Generation of DNA single-strand displacement by compromised nucleotide excision repair

Nucleotide excision repair (NER) is a precisely coordinated process essential to avoid DNA damage‐induced cellular malfunction and mutagenesis. Here, we investigate the mechanistic details and effects of the NER machinery when it is compromised by a pathologically significant mutation in a subunit o...

Full description

Saved in:
Bibliographic Details
Published inThe EMBO journal Vol. 31; no. 17; pp. 3550 - 3563
Main Authors Godon, Camille, Mourgues, Sophie, Nonnekens, Julie, Mourcet, Amandine, Coin, Fréderic, Vermeulen, Wim, Mari, Pierre-Olivier, Giglia-Mari, Giuseppina
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 29.08.2012
Nature Publishing Group UK
Springer Nature B.V
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN0261-4189
1460-2075
1460-2075
DOI10.1038/emboj.2012.193

Cover

Loading…
Abstract Nucleotide excision repair (NER) is a precisely coordinated process essential to avoid DNA damage‐induced cellular malfunction and mutagenesis. Here, we investigate the mechanistic details and effects of the NER machinery when it is compromised by a pathologically significant mutation in a subunit of the repair/transcription factor TFIIH, namely XPD. In contrast to previous studies, we find that no single‐ or double‐strand DNA breaks are produced at early time points after UV irradiation of cells bearing a specific XPD mutation, despite the presence of a clear histone H2AX phosphorylation (γH2AX) signal in the UV‐exposed areas. We show that the observed γH2AX signal can be explained by the presence of longer single‐strand gaps possibly generated by strand displacement. Our in vivo measurements also indicate a strongly reduced TFIIH‐XPG binding that could promote single‐strand displacement at the site of UV lesions. This finding not only highlights the crucial role of XPG's interactions with TFIIH for proper NER, but also sheds new light on how a faulty DNA repair process can induce extreme genomic instability in human patients. Strong tumorigenic effects of a particular mutation in the key nucleotide excision repair factor XPD may not be due to DNA break generation, but caused by inefficient excision steps resulting in long single‐strand gaps and genomic instability.
AbstractList Nucleotide excision repair (NER) is a precisely coordinated process essential to avoid DNA damage-induced cellular malfunction and mutagenesis. Here, we investigate the mechanistic details and effects of the NER machinery when it is compromised by a pathologically significant mutation in a subunit of the repair/transcription factor TFIIH, namely XPD. In contrast to previous studies, we find that no single- or double-strand DNA breaks are produced at early time points after UV irradiation of cells bearing a specific XPD mutation, despite the presence of a clear histone H2AX phosphorylation (γH2AX) signal in the UV-exposed areas. We show that the observed γH2AX signal can be explained by the presence of longer single-strand gaps possibly generated by strand displacement. Our in vivo measurements also indicate a strongly reduced TFIIH-XPG binding that could promote single-strand displacement at the site of UV lesions. This finding not only highlights the crucial role of XPG's interactions with TFIIH for proper NER, but also sheds new light on how a faulty DNA repair process can induce extreme genomic instability in human patients.
Nucleotide excision repair (NER) is a precisely coordinated process essential to avoid DNA damage‐induced cellular malfunction and mutagenesis. Here, we investigate the mechanistic details and effects of the NER machinery when it is compromised by a pathologically significant mutation in a subunit of the repair/transcription factor TFIIH, namely XPD. In contrast to previous studies, we find that no single‐ or double‐strand DNA breaks are produced at early time points after UV irradiation of cells bearing a specific XPD mutation, despite the presence of a clear histone H2AX phosphorylation (γH2AX) signal in the UV‐exposed areas. We show that the observed γH2AX signal can be explained by the presence of longer single‐strand gaps possibly generated by strand displacement. Our in vivo measurements also indicate a strongly reduced TFIIH‐XPG binding that could promote single‐strand displacement at the site of UV lesions. This finding not only highlights the crucial role of XPG's interactions with TFIIH for proper NER, but also sheds new light on how a faulty DNA repair process can induce extreme genomic instability in human patients. Strong tumorigenic effects of a particular mutation in the key nucleotide excision repair factor XPD may not be due to DNA break generation, but caused by inefficient excision steps resulting in long single‐strand gaps and genomic instability.
Nucleotide excision repair (NER) is a precisely coordinated process essential to avoid DNA damage-induced cellular malfunction and mutagenesis. Here, we investigate the mechanistic details and effects of the NER machinery when it is compromised by a pathologically significant mutation in a subunit of the repair/transcription factor TFIIH, namely XPD. In contrast to previous studies, we find that no single- or double-strand DNA breaks are produced at early time points after UV irradiation of cells bearing a specific XPD mutation, despite the presence of a clear histone H2AX phosphorylation (γH2AX) signal in the UV-exposed areas. We show that the observed γH2AX signal can be explained by the presence of longer single-strand gaps possibly generated by strand displacement. Our in vivo measurements also indicate a strongly reduced TFIIH-XPG binding that could promote single-strand displacement at the site of UV lesions. This finding not only highlights the crucial role of XPG's interactions with TFIIH for proper NER, but also sheds new light on how a faulty DNA repair process can induce extreme genomic instability in human patients. [PUBLICATION ABSTRACT]
Nucleotide excision repair (NER) is a precisely coordinated process essential to avoid DNA damage‐induced cellular malfunction and mutagenesis. Here, we investigate the mechanistic details and effects of the NER machinery when it is compromised by a pathologically significant mutation in a subunit of the repair/transcription factor TFIIH, namely XPD. In contrast to previous studies, we find that no single‐ or double‐strand DNA breaks are produced at early time points after UV irradiation of cells bearing a specific XPD mutation, despite the presence of a clear histone H2AX phosphorylation (γH2AX) signal in the UV‐exposed areas. We show that the observed γH2AX signal can be explained by the presence of longer single‐strand gaps possibly generated by strand displacement. Our in vivo measurements also indicate a strongly reduced TFIIH‐XPG binding that could promote single‐strand displacement at the site of UV lesions. This finding not only highlights the crucial role of XPG's interactions with TFIIH for proper NER, but also sheds new light on how a faulty DNA repair process can induce extreme genomic instability in human patients. Strong tumorigenic effects of a particular mutation in the key nucleotide excision repair factor XPD may not be due to DNA break generation, but caused by inefficient excision steps resulting in long single‐strand gaps and genomic instability.
Strong tumorigenic effects of a particular mutation in the key nucleotide excision repair factor XPD may not be due to DNA break generation, but caused by inefficient excision steps resulting in long single-strand gaps and genomic instability. Nucleotide excision repair (NER) is a precisely coordinated process essential to avoid DNA damage-induced cellular malfunction and mutagenesis. Here, we investigate the mechanistic details and effects of the NER machinery when it is compromised by a pathologically significant mutation in a subunit of the repair/transcription factor TFIIH, namely XPD. In contrast to previous studies, we find that no single- or double-strand DNA breaks are produced at early time points after UV irradiation of cells bearing a specific XPD mutation, despite the presence of a clear histone H2AX phosphorylation (γH2AX) signal in the UV-exposed areas. We show that the observed γH2AX signal can be explained by the presence of longer single-strand gaps possibly generated by strand displacement. Our in vivo measurements also indicate a strongly reduced TFIIH-XPG binding that could promote single-strand displacement at the site of UV lesions. This finding not only highlights the crucial role of XPG's interactions with TFIIH for proper NER, but also sheds new light on how a faulty DNA repair process can induce extreme genomic instability in human patients.
Nucleotide excision repair (NER) is a precisely coordinated process essential to avoid DNA damage-induced cellular malfunction and mutagenesis. Here, we investigate the mechanistic details and effects of the NER machinery when it is compromised by a pathologically significant mutation in a subunit of the repair/transcription factor TFIIH, namely XPD. In contrast to previous studies, we find that no single- or double-strand DNA breaks are produced at early time points after UV irradiation of cells bearing a specific XPD mutation, despite the presence of a clear histone H2AX phosphorylation (γH2AX) signal in the UV-exposed areas. We show that the observed γH2AX signal can be explained by the presence of longer single-strand gaps possibly generated by strand displacement. Our in vivo measurements also indicate a strongly reduced TFIIH-XPG binding that could promote single-strand displacement at the site of UV lesions. This finding not only highlights the crucial role of XPG's interactions with TFIIH for proper NER, but also sheds new light on how a faulty DNA repair process can induce extreme genomic instability in human patients.Nucleotide excision repair (NER) is a precisely coordinated process essential to avoid DNA damage-induced cellular malfunction and mutagenesis. Here, we investigate the mechanistic details and effects of the NER machinery when it is compromised by a pathologically significant mutation in a subunit of the repair/transcription factor TFIIH, namely XPD. In contrast to previous studies, we find that no single- or double-strand DNA breaks are produced at early time points after UV irradiation of cells bearing a specific XPD mutation, despite the presence of a clear histone H2AX phosphorylation (γH2AX) signal in the UV-exposed areas. We show that the observed γH2AX signal can be explained by the presence of longer single-strand gaps possibly generated by strand displacement. Our in vivo measurements also indicate a strongly reduced TFIIH-XPG binding that could promote single-strand displacement at the site of UV lesions. This finding not only highlights the crucial role of XPG's interactions with TFIIH for proper NER, but also sheds new light on how a faulty DNA repair process can induce extreme genomic instability in human patients.
