jan;18(1):73-84 12453423 - Mol Cell. 2002 Nov;10(5):1163-74 9823303 - Cancer Res. 1998 Nov 15;58(22):5027-31 17466625 - Mol Cell. 2007 Apr 27;26(2):231-43 16669699 - PLoS Biol. 2006 Jun;4(6):e156 17327276 - J Cell Sci. 2007 Mar 15;120(Pt 6):1104-12 21224401 - J Cell Sci. 2011 Feb 1;124(Pt 3):435-46 17000769 - Mol Cell Biol. 2006 Dec;26(23):8868-79 8483493 - Nature. 1993 May 13;363(6425):114-5 16135823 - Mol Cell Biol. 2005 Sep;25(18):8368-78 20932474 - Mol Cell. 2010 Oct 8;40(1):50-62 18510924 - Cell. 2008 May 30;133(5):789-800 18614043 - Mol Cell. 2008 Jul 11;31(1):9-20 11713193 - EMBO Rep. 2001 Nov;2(11):1013-7 11950998 - Science. 2002 May 17;296(5571):1276-9 19841728 - PLoS Biol. 2009 Oct;7(10):e1000220 9080773 - Bioessays. 1997 Mar;19(3):233-40 17643379 - Mol Cell. 2007 Jul 20;27(2):311-23 9734359 - Mol Cell. 1998 Aug;2(2):223-32 20693538 - Nucleic Acids Res. 2010 Dec;38(22):8083-94 11266560 - Nucleic Acids Res. 2001 Apr 1;29(7):1574-81 20797633 - Mol Cell. 2010 Aug 27;39(4):632-40 8663148 - J Biol Chem. 1996 Jul 5;271(27):15898-904 18682493 - J Cell Sci. 2008 Sep 1;121(Pt 17):2850-9 7801121 - Science. 1994 Dec 23;266(5193):1957-8 19682467 - Mutat Res. 2010 Mar 1;685(1-2):29-37 10390531 - Nucleic Acids Res. 1999 Jul 15;27(14):2898-904 7825573 - Am J Hum Genet. 1995 Jan;56(1):167-74 16227586 - Mol Cell Biol. 2005 Nov;25(21):9350-9 18510925 - Cell. 2008 May 30;133(5):801-12 11511374 - Mol Cell. 2001 Jul;8(1):213-24 10698956 - EMBO J. 2000 Mar 1;19(5):1157-66 11955452 - Cell. 2002 Apr 5;109(1):125-35 8253091 - EMBO J. 1993 Sep;12(9):3693-701 11445587 - J Biol Chem. 2001 Sep 21;276(38):35328-33 4855436 - Helv Paediatr Acta. 1974 Aug;29(3):213-9 10064601 - EMBO J. 1999 Mar 1;18(5):1357-66 16904611 - Cancer Cell. 2006 Aug;10(2):121-32 11709541 - Hum Mol Genet. 2001 Oct 15;10(22):2539-47 18603595 - Nucleic Acids Res. 2008 Aug;36(13):4454-64 20208140 - Cell Oncol. 2010;32(1-2):121-30 19893054 - J Biol Chem. 2010 Jan 8;285(2):1414-23 |
References_xml | – reference: Theron T, Fousteri MI, Volker M, Harries LW, Botta E, Stefanini M, Fujimoto M, Andressoo JO, Mitchell J, Jaspers NG, McDaniel LD, Mullenders LH, Lehmann AR (2005) Transcription-associated breaks in xeroderma pigmentosum group D cells from patients with combined features of xeroderma pigmentosum and Cockayne syndrome. Mol Cell Biol 25: 8368-8378 – reference: Volker M, Mone MJ, Karmakar P, van Hoffen A, Schul W, Vermeulen W, Hoeijmakers JH, van Driel R, van Zeeland AA, Mullenders LH (2001) Sequential assembly of the nucleotide excision repair factors in vivo. Mol Cell 8: 213-224 – reference: Oksenych V, Coin F (2010) The long unwinding road: XPB and XPD helicases in damaged DNA opening. Cell Cycle 9: 90-96 – reference: Hwang JR, Moncollin V, Vermeulen W, Seroz T, van Vuuren H, Hoeijmakers JH, Egly JM (1996) A 3′→5′ XPB helicase defect in repair/transcription factor TFIIH of xeroderma pigmentosum group B affects both DNA repair and transcription. J Biol Chem 271: 15898-15904 – reference: Hammel M, Yu Y, Mahaney BL, Cai B, Ye R, Phipps BM, Rambo RP, Hura GL, Pelikan M, So S, Abolfath RM, Chen DJ, Lees-Miller SP, Tainer JA (2010) Ku and DNA-dependent protein kinase dynamic conformations and assembly regulate DNA binding and the initial non-homologous end joining complex. J Biol Chem 285: 1414-1423 – reference: Sertic S, Pizzi S, Cloney R, Lehmann AR, Marini F, Plevani P, Muzi-Falconi M (2011) Human exonuclease 1 connects nucleotide excision repair (NER) processing with checkpoint activation in response to UV irradiation. Proc Natl Acad Sci USA 108: 13647-13652 – reference: van Hoffen A, Kalle WH, de Jong-Versteeg A, Lehmann AR, van Zeeland AA, Mullenders LH (1999) Cells from XP-D and XP-D-CS patients exhibit equally inefficient repair of UV-induced damage in transcribed genes but different capacity to recover UV-inhibited transcription. Nucleic Acids Res 27: 2898-2904 – reference: Giglia-Mari G, Miquel C, Theil AF, Mari PO, Hoogstraten D, Ng JM, Dinant C, Hoeijmakers JH, Vermeulen W (2006) Dynamic interaction of TTDA with TFIIH is stabilized by nucleotide excision repair in living cells. PLoS Biol 4: e156 – reference: Douki T, Cadet J (1992) Far-UV photochemistry and photosensitization of 2′-deoxycytidylyl-(3′-5′)-thymidine: isolation and characterization of the main photoproducts. J Photochem Photobiol B 15: 199-213 – reference: Liu H, Rudolf J, Johnson KA, McMahon SA, Oke M, Carter L, McRobbie AM, Brown SE, Naismith JH, White MF (2008) Structure of the DNA repair helicase XPD. Cell 133: 801-812 – reference: Mone MJ, Volker M, Nikaido O, Mullenders LH, van Zeeland AA, Verschure PJ, Manders EM, van Driel R (2001) Local UV-induced DNA damage in cell nuclei results in local transcription inhibition. EMBO Rep 2: 1013-1017 – reference: Giglia-Mari G, Theil AF, Mari PO, Mourgues S, Nonnekens J, Andrieux LO, de Wit J, Miquel C, Wijgers N, Maas A, Fousteri M, Hoeijmakers JH, Vermeulen W (2009) Differentiation driven changes in the dynamic organization of Basal transcription initiation. PLoS Biol 7: e1000220 – reference: Moser J, Kool H, Giakzidis I, Caldecott K, Mullenders LH, Fousteri MI (2007) Sealing of chromosomal DNA nicks during nucleotide excision repair requires XRCC1 and DNA ligase III alpha in a cell-cycle-specific manner. Mol Cell 27: 311-323 – reference: Hanawalt PC (1994) Transcription-coupled repair and human disease. Science 266: 1957-1958 – reference: Andressoo JO, Mitchell JR, de Wit