Nucleotide excision repair (NER) is a precisely coordinated process essential to avoid DNA damage-induced cellular malfunction and mutagenesis. Here, we investigate the mechanistic details and effects of the NER machinery when it is compromised by a pathologically significant mutation in a subunit of the repair/transcription factor TFIIH, namely XPD. In contrast to previous studies, we find that no single- or double-strand DNA breaks are produced at early time points after UV irradiation of cells bearing a specific XPD mutation, despite the presence of a clear histone H2AX phosphorylation ( gamma H2AX) signal in the UV-exposed areas. We show that the observed gamma H2AX signal can be explained by the presence of longer single-strand gaps possibly generated by strand displacement. Our in vivo measurements also indicate a strongly reduced TFIIH-XPG binding that could promote single-strand displacement at the site of UV lesions. This finding not only highlights the crucial role of XPG's interactions with TFIIH for proper NER, but also sheds new light on how a faulty DNA repair process can induce extreme genomic instability in human patients.
Author Mourgues, Sophie
Giglia‐Mari, Giuseppina
Mourcet, Amandine
Mari, Pierre‐Olivier
Vermeulen, Wim
Nonnekens, Julie
Godon, Camille
Coin, Fréderic
Author_xml – sequence: 1
  givenname: Camille
  surname: Godon
  fullname: Godon, Camille
  organization: Department of Cancer Biology, CNRS, IPBS, Toulouse, France
– sequence: 2
  givenname: Sophie
  surname: Mourgues
  fullname: Mourgues, Sophie
  organization: Department of Cancer Biology, CNRS, IPBS, Toulouse, France
– sequence: 3
  givenname: Julie
  surname: Nonnekens
  fullname: Nonnekens, Julie
  organization: Department of Cancer Biology, CNRS, IPBS, Toulouse, France
– sequence: 4
  givenname: Amandine
  surname: Mourcet
  fullname: Mourcet, Amandine
  organization: Department of Cancer Biology, CNRS, IPBS, Toulouse, France
– sequence: 5
  givenname: Fréderic
  surname: Coin
  fullname: Coin, Fréderic
  organization: Department of Functional Genomics, IGBMC, CNRS/INSERM/ULP, Illkirch Graffenstaden, France
– sequence: 6
  givenname: Wim
  surname: Vermeulen
  fullname: Vermeulen, Wim
  organization: Department of Genetics, Erasmus MC, GE Rotterdam, The Netherlands
– sequence: 7
  givenname: Pierre-Olivier
  surname: Mari
  fullname: Mari, Pierre-Olivier
  organization: Department of Cancer Biology, CNRS, IPBS, Toulouse, France
– sequence: 8
  givenname: Giuseppina
  surname: Giglia-Mari
  fullname: Giglia-Mari, Giuseppina
  email: ambra.mari@ipbs.fr
  organization: Department of Cancer Biology, CNRS, IPBS, Toulouse, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22863773$$D View this record in MEDLINE/PubMed
BookMark eNqNUU1v1DAQtVAR3W65ckSRuHDJ1o4d27kglaVdqMpyoHzcLCeZ3XpJ7GAn0P33ON12VSoOnDzWvPfmzbwjdGCdBYReEDwjmMoTaEu3mWWYZDNS0CdoQhjHaYZFfoAmOOMkZUQWh-gohA3GOJeCPEOHWSY5FYJO0NcFWPC6N84mbpW8W54mwdh1A2novbZ1UpvQNbqCFmyflNukcm3nXWsC1IkdqgZcb2pI4KYyYRTx0Gnjj9HTlW4CPL97p-jL-dnV_H16-WnxYX56mV7nmaCpZBnLqQAshCSwIjXPuRa6JGylS5BVSSTlNTBJtCxkWVDGNEjQUgLOSI3pFL3Z6XZD2UJdRZNeN6rzptV-q5w26u-ONddq7X4pymg8QBEFXt8JePdzgNCruFoFTaMtuCEogsehNB7yP6BUcI6LCJ-iV4-gGzd4Gy8xouJONE6PqJcPze9d36cTAWIH-G0a2O77BN-qqNvs1Zi9itmrs49vL8ZPrCPzZMcMkWTX4B8a-Bc7MtIdw4QebvaztP-huKAiV9-WC7VYLuefv1-dK0L_AFCFw70
CODEN EMJODG
ContentType Journal Article
Copyright European Molecular Biology Organization 2012
Copyright © 2012 European Molecular Biology Organization
Copyright Nature Publishing Group Aug 29, 2012
Copyright © 2012, European Molecular Biology Organization 2012 European Molecular Biology Organization
Copyright_xml – notice: European Molecular Biology Organization 2012
– notice: Copyright © 2012 European Molecular Biology Organization
– notice: Copyright Nature Publishing Group Aug 29, 2012
– notice: Copyright © 2012, European Molecular Biology Organization 2012 European Molecular Biology Organization
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QG
7QL
7QP
7T5
7TK
7TM
7TO
7U9
7X7
7XB
88A
88E
8AO
8C1
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7N
M7P
MBDVC
P64
PCBAR
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
7X8
5PM
DOI 10.1038/emboj.2012.193
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection (ProQuest)
Earth, Atmospheric & Aquatic Science Collection (ProQuest)
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Proquest Medical Database
Research Library
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Research Library
ProQuest Public Health
ProQuest Central Basic
ProQuest SciTech Collection
ProQuest Medical Library
Animal Behavior Abstracts
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

Research Library Prep


MEDLINE - Academic
Nucleic Acids Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
DocumentTitleAlternate UV-induced strand displacement in TFIIHXP/CS cells
EISSN 1460-2075
EndPage 3563
ExternalDocumentID PMC3433779
2754671121
22863773
EMBJ2012193
10_1038_emboj_2012_193
ark_67375_WNG_GNNCSXTF_1
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-Q-
-~X
0R~
123
1OC
24P
29G
2WC
33P
36B
39C
3V.
4.4
53G
5VS
70F
7X7
88A
88E
8AO
8C1
8CJ
8FE
8FH
8FI
8FJ
8G5
8R4
8R5
A8Z
AAESR
AAEVG
AAHBH
AAHHS
AAIHA
AANLZ
AASGY
AAXRX
AAZKR
ABCUV
ABJNI
ABLJU
ABUWG
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACSMW
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFNX
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHMBA
AIAGR
AIURR
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOIJS
ASPBG
AUFTA
AVWKF
AZFZN
AZQEC
AZVAB
BAWUL
BBNVY
BDRZF
BENPR
BFHJK
BHPHI
BKSAR
BMNLL
BMXJE
BPHCQ
BRXPI
BSCLL
BTFSW
BVXVI
C1A
C6C
CCPQU
COF
CS3
D1J
DCZOG
DIK
DPXWK
DRFUL
DRSTM
DU5
DWQXO
E3Z
EBD
EBLON
EBS
EJD
EMB
EMOBN
ESTFP
F5P
FEDTE
FYUFA
G-S
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
GX1
H13
HCIFZ
HH5
HK~
HMCUK
HVGLF
HYE
KQ8
LATKE
LEEKS
LH4
LITHE
LK8
LOXES
LUTES
LW6
LYRES
M0L
M1P
M2O
M7P
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
MY~
O9-
OK1
P2P
P2W
PCBAR
PQQKQ
PROAC
PSQYO
Q2X
RHF
RHI
RIG
RNS
ROL
RPM
SV3
TN5
TR2
UKHRP
WBKPD
WH7
WIH
WIK
WIN
WOHZO
WXSBR
WYJ
YSK
ZCA
ZZTAW
~KM
AAJSJ
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AEUYN
AFWVQ
AAMMB
AASML
ABZEH
AEFGJ
AGQPQ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NAO
NPM
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
7QG
7QL
7QP
7T5
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
PUEGO
5PM
ID FETCH-LOGICAL-h5273-8424537e07781ef1d656a7ab14fabe8cb1836de481a898b9344ae8ea88e021d03
IEDL.DBID AAJSJ
ISSN 0261-4189
1460-2075
IngestDate Thu Aug 21 18:12:10 EDT 2025
Fri Sep 05 03:32:15 EDT 2025
Fri Sep 05 07:52:43 EDT 2025
Fri Jul 25 10:45:09 EDT 2025
Mon Jul 21 05:56:02 EDT 2025
Wed Jan 22 16:54:59 EST 2025
Fri Feb 21 02:37:01 EST 2025
Wed Oct 30 09:56:05 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords Exo1
γH2AX
nucleotide excision repair
XPD helicase
XPG endonuclease
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-h5273-8424537e07781ef1d656a7ab14fabe8cb1836de481a898b9344ae8ea88e021d03
Notes istex:904E800F29CFE9FB84F5C5BB9A0D264D159FC293
ArticleID:EMBJ2012193
ark:/67375/WNG-GNNCSXTF-1
Supplementary DataReview Process File
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
These authors contributed equally to this work
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3433779
PMID 22863773
PQID 1038363337
PQPubID 35985
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3433779
proquest_miscellaneous_1093443261
proquest_miscellaneous_1037660944
proquest_journals_1038363337
pubmed_primary_22863773
wiley_primary_10_1038_emboj_2012_193_EMBJ2012193
springer_journals_10_1038_emboj_2012_193
istex_primary_ark_67375_WNG_GNNCSXTF_1
PublicationCentury 2000
PublicationDate August 29, 2012
PublicationDateYYYYMMDD 2012-08-29
PublicationDate_xml – month: 08
  year: 2012
  text: August 29, 2012
  day: 29
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: London
– name: England
– name: New York
PublicationTitle The EMBO journal
PublicationTitleAbbrev EMBO J
PublicationTitleAlternate EMBO J
PublicationYear 2012
Publisher John Wiley & Sons, Ltd
Nature Publishing Group UK
Springer Nature B.V
Nature Publishing Group
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Nature Publishing Group UK
– name: Springer Nature B.V
– name: Nature Publishing Group
References van Hoffen A, Kalle WH, de Jong-Versteeg A, Lehmann AR, van Zeeland AA, Mullenders LH (1999) Cells from XP-D and XP-D-CS patients exhibit equally inefficient repair of UV-induced damage in transcribed genes but different capacity to recover UV-inhibited transcription. Nucleic Acids Res 27: 2898-2904
Hanawalt PC (1994) Transcription-coupled repair and human disease. Science 266: 1957-1958
Ito S, Kuraoka I, Chymkowitch P, Compe E, Takedachi A, Ishigami C, Coin F, Egly JM, Tanaka K (2007) XPG stabilizes TFIIH, allowing transactivation of nuclear receptors: implications for Cockayne syndrome in XP-G/CS patients. Mol Cell 26: 231-243
Krasikova YS, Rechkunova NI, Maltseva EA, Petruseva IO, Lavrik OI (2010) Localization of xeroderma pigmentosum group A protein and replication protein A on damaged DNA in nucleotide excision repair. Nucleic Acids Res 38: 8083-8094
Essers J, Theil AF, Baldeyron C, van Cappellen WA, Houtsmuller AB, Kanaar R, Vermeulen W (2005) Nuclear dynamics of PCNA in DNA replication and repair. Mol Cell Biol 25: 9350-9359
Hammel M, Yu Y, Mahaney BL, Cai B, Ye R, Phipps BM, Rambo RP, Hura GL, Pelikan M, So S, Abolfath RM, Chen DJ, Lees-Miller SP, Tainer JA (2010) Ku and DNA-dependent protein kinase dynamic conformations and assembly regulate DNA binding and the initial non-homologous end joining complex. J Biol Chem 285: 1414-1423
van Vuuren AJ, Appeldoorn E, Odijk H, Yasui A, Jaspers NG, Bootsma D, Hoeijmakers JH (1993) Evidence for a repair enzyme complex involving ERCC1 and complementing activities of ERCC4, ERCC11 and xeroderma pigmentosum group F. EMBO J 12: 3693-3701
Hoogstraten D, Bergink S, Ng JM, Verbiest VH, Luijsterburg MS, Geverts B, Raams A, Dinant C, Hoeijmakers JH, Vermeulen W, Houtsmuller AB (2008) Versatile DNA damage detection by the global genome nucleotide excision repair protein XPC. J Cell Sci 121: 2850-2859
Coin F, Oksenych V, Mocquet V, Groh S, Blattner C, Egly JM (2008) Nucleotide excision repair driven by the dissociation of CAK from TFIIH. Mol Cell 31: 9-20
Fousteri M, Mullenders LH (2008) Transcription-coupled nucleotide excision repair in mammalian cells: molecular mechanisms and biological effects. Cell Res 18: 73-84
Mone MJ, Volker M, Nikaido O, Mullenders LH, van Zeeland AA, Verschure PJ, Manders EM, van Driel R (2001) Local UV-induced DNA damage in cell nuclei results in local transcription inhibition. EMBO Rep 2: 1013-1017
Moser J, Kool H, Giakzidis I, Caldecott K, Mullenders LH, Fousteri MI (2007) Sealing of chromosomal DNA nicks during nucleotide excision repair requires XRCC1 and DNA ligase III alpha in a cell-cycle-specific manner. Mol Cell 27: 311-323
Lieber MR (1997) The FEN-1 family of structure-specific nucleases in eukaryotic DNA replication, recombination and repair. Bioessays 19: 233-240
Keriel A, Stary A, Sarasin A, Rochette-Egly C, Egly JM (2002) XPD mutations prevent TFIIH-dependent transactivation by nuclear receptors and phosphorylation of RARalpha. Cell 109: 125-135
Giannattasio M, Follonier C, Tourriere H, Puddu F, Lazzaro F, Pasero P, Lopes M, Plevani P, Muzi-Falconi M (2010) Exo1 competes with repair synthesis, converts NER intermediates to long ssDNA gaps, and promotes checkpoint activation. Mol Cell 40: 50-62
Hoogstraten D, Nigg AL, Heath H, Mullenders LH, van Driel R, Hoeijmakers JH, Vermeulen W, Houtsmuller AB (2002) Rapid switching of TFIIH between RNA polymerase I and II transcription and DNA repair in vivo. Mol Cell 10: 1163-1174
Zotter A, Luijsterburg MS, Warmerdam DO, Ibrahim S, Nigg A, van Cappellen WA, Hoeijmakers JH, van Driel R, Vermeulen W, Houtsmuller AB (2006) Recruitment of the nucleotide excision repair endonuclease XPG to sites of UV-induced dna damage depends on functional TFIIH. Mol Cell Biol 26: 8868-8879
Bootsma D, Hoeijmakers JH (1993) DNA repair. Engagement with transcription. Nature 363: 114-115
Kraemer KH, Patronas NJ, Schiffmann R, Brooks BP, Tamura D, Digiovanna JJ (2007) Xeroderma pigmentosum, trichothiodystrophy and Cockayne syndrome: a complex genotype-phenotype relationship.. Neuroscience 145: 1388-1396
Vrouwe MG, Pines A, Overmeer RM, Hanada K, Mullenders LH (2011) UV-induced photolesions elicit ATR-kinase-dependent signaling in non-cycling cells through nucleotide excision repair-dependent and -independent pathways. J Cell Sci 124: 435-446
Sugasawa K, Ng JM, Masutani C, Iwai S, van der Spek PJ, Eker AP, Hanaoka F, Bootsma D, Hoeijmakers JH (1998) Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair. Mol Cell 2: 223-232
Hwang JR, Moncollin V, Vermeulen W, Seroz T, van Vuuren H, Hoeijmakers JH, Egly JM (1996) A 3′→5′ XPB helicase defect in repair/transcription factor TFIIH of xeroderma pigmentosum group B affects both DNA repair and transcription. J Biol Chem 271: 15898-15904
Coin F, Bergmann E, Tremeau-Bravard A, Egly JM (1999) Mutations in XPB and XPD helicases found in xeroderma pigmentosum patients impair the transcription function of TFIIH. EMBO J 18: 1357-1366
Santagati F, Botta E, Stefanini M, Pedrini AM (2001) Different dynamics in nuclear entry of subunits of the repair/transcription factor TFIIH. Nucleic Acids Res 29: 1574-1581
Tishkoff DX, Amin NS, Viars CS, Arden KC, Kolodner RD (1998) Identification of a human gene encoding a homologue of Saccharomyces cerevisiae EXO1, an exonuclease implicated in mismatch repair and recombination. Cancer Res 58: 5027-5031
Feaver WJ, Svejstrup JQ, Henry NL, Kornberg RD (1994) Relationship of CDK-activating kinase and RNA polymerase II CTD kinase TFIIH/TFIIK. Cell 79: 1103-1109
Volker M, Mone MJ, Karmakar P, van Hoffen A, Schul W, Vermeulen W, Hoeijmakers JH, van Driel R, van Zeeland AA, Mullenders LH (2001) Sequential assembly of the nucleotide excision repair factors in vivo. Mol Cell 8: 213-224
Giglia-Mari G, Theil AF, Mari PO, Mourgues S, Nonnekens J, Andrieux LO, de Wit J, Miquel C, Wijgers N, Maas A, Fousteri M, Hoeijmakers JH, Vermeulen W (2009) Differentiation driven changes in the dynamic organization of Basal transcription initiation. PLoS Biol 7: e1000220
Dupuy JM, Lafforet D, Rachman F (1974) Xeroderma pigmentosum with liver involvement. Helv Paediatr Acta 29: 213-219
Sertic S, Pizzi S, Cloney R, Lehmann AR, Marini F, Plevani P, Muzi-Falconi M (2011) Human exonuclease 1 connects nucleotide excision repair (NER) processing with checkpoint activation in response to UV irradiation. Proc Natl Acad Sci USA 108: 13647-13652
Douki T, Cadet J (1992) Far-UV photochemistry and photosensitization of 2′-deoxycytidylyl-(3′-5′)-thymidine: isolation and characterization of the main photoproducts. J Photochem Photobiol B 15: 199-213
Broughton BC, Thompson AF, Harcourt SA, Vermeulen W, Hoeijmakers JH, Botta E, Stefanini M, King MD, Weber CA, Cole J et al (1995) Molecular and cellular analysis of the DNA repair defect in a patient in xeroderma pigmentosum complementation group D who has the clinical features of xeroderma pigmentosum and Cockayne syndrome. Am J Hum Genet 56: 167-174
de Boer J, Andressoo JO, de Wit J, Huijmans J, Beems RB, van Steeg H, Weeda G, van der Horst GT, van Leeuwen W, Themmen AP, Meradji M, Hoeijmakers JH (2002) Premature aging in mice deficient in DNA repair and transcription. Science 296: 1276-1279