J, Hoogstraten D, Volker M, Toussaint W, Speksnijder E, Beems RB, van Steeg H, Jans J, de Zeeuw CI, Jaspers NG, Raams A, Lehmann AR, Vermeulen W, Hoeijmakers JH, van der Horst GT (2006) An Xpd mouse model for the combined xeroderma pigmentosum/Cockayne syndrome exhibiting both cancer predisposition and segmental progeria. Cancer Cell 10: 121-132 – reference: Kraemer KH, Patronas NJ, Schiffmann R, Brooks BP, Tamura D, Digiovanna JJ (2007) Xeroderma pigmentosum, trichothiodystrophy and Cockayne syndrome: a complex genotype-phenotype relationship.. Neuroscience 145: 1388-1396 – reference: Feaver WJ, Svejstrup JQ, Henry NL, Kornberg RD (1994) Relationship of CDK-activating kinase and RNA polymerase II CTD kinase TFIIH/TFIIK. Cell 79: 1103-1109 – reference: Coin F, Oksenych V, Mocquet V, Groh S, Blattner C, Egly JM (2008) Nucleotide excision repair driven by the dissociation of CAK from TFIIH. Mol Cell 31: 9-20 – reference: Tishkoff DX, Amin NS, Viars CS, Arden KC, Kolodner RD (1998) Identification of a human gene encoding a homologue of Saccharomyces cerevisiae EXO1, an exonuclease implicated in mismatch repair and recombination. Cancer Res 58: 5027-5031 – reference: Sandrock B, Egly JM (2001) A yeast four-hybrid system identifies Cdk-activating kinase as a regulator of the XPD helicase, a subunit of transcription factor IIH. J Biol Chem 276: 35328-35333 – reference: de Boer J, Andressoo JO, de Wit J, Huijmans J, Beems RB, van Steeg H, Weeda G, van der Horst GT, van Leeuwen W, Themmen AP, Meradji M, Hoeijmakers JH (2002) Premature aging in mice deficient in DNA repair and transcription. Science 296: 1276-1279 – reference: Fan L, Fuss JO, Cheng QJ, Arvai AS, Hammel M, Roberts VA, Cooper PK, Tainer JA (2008) XPD helicase structures and activities: insights into the cancer and aging phenotypes from XPD mutations. Cell 133: 789-800 – reference: Santagati F, Botta E, Stefanini M, Pedrini AM (2001) Different dynamics in nuclear entry of subunits of the repair/transcription factor TFIIH. Nucleic Acids Res 29: 1574-1581 – reference: Hoogstraten D, Nigg AL, Heath H, Mullenders LH, van Driel R, Hoeijmakers JH, Vermeulen W, Houtsmuller AB (2002) Rapid switching of TFIIH between RNA polymerase I and II transcription and DNA repair in vivo. Mol Cell 10: 1163-1174 – reference: Bootsma D, Hoeijmakers JH (1993) DNA repair. Engagement with transcription. Nature 363: 114-115 – reference: Berneburg M, Lowe JE, Nardo T, Araujo S, Fousteri MI, Green MH, Krutmann J, Wood RD, Stefanini M, Lehmann AR (2000) UV damage causes uncontrolled DNA breakage in cells from patients with combined features of XP-D and Cockayne syndrome. EMBO J 19: 1157-1166 – reference: Hoogstraten D, Bergink S, Ng JM, Verbiest VH, Luijsterburg MS, Geverts B, Raams A, Dinant C, Hoeijmakers JH, Vermeulen W, Houtsmuller AB (2008) Versatile DNA damage detection by the global genome nucleotide excision repair protein XPC. J Cell Sci 121: 2850-2859 – reference: Ogi T, Limsirichaikul S, Overmeer RM, Volker M, Takenaka K, Cloney R, Nakazawa Y, Niimi A, Miki Y, Jaspers NG, Mullenders LH, Yamashita S, Fousteri MI, Lehmann AR (2010) Three DNA polymerases, recruited by different mechanisms, carry out NER repair synthesis in human cells. Mol Cell 37: 714-727 – reference: Dupuy JM, Lafforet D, Rachman F (1974) Xeroderma pigmentosum with liver involvement. Helv Paediatr Acta 29: 213-219 – reference: Staresincic L, Fagbemi AF, Enzlin JH, Gourdin AM, Wijgers N, Dunand-Sauthier I, Giglia-Mari G, Clarkson SG, Vermeulen W, Scharer OD (2009) Coordination of dual incision and repair synthesis in human nucleotide excision repair. EMBO J 28: 1111-1120 – reference: Keriel A, Stary A, Sarasin A, Rochette-Egly C, Egly JM (2002) XPD mutations prevent TFIIH-dependent transactivation by nuclear receptors and phosphorylation of RARalpha. Cell 109: 125-135 – reference: Godon C, Cordelieres FP, Biard D, Giocanti N, Megnin-Chanet F, Hall J, Favaudon V (2008) PARP inhibition versus PARP-1 silencing: different outcomes in terms of single-strand break repair and radiation susceptibility. Nucleic Acids Res 36: 4454-4464 – reference: Zotter A, Luijsterburg MS, Warmerdam DO, Ibrahim S, Nigg A, van Cappellen WA, Hoeijmakers JH, van Driel R, Vermeulen W, Houtsmuller AB (2006) Recruitment of the nucleotide excision repair endonuclease XPG to sites of UV-induced dna damage depends on functional TFIIH. Mol Cell Biol 26: 8868-8879 – reference: Coin F, Bergmann E, Tremeau-Bravard A, Egly JM (1999) Mutations in XPB and XPD helicases found in xeroderma pigmentosum patients impair the transcription function of TFIIH. EMBO J 18: 1357-1366 – reference: Ito S, Tan LJ, Andoh D, Narita T, Seki M, Hirano Y, Narita K, Kuraoka I, Hiraoka Y, Tanaka K (2010) MMXD, a TFIIH-independent XPD-MMS19 protein complex involved in chromosome segregation. Mol Cell 39: 632-640 – reference: Matsumoto M, Yaginuma K, Igarashi A, Imura M, Hasegawa M, Iwabuchi K, Date T, Mori T, Ishizaki K, Yamashita K, Inobe M, Matsunaga T (2007) Perturbed gap-filling synthesis in nucleotide excision repair causes histone H2AX phosphorylation in human quiescent cells. J Cell Sci 120: 1104-1112 – reference: Weber A, Chung HJ, Springer E, Heitzmann D, Warth R (2010) The TFIIH subunit p89 (XPB) localizes to the centrosome during mitosis. Cell Oncol 32: 121-130 – reference: Wolski SC, Kuper J, Hanzelmann P, Truglio JJ, Croteau DL, Van Houten B, Kisker C (2008) Crystal structure of the FeS cluster-containing nucleotide excision repair helicase XPD. PLoS Biol 6: e149 – reference: Vrouwe MG, Pines A, Overmeer RM, Hanada K, Mullenders LH (2011) UV-induced photolesions elicit ATR-kinase-dependent signaling in non-cycling cells through nucleotide excision repair-dependent and -independent pathways. J Cell Sci 124: 435-446 – reference: Broughton BC, Thompson AF, Harcourt SA, Vermeulen W, Hoeijmakers JH, Botta E, Stefanini M, King MD, Weber CA, Cole J et al (1995) Molecular and cellular analysis of the DNA repair defect in a patient in xeroderma pigmentosum complementation group D who has the clinical features of xeroderma pigmentosum and Cockayne syndrome. Am J Hum Genet 56: 167-174 – reference: Lieber MR (1997) The FEN-1 family of structure-specific nucleases in eukaryotic DNA replication, recombination and repair. Bioessays 19: 233-240 – reference: Sugasawa K, Ng JM, Masutani C, Iwai S, van der Spek PJ, Eker AP, Hanaoka F, Bootsma D, Hoeijmakers JH (1998) Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair. Mol Cell 2: 223-232 – reference: van Vuuren AJ, Appeldoorn E, Odijk H, Yasui A, Jaspers NG, Bootsma D, Hoeijmakers JH (1993) Evidence for a repair enzyme complex involving ERCC1 and complementing activities of ERCC4, ERCC11 and xeroderma pigmentosum group F. EMBO J 12: 3693-3701 – reference: Fousteri M, Mullenders LH (2008) Transcription-coupled nucleotide excision repair in mammalian cells: molecular mechanisms and biological effects. Cell Res 18: 73-84 – reference: Giannattasio M, Follonier C, Tourriere H, Puddu F, Lazzaro F, Pasero P, Lopes M, Plevani P, Muzi-Falconi M (2010) Exo1 competes with repair synthesis, converts NER intermediates to long ssDNA gaps, and promotes checkpoint activation. Mol Cell 40: 50-62 – reference: Krasikova YS, Rechkunova NI, Maltseva EA, Petruseva IO, Lavrik OI (2010) Localization of xeroderma pigmentosum group A protein and replication protein A on damaged DNA in nucleotide excision repair. Nucleic Acids Res 38: 8083-8094 – reference: Broughton BC, Berneburg M, Fawcett H, Taylor EM, Arlett CF, Nardo T, Stefanini M, Menefee E, Price VH, Queille S, Sarasin A, Bohnert E, Krutmann J, Davidson R, Kraemer KH, Lehmann AR (2001) Two individuals with features of both xeroderma pigmentosum and trichothiodystrophy highlight the complexity of the clinical outcomes of mutations in the XPD gene. Hum Mol Genet 10: 2539-2547 – reference: Sugasawa K (2010) Regulation of damage recognition in mammalian global genomic nucleotide excision repair. Mutat Res 685: 29-37 – reference: Essers J, Theil AF, Baldeyron C, van Cappellen WA, Houtsmuller AB, Kanaar R, Vermeulen W (2005) Nuclear dynamics of PCNA in DNA replication and repair. Mol Cell Biol 25: 9350-9359 – reference: Ito S, Kuraoka I, Chymkowitch P, Compe E, Takedachi A, Ishigami C, Coin F, Egly JM, Tanaka K (2007) XPG stabilizes TFIIH, allowing transactivation of nuclear receptors: implications for Cockayne syndrome in XP-G/CS patients. Mol Cell 26: 231-243 – volume: 29 start-page: 1574 year: 2001 end-page: 1581 ident: CR37 article-title: Different dynamics in nuclear entry of subunits of the repair/transcription factor TFIIH publication-title: Nucleic Acids Res – volume: 31 start-page: 9 year: 2008 end-page: 20 ident: CR7 article-title: Nucleotide excision repair driven by the dissociation of CAK from TFIIH publication-title: Mol Cell – volume: 685 start-page: 29 year: 2010 end-page: 37 ident: CR40 article-title: Regulation of damage recognition in mammalian global genomic nucleotide excision repair publication-title: Mutat Res – volume: 285 start-page: 1414 year: 2010 end-page: 1423 ident: CR19 article-title: Ku and DNA‐dependent protein kinase dynamic conformations and assembly regulate DNA binding and the initial non‐homologous end joining complex publication-title: J Biol Chem – volume: 38 start-page: 8083 year: 2010 end-page: 8094 ident: CR28 article-title: Localization of xeroderma pigmentosum group A protein and replication protein A on damaged DNA in nucleotide excision repair publication-title: Nucleic Acids Res – volume: 27 start-page: 2898 year: 1999 end-page: 2904 ident: CR44 article-title: Cells from XP‐D and XP‐D‐CS patients exhibit equally inefficient repair of UV‐induced damage in transcribed genes but different capacity to recover UV‐inhibited transcription publication-title: Nucleic Acids Res – volume: 12 start-page: 3693 year: 1993 end-page: 3701 ident: CR45 article-title: Evidence for a repair enzyme complex involving ERCC1 and complementing activities of ERCC4, ERCC11 and xeroderma pigmentosum group F publication-title: EMBO J – volume: 271 start-page: 15898 year: 1996 end-page: 15904 ident: CR23 article-title: A 3′→5′ XPB helicase defect in repair/transcription factor TFIIH of xeroderma pigmentosum group B affects both DNA repair and transcription publication-title: J Biol Chem – volume: 2 start-page: 223 year: 1998 end-page: 232 ident: CR41 article-title: Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair publication-title: Mol Cell – volume: 124 start-page: 435 year: 2011 end-page: 446 ident: CR47 article-title: UV‐induced photolesions elicit ATR‐kinase‐dependent signaling in non‐cycling cells through nucleotide excision repair‐dependent and ‐independent pathways publication-title: J Cell Sci – volume: 9 start-page: 90 year: 2010 end-page: 96 ident: CR35 article-title: The long unwinding road: XPB and XPD helicases in damaged DNA opening publication-title: Cell Cycle – volume: 4 start-page: e156 year: 2006 ident: CR16 article-title: Dynamic interaction of TTDA with TFIIH is stabilized by nucleotide excision repair in living cells publication-title: PLoS Biol – volume: 25 start-page: 8368 year: 2005 end-page: 8378 ident: CR42 article-title: Transcription‐associated breaks in xeroderma pigmentosum group D cells from patients with combined features of xeroderma pigmentosum and Cockayne syndrome publication-title: Mol Cell Biol – volume: 28 start-page: 1111 year: 2009 end-page: 1120 ident: CR39 article-title: Coordination of dual incision and repair synthesis in human nucleotide excision repair publication-title: EMBO J – volume: 108 start-page: 13647 year: 2011 end-page: 13652 ident: CR38 article-title: Human exonuclease 1 connects nucleotide excision repair (NER) processing with checkpoint activation in response to UV irradiation publication-title: Proc Natl Acad Sci USA – volume: 10 start-page: 2539 year: 2001 end-page: 2547 ident: CR4 article-title: Two individuals with features of both xeroderma pigmentosum and trichothiodystrophy highlight the complexity of the clinical outcomes of mutations in the XPD gene publication-title: Hum Mol Genet – volume: 58 start-page: 5027 year: 1998 end-page: 5031 ident: CR43 article-title: Identification of a human gene encoding a homologue of Saccharomyces cerevisiae EXO1, an exonuclease implicated in mismatch repair and recombination publication-title: Cancer Res – volume: 363 start-page: 114 year: 1993 end-page: 115 ident: CR3 article-title: DNA repair. Engagement with transcription publication-title: Nature – volume: 121 start-page: 2850 year: 2008 end-page: 2859 ident: CR21 article-title: Versatile DNA damage detection by the global genome nucleotide excision repair protein XPC publication-title: J Cell Sci – volume: 26 start-page: 8868 year: 2006 end-page: 8879 ident: CR50 article-title: Recruitment of the nucleotide excision repair endonuclease XPG to sites of UV‐induced dna damage depends on functional TFIIH publication-title: Mol Cell Biol – volume: 18 start-page: 1357 year: 1999 end-page: 1366 ident: CR6 article-title: Mutations in XPB and XPD helicases found in xeroderma pigmentosum patients impair the transcription function of TFIIH publication-title: EMBO J – volume: 296 start-page: 1276 year: 2002 end-page: 1279 ident: CR8 article-title: Premature aging in mice deficient in DNA repair and transcription publication-title: Science – volume: 25 start-page: 9350 year: 2005 end-page: 9359 ident: CR11 article-title: Nuclear dynamics of PCNA in DNA replication and repair publication-title: Mol Cell Biol – volume: 133 start-page: 789 year: 2008 end-page: 800 ident: CR12 article-title: XPD helicase structures and activities: insights into the cancer and aging phenotypes from XPD mutations publication-title: Cell – volume: 133 start-page: 801 year: 2008 end-page: 812 ident: CR30 article-title: Structure of the DNA repair helicase XPD publication-title: Cell – volume: 37 start-page: 714 year: 2010 end-page: 727 ident: CR34 article-title: Three DNA polymerases, recruited by different mechanisms, carry out NER repair synthesis in human cells publication-title: Mol Cell – volume: 19 start-page: 233 year: 1997 end-page: 240 ident: CR29 article-title: The FEN‐1 family of structure‐specific nucleases in eukaryotic DNA replication, recombination and repair publication-title: Bioessays – volume: 2 start-page: 1013 year: 2001 end-page: 1017 ident: CR32 article-title: Local UV‐induced DNA damage in cell nuclei results in local transcription inhibition publication-title: EMBO Rep – volume: 29 start-page: 213 year: 1974 end-page: 219 ident: CR10 article-title: Xeroderma pigmentosum with liver involvement publication-title: Helv Paediatr Acta – volume: 120 start-page: 1104 year: 2007 end-page: 1112 ident: CR31 article-title: Perturbed gap‐filling synthesis in nucleotide excision repair causes histone H2AX phosphorylation in human quiescent cells publication-title: J Cell Sci – volume: 18 start-page: 73 year: 2008 end-page: 84 ident: CR14 article-title: Transcription‐coupled nucleotide excision repair in mammalian cells: molecular mechanisms and biological effects publication-title: Cell Res – volume: 10 start-page: 121 year: 2006 end-page: 132 ident: CR1 article-title: An Xpd mouse model for the combined xeroderma pigmentosum/Cockayne syndrome exhibiting both cancer predisposition and segmental progeria publication-title: Cancer Cell – volume: 109 start-page: 125 year: 2002 end-page: 135 ident: CR26 article-title: XPD mutations prevent TFIIH‐dependent transactivation by nuclear receptors and phosphorylation of RARalpha publication-title: Cell – volume: 32 start-page: 121 year: 2010 end-page: 130 ident: CR48 article-title: The TFIIH subunit p89 (XPB) localizes to the centrosome during mitosis publication-title: Cell Oncol – volume: 27 start-page: 311 year: 2007 end-page: 323 ident: CR33 article-title: Sealing of chromosomal DNA nicks during nucleotide excision repair requires XRCC1 and DNA ligase III alpha in a cell‐cycle‐specific manner publication-title: Mol Cell – volume: 39 start-page: 632 year: 2010 end-page: 640 ident: CR25 article-title: MMXD, a TFIIH‐independent XPD‐MMS19 protein complex involved in chromosome segregation publication-title: Mol Cell – volume: 276 start-page: 35328 year: 2001 end-page: 35333 ident: CR36 article-title: A yeast four‐hybrid system