Matsumoto M, Yaginuma K, Igarashi A, Imura M, Hasegawa M, Iwabuchi K, Date T, Mori T, Ishizaki K, Yamashita K, Inobe M, Matsunaga T (2007) Perturbed gap-filling synthesis in nucleotide excision repair causes histone H2AX phosphorylation in human quiescent cells. J Cell Sci 120: 1104-1112
Sugasawa K (2010) Regulation of damage recognition in mammalian global genomic nucleotide excision repair. Mutat Res 685: 29-37
Fan L, Fuss JO, Cheng QJ, Arvai AS, Hammel M, Roberts VA, Cooper PK, Tainer JA (2008) XPD helicase structures and activities: insights into the cancer and aging phenotypes from XPD mutations. Cell 133: 789-800
Theron T, Fousteri MI, Volker M, Harries LW, Botta E, Stefanini M, Fujimoto M, Andressoo JO, Mitchell J, Jaspers NG, McDaniel LD, Mullenders LH, Lehmann AR (2005) Transcription-associated breaks in xeroderma pigmentosum group D cells from patients with combined features of xeroderma pigmentosum and Cockayne syndrome. Mol Cell Biol 25: 8368-8378
Ito S, Tan LJ, Andoh D, Narita T, Seki M, Hirano Y, Narita K, Kuraoka I, Hiraoka Y, Tanaka K (2010) MMXD, a TFIIH-independent XPD-MMS19 protein complex involved in chromosome segregation. Mol Cell 39: 632-640
Andressoo JO, Mitchell JR, de Wit J, Hoogstraten D, Volker M, Toussaint W, Speksnijder E, Beems RB, van Steeg H, Jans J, de Zeeuw CI, Jaspers NG, Raams A, Lehmann AR, Vermeulen W, Hoeijmakers JH, van der Horst GT (2006) An Xpd mouse model for the combined xeroderma pigmentosum/Cockayne syndrome exhibiting both cancer predisposition and segmental progeria. Cancer Cell 10: 121-132
Oksenych V, Coin F (2010) The long unwinding road: XPB and XPD helicases in damaged DNA opening. Cell Cycle 9: 90-96
Berneburg M, Lowe JE, Nardo T, Araujo S, Fousteri MI, Green MH, Krutmann J, Wood RD, Stefanini M, Lehmann AR (2000) UV damage causes uncontrolled DNA breakage in cells from patients with combined features of XP-D and Cockayne syndrome. EMBO J 19: 1157-1166
Giglia-Mari G, Miquel C, Theil AF, Mari PO, Hoogstraten D, Ng JM, Dinant C, Hoeijmakers JH, Vermeulen W (2006) Dynamic interaction of TTDA with TFIIH is stabilized by nucleotide excision repair in living cells. PLoS Biol 4: e156
Broughton BC, Berneburg M, Fawcett H, Taylor EM, Arlett CF, Nardo T, Stefanini M, Menefee E, Price VH, Queille S, Sarasin A, Bohnert E, Krutmann J, Davidson R, Kraemer KH, Lehmann AR (2001) Two individuals with features of both xeroderma pigmentosum and trichothiodystrophy highlight the complexity of the clinical outcomes of mutations in the XPD gene. Hum Mol Genet 10: 2539-2547
Weber A, Chung HJ, Springer E, Heitzmann D, Warth R (2010) The TFIIH subunit p89 (XPB) localizes to the centrosome during mitosis. Cell Oncol 32: 121-130
Wolski SC, Kuper J, Hanzelmann P, Truglio JJ, Croteau DL, Van Houten B, Kisker C (2008) Crys
Matsumoto, Yaginuma, Igarashi, Imura, Hasegawa, Iwabuchi, Date, Mori, Ishizaki, Yamashita, Inobe, Matsunaga (CR31) 2007; 120
Santagati, Botta, Stefanini, Pedrini (CR37) 2001; 29
Zotter, Luijsterburg, Warmerdam, Ibrahim, Nigg, van Cappellen, Hoeijmakers, van Driel, Vermeulen, Houtsmuller (CR50) 2006; 26
Dupuy, Lafforet, Rachman (CR10) 1974; 29
Liu, Rudolf, Johnson, McMahon, Oke, Carter, McRobbie, Brown, Naismith, White (CR30) 2008; 133
Essers, Theil, Baldeyron, van Cappellen, Houtsmuller, Kanaar, Vermeulen (CR11) 2005; 25
Hoogstraten, Nigg, Heath, Mullenders, van Driel, Hoeijmakers, Vermeulen, Houtsmuller (CR22) 2002; 10
Hanawalt (CR20) 1994; 266
van Vuuren, Appeldoorn, Odijk, Yasui, Jaspers, Bootsma, Hoeijmakers (CR45) 1993; 12
Fan, Fuss, Cheng, Arvai, Hammel, Roberts, Cooper, Tainer (CR12) 2008; 133
Staresincic, Fagbemi, Enzlin, Gourdin, Wijgers, Dunand‐Sauthier, Giglia‐Mari, Clarkson, Vermeulen, Scharer (CR39) 2009; 28
Ito, Kuraoka, Chymkowitch, Compe, Takedachi, Ishigami, Coin, Egly, Tanaka (CR24) 2007; 26
Krasikova, Rechkunova, Maltseva, Petruseva, Lavrik (CR28) 2010; 38
Feaver, Svejstrup, Henry, Kornberg (CR13) 1994; 79
Fousteri, Mullenders (CR14) 2008; 18
Giglia‐Mari, Miquel, Theil, Mari, Hoogstraten, Ng, Dinant, Hoeijmakers, Vermeulen (CR16) 2006; 4
van Hoffen, Kalle, de Jong‐Versteeg, Lehmann, van Zeeland, Mullenders (CR44) 1999; 27
Berneburg, Lowe, Nardo, Araujo, Fousteri, Green, Krutmann, Wood, Stefanini, Lehmann (CR2) 2000; 19
Giannattasio, Follonier, Tourriere, Puddu, Lazzaro, Pasero, Lopes, Plevani, Muzi‐Falconi (CR15) 2010; 40
Hammel, Yu, Mahaney, Cai, Ye, Phipps, Rambo, Hura, Pelikan, So, Abolfath, Chen, Lees‐Miller, Tainer (CR19) 2010; 285
Sertic, Pizzi, Cloney, Lehmann, Marini, Plevani, Muzi‐Falconi (CR38) 2011; 108
Coin, Oksenych, Mocquet, Groh, Blattner, Egly (CR7) 2008; 31
Sandrock, Egly (CR36) 2001; 276
Weber, Chung, Springer, Heitzmann, Warth (CR48) 2010; 32
Wolski, Kuper, Hanzelmann, Truglio, Croteau, Van Houten, Kisker (CR49) 2008; 6
Broughton, Berneburg, Fawcett, Taylor, Arlett, Nardo, Stefanini, Menefee, Price, Queille, Sarasin, Bohnert, Krutmann, Davidson, Kraemer, Lehmann (CR4) 2001; 10
Mone, Volker, Nikaido, Mullenders, van Zeeland, Verschure, Manders, van Driel (CR32) 2001; 2
Ito, Tan, Andoh, Narita, Seki, Hirano, Narita, Kuraoka, Hiraoka, Tanaka (CR25) 2010; 39
Godon, Cordelieres, Biard, Giocanti, Megnin‐Chanet, Hall, Favaudon (CR18) 2008; 36
Sugasawa (CR40) 2010; 685
Kraemer, Patronas, Schiffmann, Brooks, Tamura, Digiovanna (CR27) 2007; 145
Moser, Kool, Giakzidis, Caldecott, Mullenders, Fousteri (CR33) 2007; 27
Theron, Fousteri, Volker, Harries, Botta, Stefanini, Fujimoto, Andressoo, Mitchell, Jaspers, McDaniel, Mullenders, Lehmann (CR42) 2005; 25
de Boer, Andressoo, de Wit, Huijmans, Beems, van Steeg, Weeda, van der Horst, van Leeuwen, Themmen, Meradji, Hoeijmakers (CR8) 2002; 296
Oksenych, Coin (CR35) 2010; 9
Douki, Cadet (CR9) 1992; 15
Ogi, Limsirichaikul, Overmeer, Volker, Takenaka, Cloney, Nakazawa, Niimi, Miki, Jaspers, Mullenders, Yamashita, Fousteri, Lehmann (CR34) 2010; 37
Lieber (CR29) 1997; 19
Coin, Bergmann, Tremeau‐Bravard, Egly (CR6) 1999; 18
Hoogstraten, Bergink, Ng, Verbiest, Luijsterburg, Geverts, Raams, Dinant, Hoeijmakers, Vermeulen, Houtsmuller (CR21) 2008; 121
Giglia‐Mari, Theil, Mari, Mourgues, Nonnekens, Andrieux, de Wit, Miquel, Wijgers, Maas, Fousteri, Hoeijmakers, Vermeulen (CR17) 2009; 7
Bootsma, Hoeijmakers (CR3) 1993; 363
Tishkoff, Amin, Viars, Arden, Kolodner (CR43) 1998; 58
Broughton, Thompson, Harcourt, Vermeulen, Hoeijmakers, Botta, Stefanini, King, Weber, Cole (CR5) 1995; 56
Volker, Mone, Karmakar, van Hoffen, Schul, Vermeulen, Hoeijmakers, van Driel, van Zeeland, Mullenders (CR46) 2001; 8
Sugasawa, Ng, Masutani, Iwai, van der Spek, Eker, Hanaoka, Bootsma, Hoeijmakers (CR41) 1998; 2
Keriel, Stary, Sarasin, Rochette‐Egly, Egly (CR26) 2002; 109
Hwang, Moncollin, Vermeulen, Seroz, van Vuuren, Hoeijmakers, Egly (CR23) 1996; 271
Andressoo, Mitchell, de Wit, Hoogstraten, Volker, Toussaint, Speksnijder, Beems, van Steeg, Jans, de Zeeuw, Jaspers, Raams, Lehmann, Vermeulen, Hoeijmakers, van der Horst (CR1) 2006; 10
Vrouwe, Pines, Overmeer, Hanada, Mullenders (CR47) 2011; 124
2007; 145
2010; 32
2010; 38
2010; 37
2002; 296
2006; 10
2010; 39
2008; 18
1995; 56
1999; 27
2002; 10
2007; 120
2010; 685
2008; 36
2010; 285
2006; 4
2008; 6
1992; 15
2008; 31
2001; 29
2008; 121
1993; 363
2010; 40
2005; 25
2009; 28
1994; 266
2001; 276
1993; 12
2011; 124
2000; 19
2011; 108
1999; 18
2001; 8
2006; 26
1997; 19
1996; 271
1994; 79
2009; 7
2001; 2
1998; 2
2002; 109
2008; 133
1974; 29
2007; 26
2010; 9
1998; 58
2001; 10
2007; 27
19279666 - EMBO J. 2009 Apr 22;28(8):1111-20
20227374 - Mol Cell. 2010 Mar 12;37(5):714-27
1453273 - J Photochem Photobiol B. 1992 Aug 31;15(3):199-213
18578568 - PLoS Biol. 2008 Jun 24;6(6):e149
20016270 - Cell Cycle. 2010 Jan 1;9(1):90-6
17276014 - Neuroscience. 2007 Apr 14;145(4):1388-96
8001136 - Cell. 1994 Dec 16;79(6):1103-9
21808022 - Proc Natl Acad Sci U S A. 2011 Aug 16;108(33):13647-52