identifies Cdk‐activating kinase as a regulator of the XPD helicase, a subunit of transcription factor IIH publication-title: J Biol Chem – volume: 19 start-page: 1157 year: 2000 end-page: 1166 ident: CR2 article-title: UV damage causes uncontrolled DNA breakage in cells from patients with combined features of XP‐D and Cockayne syndrome publication-title: EMBO J – volume: 36 start-page: 4454 year: 2008 end-page: 4464 ident: CR18 article-title: PARP inhibition versus PARP‐1 silencing: different outcomes in terms of single‐strand break repair and radiation susceptibility publication-title: Nucleic Acids Res – volume: 15 start-page: 199 year: 1992 end-page: 213 ident: CR9 article-title: Far‐UV photochemistry and photosensitization of 2′‐deoxycytidylyl‐(3′‐5′)‐thymidine: isolation and characterization of the main photoproducts publication-title: J Photochem Photobiol B – volume: 40 start-page: 50 year: 2010 end-page: 62 ident: CR15 article-title: Exo1 competes with repair synthesis, converts NER intermediates to long ssDNA gaps, and promotes checkpoint activation publication-title: Mol Cell – volume: 266 start-page: 1957 year: 1994 end-page: 1958 ident: CR20 article-title: Transcription‐coupled repair and human disease publication-title: Science – volume: 145 start-page: 1388 year: 2007 end-page: 1396 ident: CR27 article-title: Xeroderma pigmentosum, trichothiodystrophy and Cockayne syndrome: a complex genotype‐phenotype relationship publication-title: Neuroscience – volume: 6 start-page: e149 year: 2008 ident: CR49 article-title: Crystal structure of the FeS cluster‐containing nucleotide excision repair helicase XPD publication-title: PLoS Biol – volume: 7 start-page: e1000220 year: 2009 ident: CR17 article-title: Differentiation driven changes in the dynamic organization of Basal transcription initiation publication-title: PLoS Biol – volume: 8 start-page: 213 year: 2001 end-page: 224 ident: CR46 article-title: Sequential assembly of the nucleotide excision repair factors publication-title: Mol Cell – volume: 79 start-page: 1103 year: 1994 end-page: 1109 ident: CR13 article-title: Relationship of CDK‐activating kinase and RNA polymerase II CTD kinase TFIIH/TFIIK publication-title: Cell – volume: 56 start-page: 167 year: 1995 end-page: 174 ident: CR5 article-title: Molecular and cellular analysis of the DNA repair defect in a patient in xeroderma pigmentosum complementation group D who has the clinical features of xeroderma pigmentosum and Cockayne syndrome publication-title: Am J Hum Genet – volume: 10 start-page: 1163 year: 2002 end-page: 1174 ident: CR22 article-title: Rapid switching of TFIIH between RNA polymerase I and II transcription and DNA repair publication-title: Mol Cell – volume: 26 start-page: 231 year: 2007 end-page: 243 ident: CR24 article-title: XPG stabilizes TFIIH, allowing transactivation of nuclear receptors: implications for Cockayne syndrome in XP‐G/CS patients publication-title: Mol Cell – volume: 58 start-page: 5027 year: 1998 end-page: 5031 article-title: Identification of a human gene encoding a homologue of Saccharomyces cerevisiae EXO1, an exonuclease implicated in mismatch repair and recombination publication-title: Cancer Res – volume: 29 start-page: 213 year: 1974 end-page: 219 article-title: Xeroderma pigmentosum with liver involvement publication-title: Helv Paediatr Acta – volume: 2 start-page: 223 year: 1998 end-page: 232 article-title: Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair publication-title: Mol Cell – volume: 29 start-page: 1574 year: 2001 end-page: 1581 article-title: Different dynamics in nuclear entry of subunits of the repair/transcription factor TFIIH publication-title: Nucleic Acids Res – volume: 124 start-page: 435 year: 2011 end-page: 446 article-title: UV‐induced photolesions elicit ATR‐kinase‐dependent signaling in non‐cycling cells through nucleotide excision repair‐dependent and ‐independent pathways publication-title: J Cell Sci – volume: 145 start-page: 1388 year: 2007 end-page: 1396 article-title: Xeroderma pigmentosum, trichothiodystrophy and Cockayne syndrome: a complex genotype‐phenotype relationship publication-title: Neuroscience – volume: 363 start-page: 114 year: 1993 end-page: 115 article-title: DNA repair. Engagement with transcription publication-title: Nature – volume: 79 start-page: 1103 year: 1994 end-page: 1109 article-title: Relationship of CDK‐activating kinase and RNA polymerase II CTD kinase TFIIH/TFIIK publication-title: Cell – volume: 25 start-page: 9350 year: 2005 end-page: 9359 article-title: Nuclear dynamics of PCNA in DNA replication and repair publication-title: Mol Cell Biol – volume: 28 start-page: 1111 year: 2009 end-page: 1120 article-title: Coordination of dual incision and repair synthesis in human nucleotide excision repair publication-title: EMBO J – volume: 10 start-page: 121 year: 2006 end-page: 132 article-title: An Xpd mouse model for the combined xeroderma pigmentosum/Cockayne syndrome exhibiting both cancer predisposition and segmental progeria publication-title: Cancer Cell – volume: 120 start-page: 1104 year: 2007 end-page: 1112 article-title: Perturbed gap‐filling synthesis in nucleotide excision repair causes histone H2AX phosphorylation in human quiescent cells publication-title: J Cell Sci – volume: 32 start-page: 121 year: 2010 end-page: 130 article-title: The TFIIH subunit p89 (XPB) localizes to the centrosome during mitosis publication-title: Cell Oncol – volume: 19 start-page: 1157 year: 2000 end-page: 1166 article-title: UV damage causes uncontrolled DNA breakage in cells from patients with combined features of XP‐D and Cockayne syndrome publication-title: EMBO J – volume: 133 start-page: 801 year: 2008 end-page: 812 article-title: Structure of the DNA repair helicase XPD publication-title: Cell – volume: 10 start-page: 2539 year: 2001 end-page: 2547 article-title: Two individuals with features of both xeroderma pigmentosum and trichothiodystrophy highlight the complexity of the clinical outcomes of mutations in the XPD gene publication-title: Hum Mol Genet – volume: 10 start-page: 1163 year: 2002 end-page: 1174 article-title: Rapid switching of TFIIH between RNA polymerase I and II transcription and DNA repair publication-title: Mol Cell – volume: 285 start-page: 1414 year: 2010 end-page: 1423 article-title: Ku and DNA‐dependent protein kinase dynamic conformations and assembly regulate DNA binding and the initial non‐homologous end joining complex publication-title: J Biol Chem – volume: 108 start-page: 13647 year: 2011 end-page: 13652 article-title: Human exonuclease 1 connects nucleotide excision repair (NER) processing with checkpoint activation in response to UV irradiation publication-title: Proc Natl Acad Sci USA – volume: 685 start-page: 29 year: 2010 end-page: 37 article-title: Regulation of damage recognition in mammalian global genomic nucleotide excision repair publication-title: Mutat Res – volume: 15 start-page: 199 year: 1992 end-page: 213 article-title: Far‐UV photochemistry and photosensitization of 2′‐deoxycytidylyl‐(3′‐5′)‐thymidine: isolation and characterization of the main photoproducts publication-title: J Photochem Photobiol B – volume: 27 start-page: 2898 year: 1999 end-page: 2904 article-title: Cells from XP‐D and XP‐D‐CS patients exhibit equally inefficient repair of UV‐induced damage in transcribed genes but different capacity to recover UV‐inhibited transcription publication-title: Nucleic Acids Res – volume: 266 start-page: 1957 year: 1994 end-page: 1958 article-title: Transcription‐coupled repair and human disease publication-title: Science – volume: 38 start-page: 8083 year: 2010 end-page: 8094 article-title: Localization of xeroderma pigmentosum group A protein and replication protein A on damaged DNA in nucleotide excision repair publication-title: Nucleic Acids Res – volume: 18 start-page: 1357 year: 1999 end-page: 1366 article-title: Mutations in XPB and XPD helicases found in xeroderma pigmentosum patients impair the transcription function of TFIIH publication-title: EMBO J – volume: 276 start-page: 35328 year: 2001 end-page: 35333 article-title: A yeast four‐hybrid system identifies Cdk‐activating kinase as a regulator of the XPD helicase, a subunit of transcription factor IIH publication-title: J Biol Chem – volume: 8 start-page: 213 year: 2001 end-page: 224 article-title: Sequential assembly of the nucleotide excision repair factors publication-title: Mol Cell – volume: 19 start-page: 233 year: 1997 end-page: 240 article-title: The FEN‐1 family of structure‐specific nucleases in eukaryotic DNA replication, recombination and repair publication-title: Bioessays – volume: 6 start-page: e149 year: 2008 article-title: Crystal structure of the FeS cluster‐containing nucleotide excision repair helicase XPD publication-title: PLoS Biol – volume: 31 start-page: 9 year: 2008 end-page: 20 article-title: Nucleotide excision repair driven by the dissociation of CAK from TFIIH publication-title: Mol Cell – volume: 7 start-page: e1000220 year: 2009 article-title: Differentiation driven changes in the dynamic organization of Basal transcription initiation publication-title: PLoS Biol – volume: 2 start-page: 1013 year: 2001 end-page: 1017 article-title: Local UV‐induced DNA damage in cell nuclei results in local transcription inhibition publication-title: EMBO Rep – volume: 26 start-page: 8868 year: 2006 end-page: 8879 article-title: Recruitment of the nucleotide excision repair endonuclease XPG to sites of UV‐induced dna damage depends on functional TFIIH publication-title: Mol Cell Biol – volume: 18 start-page: 73 year: 2008 end-page: 84 article-title: Transcription‐coupled nucleotide excision repair in mammalian cells: molecular mechanisms and biological effects publication-title: Cell Res – volume: 36 start-page: 4454 year: 2008 end-page: 4464 article-title: PARP inhibition versus PARP‐1 silencing: different outcomes in terms of single‐strand break repair and radiation susceptibility publication-title: Nucleic Acids Res – volume: 26 start-page: 231 year: 2007 end-page: 243 article-title: XPG stabilizes TFIIH, allowing transactivation of nuclear receptors: implications for Cockayne syndrome in XP‐G/CS patients publication-title: Mol Cell – volume: 12 start-page: 3693 year: 1993 end-page: 3701 article-title: Evidence for a repair enzyme complex involving ERCC1 and complementing activities of ERCC4, ERCC11 and xeroderma pigmentosum group F publication-title: EMBO J – volume: 4 start-page: e156 year: 2006 article-title: Dynamic interaction of TTDA with TFIIH is stabilized by nucleotide excision repair in living cells publication-title: PLoS Biol – volume: 133 start-page: 789 year: 2008 end-page: 800 article-title: XPD helicase structures and activities: insights into the cancer and aging phenotypes from XPD mutations publication-title: Cell – volume: 296 start-page: 1276 year: 2002 end-page: 1279 article-title: Premature aging in mice deficient in DNA repair and transcription publication-title: Science – volume: 39 start-page: 632 year: 2010 end-page: 640 article-title: MMXD, a TFIIH‐independent XPD‐MMS19 protein complex involved in chromosome segregation publication-title: Mol Cell – volume: 25 start-page: 8368 year: 2005 end-page: 8378 article-title: Transcription‐associated breaks in xeroderma pigmentosum group D cells from patients with combined features of xeroderma pigmentosum and Cockayne syndrome publication-title: Mol Cell Biol – volume: 37 start-page: 714 year: 2010 end-page: 727 article-title: Three DNA polymerases, recruited by different mechanisms, carry out NER repair synthesis in human cells publication-title: Mol Cell – volume: 121 start-page: 2850 year: 2008 end-page: 2859 article-title: Versatile DNA damage detection by the global genome nucleotide excision repair protein XPC publication-title: J Cell Sci – volume: 27 start-page: 311 year: 2007 end-page: 323 article-title: Sealing of chromosomal DNA nicks during nucleotide excision repair requires XRCC1 and DNA ligase III alpha in a cell‐cycle‐specific manner publication-title: Mol Cell – volume: 109 start-page: 125 year: 2002 end-page: 135 article-title: XPD mutations prevent TFIIH‐dependent transactivation by nuclear receptors and phosphorylation of RARalpha publication-title: Cell – volume: 271 start-page: 15898 year: 1996 end-page: 15904 article-title: A 3′→5′ XPB helicase defect in repair/transcription factor TFIIH of xeroderma pigmentosum group B affects both DNA repair and transcription publication-title: J Biol Chem – volume: 40 start-page: 50 year: 2010 end-page: 62 article-title: Exo1 competes with repair synthesis, converts NER intermediates to long ssDNA gaps, and promotes checkpoint activation publication-title: Mol Cell – volume: 9 start-page: 90 year: 2010 end-page: 96 article-title: The long unwinding road: XPB and XPD helicases in damaged DNA opening publication-title: Cell Cycle – volume: 56 start-page: 167 year: 1995 end-page: 174 article-title: Molecular and cellular analysis of the DNA repair defect in a patient in xeroderma pigmentosum complementation group D who has the clinical features of xeroderma pigmentosum and Cockayne syndrome publication-title: Am J Hum Genet – reference: 17643379 - Mol Cell. 2007 Jul 20;27(2):311-23 – reference: 8001136 - Cell. 1994 Dec 16;79(6):1103-9 – reference: 11709541 - Hum Mol Genet. 2001 Oct 15;10(22):2539-47 – reference: 21808022 - Proc Natl Acad Sci U S A. 2011 Aug 16;108(33):13647-52 – reference: 20932474 - Mol Cell. 2010 Oct 8;40(1):50-62 – reference: 1453273 - J Photochem Photobiol B. 1992 Aug 31;15(3):199-213 – reference: 18603595 - Nucleic Acids Res. 2008 Aug;36(13):4454-64 – reference: 19279666 - EMBO J. 2009 Apr 22;28(8):1111-20 – reference: 17466625 - Mol Cell. 2007 Apr 27;26(2):231-43 – reference: 10698956 - EMBO J. 2000 Mar 1;19(5):1157-66 – reference: 11950998 - Science. 2002 May 17;296(5571):1276-9 – reference: 11511374 - Mol Cell. 2001 Jul;8(1):213-24 – reference: 16904611 - Cancer Cell. 2006 Aug;10(2):121-32 – reference: 7801121 - Science. 1994 Dec 23;266(5193):1957-8 – reference: 21224401 - J Cell Sci. 2011 Feb 1;124(Pt 3):435-46 – reference: 11266560 - Nucleic Acids Res. 2001 Apr 1;29(7):1574-81 – reference: 10390531 - Nucleic Acids Res. 1999 Jul 15;27(14):2898-904 – reference: 7825573 - Am J Hum Genet. 1995 Jan;56(1):167-74 – reference: 18166977 - Cell Res. 2008 Jan;18(1):73-84 – reference: 16669699 - PLoS Biol. 2006 Jun;4(6):e156 – reference: 9823303 - Cancer Res. 1998 Nov 15;58(22):5027-31 – reference: 12453423 - Mol Cell. 2002 Nov;10(5):1163-74 – reference: 9080773 - Bioessays. 1997 Mar;19(3):233-40 – reference: 8483493 - Nature. 1993 May 13;363(6425):114-5 – reference: 18510924 - Cell. 2008 May 30;133(5):789-800 – reference: 17276014 - Neuroscience. 2007 Apr 14;145(4):1388-96 – reference: 8253091 - EMBO J. 1993 Sep;12(9):3693-701 – reference: 20693538 - Nucleic Acids Res. 2010 Dec;38(22):8083-94 – reference: 11955452 - Cell. 2002 Apr 5;109(1):125-35 – reference: 11445587 - J Biol Chem. 2001 Sep 21;276(38):35328-33 – reference: 20797633 - Mol Cell. 2010 Aug 27;39(4):632-40 – reference: 18682493 - J Cell Sci. 2008 Sep 1;121(Pt 17):2850-9 – reference: 19682467 - Mutat Res. 2010 Mar 1;685(1-2):29-37 – reference: 10064601 - EMBO J. 1999 Mar 1;18(5):1357-66 – reference: 16227586 - Mol Cell Biol. 2005 Nov;25(21):9350-9 – reference: 16135823 - Mol Cell Biol. 2005 Sep;25(18):8368-78 – reference: 19841728 - PLoS Biol. 2009 Oct;7(10):e1000220 – reference: 11713193 - EMBO Rep. 2001 Nov;2(11):1013-7 – reference: 20227374 - Mol Cell. 2010 Mar 12;37(5):714-27 – reference: 20016270 - Cell Cycle. 2010 Jan 1;9(1):90-6 – reference: 18578568 - PLoS Biol. 2008 Jun 24;6(6):e149 – reference: 4855436 - Helv Paediatr Acta. 1974 Aug;29(3):213-9 – reference: 18510925 - Cell. 2008 May 30;133(5):801-12 – reference: 9734359 - Mol Cell. 1998 Aug;2(2):223-32 – reference: 20208140 - Cell Oncol. 2010;32(1-2):121-30 – reference: 17000769 - Mol Cell Biol. 2006 Dec;26(23):8868-79 – reference: 18614043 - Mol Cell. 2008 Jul 11;31(1):9-20 – reference: 8663148 - J Biol Chem. 1996 Jul 5;271(27):15898-904 – reference: 17327276 - J Cell Sci. 2007 Mar 15;120(Pt 6):1104-12 – reference: 19893054 - J Biol Chem. 2010 Jan 8;285(2):1414-23 |
SSID | ssj0005871 |
Score | 2.1658602 |