18166977 - Cell Res. 2008 Jan;18(1):73-84
12453423 - Mol Cell. 2002 Nov;10(5):1163-74
9823303 - Cancer Res. 1998 Nov 15;58(22):5027-31
17466625 - Mol Cell. 2007 Apr 27;26(2):231-43
16669699 - PLoS Biol. 2006 Jun;4(6):e156
17327276 - J Cell Sci. 2007 Mar 15;120(Pt 6):1104-12
21224401 - J Cell Sci. 2011 Feb 1;124(Pt 3):435-46
17000769 - Mol Cell Biol. 2006 Dec;26(23):8868-79
8483493 - Nature. 1993 May 13;363(6425):114-5
16135823 - Mol Cell Biol. 2005 Sep;25(18):8368-78
20932474 - Mol Cell. 2010 Oct 8;40(1):50-62
18510924 - Cell. 2008 May 30;133(5):789-800
18614043 - Mol Cell. 2008 Jul 11;31(1):9-20
11713193 - EMBO Rep. 2001 Nov;2(11):1013-7
11950998 - Science. 2002 May 17;296(5571):1276-9
19841728 - PLoS Biol. 2009 Oct;7(10):e1000220
9080773 - Bioessays. 1997 Mar;19(3):233-40
17643379 - Mol Cell. 2007 Jul 20;27(2):311-23
9734359 - Mol Cell. 1998 Aug;2(2):223-32
20693538 - Nucleic Acids Res. 2010 Dec;38(22):8083-94
11266560 - Nucleic Acids Res. 2001 Apr 1;29(7):1574-81
20797633 - Mol Cell. 2010 Aug 27;39(4):632-40
8663148 - J Biol Chem. 1996 Jul 5;271(27):15898-904
18682493 - J Cell Sci. 2008 Sep 1;121(Pt 17):2850-9
7801121 - Science. 1994 Dec 23;266(5193):1957-8
19682467 - Mutat Res. 2010 Mar 1;685(1-2):29-37
10390531 - Nucleic Acids Res. 1999 Jul 15;27(14):2898-904
7825573 - Am J Hum Genet. 1995 Jan;56(1):167-74
16227586 - Mol Cell Biol. 2005 Nov;25(21):9350-9
18510925 - Cell. 2008 May 30;133(5):801-12
11511374 - Mol Cell. 2001 Jul;8(1):213-24
10698956 - EMBO J. 2000 Mar 1;19(5):1157-66
11955452 - Cell. 2002 Apr 5;109(1):125-35
8253091 - EMBO J. 1993 Sep;12(9):3693-701
11445587 - J Biol Chem. 2001 Sep 21;276(38):35328-33
4855436 - Helv Paediatr Acta. 1974 Aug;29(3):213-9
10064601 - EMBO J. 1999 Mar 1;18(5):1357-66
16904611 - Cancer Cell. 2006 Aug;10(2):121-32
11709541 - Hum Mol Genet. 2001 Oct 15;10(22):2539-47
18603595 - Nucleic Acids Res. 2008 Aug;36(13):4454-64
20208140 - Cell Oncol. 2010;32(1-2):121-30
19893054 - J Biol Chem. 2010 Jan 8;285(2):1414-23
References_xml – reference: Theron T, Fousteri MI, Volker M, Harries LW, Botta E, Stefanini M, Fujimoto M, Andressoo JO, Mitchell J, Jaspers NG, McDaniel LD, Mullenders LH, Lehmann AR (2005) Transcription-associated breaks in xeroderma pigmentosum group D cells from patients with combined features of xeroderma pigmentosum and Cockayne syndrome. Mol Cell Biol 25: 8368-8378
– reference: Volker M, Mone MJ, Karmakar P, van Hoffen A, Schul W, Vermeulen W, Hoeijmakers JH, van Driel R, van Zeeland AA, Mullenders LH (2001) Sequential assembly of the nucleotide excision repair factors in vivo. Mol Cell 8: 213-224
– reference: Oksenych V, Coin F (2010) The long unwinding road: XPB and XPD helicases in damaged DNA opening. Cell Cycle 9: 90-96
– reference: Hwang JR, Moncollin V, Vermeulen W, Seroz T, van Vuuren H, Hoeijmakers JH, Egly JM (1996) A 3′→5′ XPB helicase defect in repair/transcription factor TFIIH of xeroderma pigmentosum group B affects both DNA repair and transcription. J Biol Chem 271: 15898-15904
– reference: Hammel M, Yu Y, Mahaney BL, Cai B, Ye R, Phipps BM, Rambo RP, Hura GL, Pelikan M, So S, Abolfath RM, Chen DJ, Lees-Miller SP, Tainer JA (2010) Ku and DNA-dependent protein kinase dynamic conformations and assembly regulate DNA binding and the initial non-homologous end joining complex. J Biol Chem 285: 1414-1423
– reference: Sertic S, Pizzi S, Cloney R, Lehmann AR, Marini F, Plevani P, Muzi-Falconi M (2011) Human exonuclease 1 connects nucleotide excision repair (NER) processing with checkpoint activation in response to UV irradiation. Proc Natl Acad Sci USA 108: 13647-13652
– reference: van Hoffen A, Kalle WH, de Jong-Versteeg A, Lehmann AR, van Zeeland AA, Mullenders LH (1999) Cells from XP-D and XP-D-CS patients exhibit equally inefficient repair of UV-induced damage in transcribed genes but different capacity to recover UV-inhibited transcription. Nucleic Acids Res 27: 2898-2904
– reference: Giglia-Mari G, Miquel C, Theil AF, Mari PO, Hoogstraten D, Ng JM, Dinant C, Hoeijmakers JH, Vermeulen W (2006) Dynamic interaction of TTDA with TFIIH is stabilized by nucleotide excision repair in living cells. PLoS Biol 4: e156
– reference: Douki T, Cadet J (1992) Far-UV photochemistry and photosensitization of 2′-deoxycytidylyl-(3′-5′)-thymidine: isolation and characterization of the main photoproducts. J Photochem Photobiol B 15: 199-213
– reference: Liu H, Rudolf J, Johnson KA, McMahon SA, Oke M, Carter L, McRobbie AM, Brown SE, Naismith JH, White MF (2008) Structure of the DNA repair helicase XPD. Cell 133: 801-812
– reference: Mone MJ, Volker M, Nikaido O, Mullenders LH, van Zeeland AA, Verschure PJ, Manders EM, van Driel R (2001) Local UV-induced DNA damage in cell nuclei results in local transcription inhibition. EMBO Rep 2: 1013-1017
– reference: Giglia-Mari G, Theil AF, Mari PO, Mourgues S, Nonnekens J, Andrieux LO, de Wit J, Miquel C, Wijgers N, Maas A, Fousteri M, Hoeijmakers JH, Vermeulen W (2009) Differentiation driven changes in the dynamic organization of Basal transcription initiation. PLoS Biol 7: e1000220
– reference: Moser J, Kool H, Giakzidis I, Caldecott K, Mullenders LH, Fousteri MI (2007) Sealing of chromosomal DNA nicks during nucleotide excision repair requires XRCC1 and DNA ligase III alpha in a cell-cycle-specific manner. Mol Cell 27: 311-323
– reference: Hanawalt PC (1994) Transcription-coupled repair and human disease. Science 266: 1957-1958
– reference: Andressoo JO, Mitchell JR, de Wit J, Hoogstraten D, Volker M, Toussaint W, Speksnijder E, Beems RB, van Steeg H, Jans J, de Zeeuw CI, Jaspers NG, Raams A, Lehmann AR, Vermeulen W, Hoeijmakers JH, van der Horst GT (2006) An Xpd mouse model for the combined xeroderma pigmentosum/Cockayne syndrome exhibiting both cancer predisposition and segmental progeria. Cancer Cell 10: 121-132
– reference: Kraemer KH, Patronas NJ, Schiffmann R, Brooks BP, Tamura D, Digiovanna JJ (2007) Xeroderma pigmentosum, trichothiodystrophy and Cockayne syndrome: a complex genotype-phenotype relationship.. Neuroscience 145: 1388-1396
– reference: Feaver WJ, Svejstrup JQ, Henry NL, Kornberg RD (1994) Relationship of CDK-activating kinase and RNA polymerase II CTD kinase TFIIH/TFIIK. Cell 79: 1103-1109
– reference: Coin F, Oksenych V, Mocquet V, Groh S, Blattner C, Egly JM (2008) Nucleotide excision repair driven by the dissociation of CAK from TFIIH. Mol Cell 31: 9-20
– reference: Tishkoff DX, Amin NS, Viars CS, Arden KC, Kolodner RD (1998) Identification of a human gene encoding a homologue of Saccharomyces cerevisiae EXO1, an exonuclease implicated in mismatch repair and recombination. Cancer Res 58: 5027-5031
– reference: Sandrock B, Egly JM (2001) A yeast four-hybrid system identifies Cdk-activating kinase as a regulator of the XPD helicase, a subunit of transcription factor IIH. J Biol Chem 276: 35328-35333
– reference: de Boer J, Andressoo JO, de Wit J, Huijmans J, Beems RB, van Steeg H, Weeda G, van der Horst GT, van Leeuwen W, Themmen AP, Meradji M, Hoeijmakers JH (2002) Premature aging in mice deficient in DNA repair and transcription. Science 296: 1276-1279
– reference: Fan L, Fuss JO, Cheng QJ, Arvai AS, Hammel M, Roberts VA, Cooper PK, Tainer JA (2008) XPD helicase structures and activities: insights into the cancer and aging phenotypes from XPD mutations. Cell 133: 789-800
– reference: Santagati F, Botta E, Stefanini M, Pedrini AM (2001) Different dynamics in nuclear entry of subunits of the repair/transcription factor TFIIH. Nucleic Acids Res 29: 1574-1581
– reference: Hoogstraten D, Nigg AL, Heath H, Mullenders LH, van Driel R, Hoeijmakers JH, Vermeulen W, Houtsmuller AB (2002) Rapid switching of TFIIH between RNA polymerase I and II transcription and DNA repair in vivo. Mol Cell 10: 1163-1174