Snippet | Nucleotide excision repair (NER) is a precisely coordinated process essential to avoid DNA damage‐induced cellular malfunction and mutagenesis. Here, we... Nucleotide excision repair (NER) is a precisely coordinated process essential to avoid DNA damage-induced cellular malfunction and mutagenesis. Here, we... Strong tumorigenic effects of a particular mutation in the key nucleotide excision repair factor XPD may not be due to DNA break generation, but caused by... |
SourceID | pubmedcentral proquest pubmed wiley springer istex |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 3550 |
SubjectTerms | Animals Cell Line Deoxyribonucleic acid DNA DNA Damage DNA Repair DNA, Single-Stranded - genetics DNA-Binding Proteins - genetics EMBO13 EMBO24 Endonucleases - genetics Exo1 Humans Irradiation Lesions Mice Mice, Transgenic Molecular biology Mutagenesis Mutation Nuclear Proteins - genetics nucleotide excision repair Signal transduction Transcription Factors - genetics Ultraviolet radiation Ultraviolet Rays Xeroderma Pigmentosum Group D Protein - genetics XPD helicase XPG endonuclease γH2AX |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BKwQXBOUVKMhICHEJTWJv7JxQWbqtKjUXWtibZdcTdXkkJbuV2n-Px3mUFVVviTJJ7HnY45nRNwDv_KaQYJabuKCzibBejc0Eq9gvfM5wZ0wSwKqPyvzgRBzOJ_M-4LbsyyqHNTEs1K45pRj5DgF585xzLj-d_4mpaxRlV_sWGndhM0CXeX2Wc3ld4qHCgSvEWESqigG0kasd_G2bH1TZlX0MSedNYurlTW7m_9WSY8p03aENO9LsETzsXUm228n-MdzBegvudc0lr7bg_nTo5fYEvnXo0iQE1lTsS7nLKEbwC2OKdNSOucUyVGdRrJDZK0aV5m3jX0fHaoI8blYLhwwvu448rPW72KJ9CiezvePpQdx3VIjPCGgtVpTn5BITKVWKVeq8N2eksamojEV1ar2B5w6FSo0qlC24EAYVGqXQ-wIu4c9go25qfAHMuaLChKMonBVWerMWhfLbv3Cy4kbICN4HlurzDjVDm_YnFZHJif5e7uv9spx-nR_PdBrB9sBz3dvPUl9LO4K342M_a0pnmBqbi0Aj89wfT8VtNDQH76L63zzvxDgOKMtUzqXkEcg1AY8EhLy9_qRenAUEbi44ATVG8GFQhX-HHkavg4Zp0jDtNSyCJKjK-PGbyfTe0edDuvHXL29nzCt4QIQU386KbdhYtRf42jtIK_smWMFfjekNpg priority: 102 providerName: ProQuest |
Title | Generation of DNA single-strand displacement by compromised nucleotide excision repair |
URI | https://api.istex.fr/ark:/67375/WNG-GNNCSXTF-1/fulltext.pdf https://link.springer.com/article/10.1038/emboj.2012.193 https://onlinelibrary.wiley.com/doi/abs/10.1038%2Femboj.2012.193 https://www.ncbi.nlm.nih.gov/pubmed/22863773 https://www.proquest.com/docview/1038363337 https://www.proquest.com/docview/1037660944 https://www.proquest.com/docview/1093443261 https://pubmed.ncbi.nlm.nih.gov/PMC3433779 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELboVoheEJRXoFRGQohLIIm9sXPcprstixoh2orcLAc76lJIUHYrtTd-Ar-RX8KM84CFCnFxnNia-DH2PDz6TMhzEAqBjWLtJ2ib8ALYWI9t6cPGZzQzWgcOrPooiw9P-Twf552huOzCKltIS7dN99Fhr-2Xov6EkVjRK1A5NsimBNEXjcjmZDI_nv8K6pDOxHJeFR7KpIdpZPIPCqCL4jBeXqdY_h0fORySrquwTgbN7pDbnfJIJ21z75IbttomN9vrJK-2ya20v73tHslbPGkcdlqXdD-bUPQKfLY_vn1H70ZlqFksXUQW-gdpcUUxurypgYA1tEKY43q1MJbay_YWHtqA5Fo098npbHqSHvrdLQr-GYKr-RLPNpmwgRAytGVoQIPTQhchL3Vh5ccCFnVsLJehloksEsa5ttJqKS3IfxOwB2RU1ZV9RKgxSWkDZnliCl4IWMo8kSDyuREl01x45IUbVPW1RcpQujnHwDExVh-yA3WQZelxfjJToUd2-lFX3ZpZKpwlFjPGgM6zoRh6jUcYurL1hasj4hhMUv6vOtgHUEvhNw_biRwaFEUyZkIwj4i1KR4qINr2ekm1OHOo24wzBGf0yMueGX5vumu9cjymkMcU8JhHAscsA_Hrq6np0d4cXyD_-P-pPyFbmEX_dpTskNGqubBPQUFaFbtkQ-QCUpmGu90KgefeNHv3Hr6mcQrp_pu3PwHEgRN- |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NVmi8IDa-AmMYCRAvYUnsxs4DQlvXrvtohKCDvhlndrTykYy2E-s_xd-Iz2k6Kqa97S1RnMT2_Wyf786_A3hpF4XARLHyE9ybsMzCWLVM7tuJTyuqlQocWXU_jXvH7GDYGq7An_osDIZV1nOim6h1eYI28i0k8qYxpZS_P_vlY9Yo9K7WKTQqWBya2W-7ZZu829-18n0VRd3OoN3z51kF_FMkG_MF-vooNwHnIjR5qK1Go7jKQparzIiTzII81oaJUIlEZAllTBlhlBDGroc6oPa7t6DJ8ERrA5o7nfTDx8ugEuG2eM6qw0KR1DSRVGyZn1n5DWPJorfOzd1EMV5cpdj-H5-5cNIuq9BuDezeg7tz5ZVsV2hbgxVTrMPtKp3lbB1W23X2uPvwueKzRrGTMie76TZBq8QP46NtpdBEjyYuHgytkySbEYxtH5f2daNJgSTL5XSkDTEXVQ4gMrbr5mj8AI5vpLcfQqMoC_MYiNZJbgJqWKIzlnE7kbBEWIWDaZ5TxbgHr12XyrOKp0Oq8XcMW-Mt-SXdk3tp2v40HHRl6MFG3edyPmIn8hJfHrxYPLatRgeKKkx57srwOLYbYnZdGWyDVYrtbx5VYlxUKIpETDmnHvAlAS8KINf38pNidOo4vymjSA3pwZsaCv9W3dVeOoRJRJi0CPMgcFBZfPzqYrLT3znAG3v95PqOeQ6rvUH_SB7tp4dP4Q6-hNb1KNmAxnR8bp5Z9Wyabc7HBIGvNz0M_wLIBUr_ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwEB6VVlAuCMpfoICREOKSksTe2Dku227LQiOktmJvloMddQskVbqV2huPwDPyJMw4m8BChbglsTXxz0z8eTz5BuAFLgqRS1ITZrQ3EQWqsRm4MsQPnzXcGhN5sur9PN07EpPpYLoCSfcvjA_a95SW_jPdRYe9dl-L-oQisZIthBxbp7a8BmtKigx1e204nBxMfgV2KL_N8p4VEauso2rk6g8piEdpKC-uApd_x0j2B6XLMNavQ-PbcGsBINmwbfIdWHHVBlxvU0pebsD6qMvgdhemLac0DT2rS7adDxl5Br64H9--k4ejsszOznxUFvkIWXHJKMK8qVGAs6wiquN6PrOOuYs2Ew9rcPWaNffgaLxzONoLF5kUwmMiWAsVnW9y6SIpVezK2CKKM9IUsShN4dSnAg07tU6o2KhMFRkXwjjljFIOMYCN-H1YrerKPQRmbVa6iDuR2UIUEs1ZZAqXfWFlyY2QAbz0g6pPW7YMbZrPFDwmB_pjvqt383x0MD0c6ziAzW7U9cJuzjTNEk855yjneV-MvaZjDFO5-tzXkWmK21LxrzrUB4Sm-JoH7UT2DUoSlXIpeQByaYr7CsS4vVxSzY498zYXnAgaA3jVKcPvTfet117HNOmYRh0LIPLK0gu_upre2X8zoRu8fvT_0p_BjQ_bY_3-bf7uMdykp-TuTrJNWJ035-4J4qV58XRhID8Bef0SWw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generation+of+DNA+single%E2%80%90strand+displacement+by+compromised+nucleotide+excision+repair&rft.jtitle=The+EMBO+journal&rft.au=Godon%2C+Camille&rft.au=Mourgues%2C+Sophie&rft.au=Nonnekens%2C+Julie&rft.au=Mourcet%2C+Amandine&rft.date=2012-08-29&rft.pub=Nature+Publishing+Group+UK&rft.issn=0261-4189&rft.eissn=1460-2075&rft.volume=31&rft.issue=17&rft.spage=3550&rft.epage=3563&rft_id=info:doi/10.1038%2Femboj.2012.193&rft.externalDocID=10_1038_emboj_2012_193 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-4189&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-4189&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-4189&client=summon |