– reference: Bootsma D, Hoeijmakers JH (1993) DNA repair. Engagement with transcription. Nature 363: 114-115
– reference: Berneburg M, Lowe JE, Nardo T, Araujo S, Fousteri MI, Green MH, Krutmann J, Wood RD, Stefanini M, Lehmann AR (2000) UV damage causes uncontrolled DNA breakage in cells from patients with combined features of XP-D and Cockayne syndrome. EMBO J 19: 1157-1166
– reference: Hoogstraten D, Bergink S, Ng JM, Verbiest VH, Luijsterburg MS, Geverts B, Raams A, Dinant C, Hoeijmakers JH, Vermeulen W, Houtsmuller AB (2008) Versatile DNA damage detection by the global genome nucleotide excision repair protein XPC. J Cell Sci 121: 2850-2859
– reference: Ogi T, Limsirichaikul S, Overmeer RM, Volker M, Takenaka K, Cloney R, Nakazawa Y, Niimi A, Miki Y, Jaspers NG, Mullenders LH, Yamashita S, Fousteri MI, Lehmann AR (2010) Three DNA polymerases, recruited by different mechanisms, carry out NER repair synthesis in human cells. Mol Cell 37: 714-727
– reference: Dupuy JM, Lafforet D, Rachman F (1974) Xeroderma pigmentosum with liver involvement. Helv Paediatr Acta 29: 213-219
– reference: Staresincic L, Fagbemi AF, Enzlin JH, Gourdin AM, Wijgers N, Dunand-Sauthier I, Giglia-Mari G, Clarkson SG, Vermeulen W, Scharer OD (2009) Coordination of dual incision and repair synthesis in human nucleotide excision repair. EMBO J 28: 1111-1120
– reference: Keriel A, Stary A, Sarasin A, Rochette-Egly C, Egly JM (2002) XPD mutations prevent TFIIH-dependent transactivation by nuclear receptors and phosphorylation of RARalpha. Cell 109: 125-135
– reference: Godon C, Cordelieres FP, Biard D, Giocanti N, Megnin-Chanet F, Hall J, Favaudon V (2008) PARP inhibition versus PARP-1 silencing: different outcomes in terms of single-strand break repair and radiation susceptibility. Nucleic Acids Res 36: 4454-4464
– reference: Zotter A, Luijsterburg MS, Warmerdam DO, Ibrahim S, Nigg A, van Cappellen WA, Hoeijmakers JH, van Driel R, Vermeulen W, Houtsmuller AB (2006) Recruitment of the nucleotide excision repair endonuclease XPG to sites of UV-induced dna damage depends on functional TFIIH. Mol Cell Biol 26: 8868-8879
– reference: Coin F, Bergmann E, Tremeau-Bravard A, Egly JM (1999) Mutations in XPB and XPD helicases found in xeroderma pigmentosum patients impair the transcription function of TFIIH. EMBO J 18: 1357-1366
– reference: Ito S, Tan LJ, Andoh D, Narita T, Seki M, Hirano Y, Narita K, Kuraoka I, Hiraoka Y, Tanaka K (2010) MMXD, a TFIIH-independent XPD-MMS19 protein complex involved in chromosome segregation. Mol Cell 39: 632-640
– reference: Matsumoto M, Yaginuma K, Igarashi A, Imura M, Hasegawa M, Iwabuchi K, Date T, Mori T, Ishizaki K, Yamashita K, Inobe M, Matsunaga T (2007) Perturbed gap-filling synthesis in nucleotide excision repair causes histone H2AX phosphorylation in human quiescent cells. J Cell Sci 120: 1104-1112
– reference: Weber A, Chung HJ, Springer E, Heitzmann D, Warth R (2010) The TFIIH subunit p89 (XPB) localizes to the centrosome during mitosis. Cell Oncol 32: 121-130
– reference: Wolski SC, Kuper J, Hanzelmann P, Truglio JJ, Croteau DL, Van Houten B, Kisker C (2008) Crystal structure of the FeS cluster-containing nucleotide excision repair helicase XPD. PLoS Biol 6: e149
– reference: Vrouwe MG, Pines A, Overmeer RM, Hanada K, Mullenders LH (2011) UV-induced photolesions elicit ATR-kinase-dependent signaling in non-cycling cells through nucleotide excision repair-dependent and -independent pathways. J Cell Sci 124: 435-446
– reference: Broughton BC, Thompson AF, Harcourt SA, Vermeulen W, Hoeijmakers JH, Botta E, Stefanini M, King MD, Weber CA, Cole J et al (1995) Molecular and cellular analysis of the DNA repair defect in a patient in xeroderma pigmentosum complementation group D who has the clinical features of xeroderma pigmentosum and Cockayne syndrome. Am J Hum Genet 56: 167-174
– reference: Lieber MR (1997) The FEN-1 family of structure-specific nucleases in eukaryotic DNA replication, recombination and repair. Bioessays 19: 233-240
– reference: Sugasawa K, Ng JM, Masutani C, Iwai S, van der Spek PJ, Eker AP, Hanaoka F, Bootsma D, Hoeijmakers JH (1998) Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair. Mol Cell 2: 223-232
– reference: van Vuuren AJ, Appeldoorn E, Odijk H, Yasui A, Jaspers NG, Bootsma D, Hoeijmakers JH (1993) Evidence for a repair enzyme complex involving ERCC1 and complementing activities of ERCC4, ERCC11 and xeroderma pigmentosum group F. EMBO J 12: 3693-3701
– reference: Fousteri M, Mullenders LH (2008) Transcription-coupled nucleotide excision repair in mammalian cells: molecular mechanisms and biological effects. Cell Res 18: 73-84
– reference: Giannattasio M, Follonier C, Tourriere H, Puddu F, Lazzaro F, Pasero P, Lopes M, Plevani P, Muzi-Falconi M (2010) Exo1 competes with repair synthesis, converts NER intermediates to long ssDNA gaps, and promotes checkpoint activation. Mol Cell 40: 50-62
– reference: Krasikova YS, Rechkunova NI, Maltseva EA, Petruseva IO, Lavrik OI (2010) Localization of xeroderma pigmentosum group A protein and replication protein A on damaged DNA in nucleotide excision repair. Nucleic Acids Res 38: 8083-8094
– reference: Broughton BC, Berneburg M, Fawcett H, Taylor EM, Arlett CF, Nardo T, Stefanini M, Menefee E, Price VH, Queille S, Sarasin A, Bohnert E, Krutmann J, Davidson R, Kraemer KH, Lehmann AR (2001) Two individuals with features of both xeroderma pigmentosum and trichothiodystrophy highlight the complexity of the clinical outcomes of mutations in the XPD gene. Hum Mol Genet 10: 2539-2547
– reference: Sugasawa K (2010) Regulation of damage recognition in mammalian global genomic nucleotide excision repair. Mutat Res 685: 29-37
– reference: Essers J, Theil AF, Baldeyron C, van Cappellen WA, Houtsmuller AB, Kanaar R, Vermeulen W (2005) Nuclear dynamics of PCNA in DNA replication and repair. Mol Cell Biol 25: 9350-9359
– reference: Ito S, Kuraoka I, Chymkowitch P, Compe E, Takedachi A, Ishigami C, Coin F, Egly JM, Tanaka K (2007) XPG stabilizes TFIIH, allowing transactivation of nuclear receptors: implications for Cockayne syndrome in XP-G/CS patients. Mol Cell 26: 231-243
– volume: 29
  start-page: 1574
  year: 2001
  end-page: 1581
  ident: CR37
  article-title: Different dynamics in nuclear entry of subunits of the repair/transcription factor TFIIH
  publication-title: Nucleic Acids Res
– volume: 31
  start-page: 9
  year: 2008
  end-page: 20
  ident: CR7
  article-title: Nucleotide excision repair driven by the dissociation of CAK from TFIIH
  publication-title: Mol Cell
– volume: 685
  start-page: 29
  year: 2010
  end-page: 37
  ident: CR40
  article-title: Regulation of damage recognition in mammalian global genomic nucleotide excision repair
  publication-title: Mutat Res
– volume: 285
  start-page: 1414
  year: 2010
  end-page: 1423
  ident: CR19
  article-title: Ku and DNA‐dependent protein kinase dynamic conformations and assembly regulate DNA binding and the initial non‐homologous end joining complex
  publication-title: J Biol Chem
– volume: 38
  start-page: 8083
  year: 2010
  end-page: 8094
  ident: CR28
  article-title: Localization of xeroderma pigmentosum group A protein and replication protein A on damaged DNA in nucleotide excision repair
  publication-title: Nucleic Acids Res
– volume: 27
  start-page: 2898
  year: 1999
  end-page: 2904
  ident: CR44
  article-title: Cells from XP‐D and XP‐D‐CS patients exhibit equally inefficient repair of UV‐induced damage in transcribed genes but different capacity to recover UV‐inhibited transcription
  publication-title: Nucleic Acids Res
– volume: 12
  start-page: 3693
  year: 1993
  end-page: 3701
  ident: CR45
  article-title: Evidence for a repair enzyme complex involving ERCC1 and complementing activities of ERCC4, ERCC11 and xeroderma pigmentosum group F
  publication-title: EMBO J
– volume: 271
  start-page: 15898
  year: 1996
  end-page: 15904
  ident: CR23
  article-title: A 3′→5′ XPB helicase defect in repair/transcription factor TFIIH of xeroderma pigmentosum group B affects both DNA repair and transcription
  publication-title: J Biol Chem
– volume: 2
  start-page: 223
  year: 1998
  end-page: 232
  ident: CR41
  article-title: Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair
  publication-title: Mol Cell
– volume: 124
  start-page: 435
  year: 2011
  end-page: 446
  ident: CR47
  article-title: UV‐induced photolesions elicit ATR‐kinase‐dependent signaling in non‐cycling cells through nucleotide excision repair‐dependent and ‐independent pathways
  publication-title: J Cell Sci
– volume: 9
  start-page: 90
  year: 2010
  end-page: 96
  ident: CR35
  article-title: The long unwinding road: XPB and XPD helicases in damaged DNA opening
  publication-title: Cell Cycle
– volume: 4
  start-page: e156
  year: 2006
  ident: CR16
  article-title: Dynamic interaction of TTDA with TFIIH is stabilized by nucleotide excision repair in living cells
  publication-title: PLoS Biol
– volume: 25
  start-page: 8368
  year: 2005
  end-page: 8378
  ident: CR42
  article-title: Transcription‐associated breaks in xeroderma pigmentosum group D cells from patients with combined features of xeroderma pigmentosum and Cockayne syndrome
  publication-title: Mol Cell Biol
– volume: 28
  start-page: 1111
  year: 2009
  end-page: 1120
  ident: CR39
  article-title: Coordination of dual incision and repair synthesis in human nucleotide excision repair
  publication-title: EMBO J
– volume: 108
  start-page: 13647
  year: 2011
  end-page: 13652
  ident: CR38
  article-title: Human exonuclease 1 connects nucleotide excision repair (NER) processing with checkpoint activation in response to UV irradiation
  publication-title: Proc Natl Acad Sci USA
– volume: 10
  start-page: 2539
  year: 2001
  end-page: 2547
  ident: CR4
  article-title: Two individuals with features of both xeroderma pigmentosum and trichothiodystrophy highlight the complexity of the clinical outcomes of mutations in the XPD gene
  publication-title: Hum Mol Genet
– volume: 58
  start-page: 5027
  year: 1998
  end-page: 5031
  ident: CR43
  article-title: Identification of a human gene encoding a homologue of Saccharomyces cerevisiae EXO1, an exonuclease implicated in mismatch repair and recombination
  publication-title: Cancer Res
– volume: 363
  start-page: 114
  year: 1993
  end-page: 115
  ident: CR3
  article-title: DNA repair. Engagement with transcription
  publication-title: Nature
– volume: 121
  start-page: 2850
  year: 2008
  end-page: 2859
  ident: CR21
  article-title: Versatile DNA damage detection by the global genome nucleotide excision repair protein XPC
  publication-title: J Cell Sci
– volume: 26
  start-page: 8868
  year: 2006
  end-page: 8879
  ident: CR50
  article-title: Recruitment of the nucleotide excision repair endonuclease XPG to sites of UV‐induced dna damage depends on functional TFIIH
  publication-title: Mol Cell Biol
– volume: 18
  start-page: 1357
  year: 1999
  end-page: 1366
  ident: CR6
  article-title: Mutations in XPB and XPD helicases found in xeroderma pigmentosum patients impair the transcription function of TFIIH
  publication-title: EMBO J
– volume: 296
  start-page: 1276
  year: 2002
  end-page: 1279
  ident: CR8
  article-title: Premature aging in mice deficient in DNA repair and transcription
  publication-title: Science
– volume: 25
  start-page: 9350
  year: 2005
  end-page: 9359
  ident: CR11
  article-title: Nuclear dynamics of PCNA in DNA replication and repair
  publication-title: Mol Cell Biol
– volume: 133
  start-page: 789
  year: 2008
  end-page: 800
  ident: CR12
  article-title: XPD helicase structures and activities: insights into the cancer and aging phenotypes from XPD mutations
  publication-title: Cell
– volume: 133
  start-page: 801
  year: 2008
  end-page: 812
  ident: CR30
  article-title: Structure of the DNA repair helicase XPD
  publication-title: Cell
– volume: 37
  start-page: 714
  year: 2010
  end-page: 727
  ident: CR34
  article-title: Three DNA polymerases, recruited by different mechanisms, carry out NER repair synthesis in human cells
  publication-title: Mol Cell
– volume: 19
  start-page: 233
  year: 1997
  end-page: 240
  ident: CR29
  article-title: The FEN‐1 family of structure‐specific nucleases in eukaryotic DNA replication, recombination and repair
  publication-title: Bioessays
– volume: 2
  start-page: 1013
  year: 2001
  end-page: 1017
  ident: CR32
  article-title: Local UV‐induced DNA damage in cell nuclei results in local transcription inhibition
  publication-title: EMBO Rep
– volume: 29
  start-page: 213
  year: 1974
  end-page: 219
  ident: CR10
  article-title: Xeroderma pigmentosum with liver involvement
  publication-title: Helv Paediatr Acta
– volume: 120
  start-page: 1104
  year: 2007
  end-page: 1112
  ident: CR31
  article-title: Perturbed gap‐filling synthesis in nucleotide excision repair causes histone H2AX phosphorylation in human quiescent cells
  publication-title: J Cell Sci
– volume: 18
  start-page: 73
  year: 2008
  end-page: 84
  ident: CR14
  article-title: Transcription‐coupled nucleotide excision repair in mammalian cells: molecular mechanisms and biological effects
  publication-title: Cell Res
– volume: 10
  start-page: 121
  year: 2006
  end-page: 132
  ident: CR1
  article-title: An Xpd mouse model for the combined xeroderma pigmentosum/Cockayne syndrome exhibiting both cancer predisposition and segmental progeria
  publication-title: Cancer Cell
– volume: 109
  start-page: 125
  year: 2002
  end-page: 135
  ident: CR26
  article-title: XPD mutations prevent TFIIH‐dependent transactivation by nuclear receptors and phosphorylation of RARalpha
  publication-title: Cell
– volume: 32
  start-page: 121
  year: 2010
  end-page: 130
  ident: CR48
  article-title: The TFIIH subunit p89 (XPB) localizes to the centrosome during mitosis
  publication-title: Cell Oncol
– volume: 27
  start-page: 311
  year: 2007
  end-page: 323
  ident: CR33
  article-title: Sealing of chromosomal DNA nicks during nucleotide excision repair requires XRCC1 and DNA ligase III alpha in a cell‐cycle‐specific manner
  publication-title: Mol Cell
– volume: 39
  start-page: 632
  year: 2010
  end-page: 640
  ident: CR25
  article-title: MMXD, a TFIIH‐independent XPD‐MMS19 protein complex involved in chromosome segregation
  publication-title: Mol Cell
– volume: 276
  start-page: 35328
  year: 2001
  end-page: 35333
  ident: CR36
  article-title: A yeast four‐hybrid system identifies Cdk‐activating kinase as a regulator of the XPD helicase, a subunit of transcription factor IIH
  publication-title: J Biol Chem
– volume: 19
  start-page: 1157
  year: 2000
  end-page: 1166
  ident: CR2
  article-title: UV damage causes uncontrolled DNA breakage in cells from patients with combined features of XP‐D and Cockayne syndrome
  publication-title: EMBO J
– volume: 36
  start-page: 4454
  year: 2008
  end-page: 4464
  ident: CR18
  article-title: PARP inhibition versus PARP‐1 silencing: different outcomes in terms of single‐strand break repair and radiation susceptibility
  publication-title: Nucleic Acids Res
– volume: 15
  start-page: 199
  year: 1992
  end-page: 213
  ident: CR9
  article-title: Far‐UV photochemistry and photosensitization of 2′‐deoxycytidylyl‐(3′‐5′)‐thymidine: isolation and characterization of the main photoproducts
  publication-title: J Photochem Photobiol B
– volume: 40
  start-page: 50
  year: 2010
  end-page: 62
  ident: CR15
  article-title: Exo1 competes with repair synthesis, converts NER intermediates to long ssDNA gaps, and promotes checkpoint activation
  publication-title: Mol Cell
– volume: 266
  start-page: 1957
  year: 1994
  end-page: 1958
  ident: CR20
  article-title: Transcription‐coupled repair and human disease
  publication-title: Science
– volume: 145
  start-page: 1388
  year: 2007
  end-page: 1396
  ident: CR27
  article-title: Xeroderma pigmentosum, trichothiodystrophy and Cockayne syndrome: a complex genotype‐phenotype relationship
  publication-title: Neuroscience
– volume: 6
  start-page: e149
  year: 2008
  ident: CR49
  article-title: Crystal structure of the FeS cluster‐containing nucleotide excision repair helicase XPD
  publication-title: PLoS Biol
– volume: 7
  start-page: e1000220
  year: 2009
  ident: CR17
  article-title: Differentiation driven changes in the dynamic organization of Basal transcription initiation
  publication-title: PLoS Biol
– volume: 8
  start-page: 213
  year: 2001
  end-page: 224
  ident: CR46
  article-title: Sequential assembly of the nucleotide excision repair factors
  publication-title: Mol Cell
– volume: 79
  start-page: 1103
  year: 1994
  end-page: 1109
  ident: CR13
  article-title: Relationship of CDK‐activating kinase and RNA polymerase II CTD kinase TFIIH/TFIIK
  publication-title: Cell
– volume: 56
  start-page: 167
  year: 1995
  end-page: 174
  ident: CR5
  article-title: Molecular and cellular analysis of the DNA repair defect in a patient in xeroderma pigmentosum complementation group D who has the clinical features of xeroderma pigmentosum and Cockayne syndrome
  publication-title: Am J Hum Genet
– volume: 10
  start-page: 1163
  year: 2002
  end-page: 1174
  ident: CR22
  article-title: Rapid switching of TFIIH between RNA polymerase I and II transcription and DNA repair
  publication-title: Mol Cell
– volume: 26
  start-page: 231
  year: 2007
  end-page: 243
  ident: CR24
  article-title: XPG stabilizes TFIIH, allowing transactivation of nuclear receptors: implications for Cockayne syndrome in XP‐G/CS patients
  publication-title: Mol Cell
– volume: 58
  start-page: 5027
  year: 1998
  end-page: 5031
  article-title: Identification of a human gene encoding a homologue of Saccharomyces cerevisiae EXO1, an exonuclease implicated in mismatch repair and recombination
  publication-title: Cancer Res
– volume: 29
  start-page: 213
  year: 1974
  end-page: 219
  article-title: Xeroderma pigmentosum with liver involvement
  publication-title: Helv Paediatr Acta
– volume: 2
  start-page: 223
  year: 1998
  end-page: 232
  article-title: Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair
  publication-title: Mol Cell
– volume: 29
  start-page: 1574
  year: 2001
  end-page: 1581
  article-title: Different dynamics in nuclear entry of subunits of the repair/transcription factor TFIIH
  publication-title: Nucleic Acids Res
– volume: 124
  start-page: 435
  year: 2011
  end-page: 446
  article-title: UV‐induced photolesions elicit ATR‐kinase‐dependent signaling in non‐cycling cells through nucleotide excision repair‐dependent and ‐independent pathways
  publication-title: J Cell Sci
– volume: 145
  start-page: 1388
  year: 2007
  end-page: 1396
  article-title: Xeroderma pigmentosum, trichothiodystrophy and Cockayne syndrome: a complex genotype‐phenotype relationship
  publication-title: Neuroscience
– volume: 363
  start-page: 114
  year: 1993
  end-page: 115
  article-title: DNA repair. Engagement with transcription
  publication-title: Nature
– volume: 79
  start-page: 1103
  year: 1994
  end-page: 1109
  article-title: Relationship of CDK‐activating kinase and RNA polymerase II CTD kinase TFIIH/TFIIK
  publication-title: Cell
– volume: 25
  start-page: 9350
  year: 2005
  end-page: 9359
  article-title: Nuclear dynamics of PCNA in DNA replication and repair
  publication-title: Mol Cell Biol
– volume: 28
  start-page: 1111
  year: 2009
  end-page: 1120
  article-title: Coordination of dual incision and repair synthesis in human nucleotide excision repair
  publication-title: EMBO J
– volume: 10
  start-page: 121
  year: 2006
  end-page: 132
  article-title: An Xpd mouse model for the combined xeroderma pigmentosum/Cockayne syndrome exhibiting both cancer predisposition and segmental progeria
  publication-title: Cancer Cell
– volume: 120
  start-page: 1104
  year: 2007
  end-page: 1112
  article-title: Perturbed gap‐filling synthesis in nucleotide excision repair causes histone H2AX phosphorylation in human quiescent cells
  publication-title: J Cell Sci
– volume: 32
  start-page: 121
  year: 2010
  end-page: 130
  article-title: The TFIIH subunit p89 (XPB) localizes to the centrosome during mitosis
  publication-title: Cell Oncol
– volume: 19
  start-page: 1157
  year: 2000
  end-page: 1166
  article-title: UV damage causes uncontrolled DNA breakage in cells from patients with combined features of XP‐D and Cockayne syndrome
  publication-title: EMBO J
– volume: 133
  start-page: 801
  year: 2008
  end-page: 812
  article-title: Structure of the DNA repair helicase XPD
  publication-title: Cell
– volume: 10
  start-page: 2539
  year: 2001
  end-page: 2547
  article-title: Two individuals with features of both xeroderma pigmentosum and trichothiodystrophy highlight the complexity of the clinical outcomes of mutations in the XPD gene
  publication-title: Hum Mol Genet
– volume: 10
  start-page: 1163
  year: 2002
  end-page: 1174
  article-title: Rapid switching of TFIIH between RNA polymerase I and II transcription and DNA repair
  publication-title: Mol Cell
– volume: 285
  start-page: 1414
  year: 2010
  end-page: 1423
  article-title: Ku and DNA‐dependent protein kinase dynamic conformations and assembly regulate DNA binding and the initial non‐homologous end joining complex
  publication-title: J Biol Chem
– volume: 108
  start-page: 13647
  year: 2011
  end-page: 13652
  article-title: Human exonuclease 1 connects nucleotide excision repair (NER) processing with checkpoint activation in response to UV irradiation
  publication-title: Proc Natl Acad Sci USA
– volume: 685
  start-page: 29
  year: 2010
  end-page: 37
  article-title: Regulation of damage recognition in mammalian global genomic nucleotide excision repair
  publication-title: Mutat Res
– volume: 15
  start-page: 199
  year: 1992
  end-page: 213
  article-title: Far‐UV photochemistry and photosensitization of 2′‐deoxycytidylyl‐(3′‐5′)‐thymidine: isolation and characterization of the main photoproducts
  publication-title: J Photochem Photobiol B
– volume: 27
  start-page: 2898
  year: 1999
  end-page: 2904
  article-title: Cells from XP‐D and XP‐D‐CS patients exhibit equally inefficient repair of UV‐induced damage in transcribed genes but different capacity to recover UV‐inhibited transcription
  publication-title: Nucleic Acids Res
– volume: 266
  start-page: 1957
  year: 1994
  end-page: 1958
  article-title: Transcription‐coupled repair and human disease
  publication-title: Science
– volume: 38
  start-page: 8083
  year: 2010
  end-page: 8094
  article-title: Localization of xeroderma pigmentosum group A protein and replication protein A on damaged DNA in nucleotide excision repair
  publication-title: Nucleic Acids Res
– volume: 18
  start-page: 1357
  year: 1999
  end-page: 1366
  article-title: Mutations in XPB and XPD helicases found in xeroderma pigmentosum patients impair the transcription function of TFIIH
  publication-title: EMBO J
– volume: 276
  start-page: 35328
  year: 2001
  end-page: 35333
  article-title: A yeast four‐hybrid system identifies Cdk‐activating kinase as a regulator of the XPD helicase, a subunit of transcription factor IIH
  publication-title: J Biol Chem
– volume: 8
  start-page: 213
  year: 2001
  end-page: 224
  article-title: Sequential assembly of the nucleotide excision repair factors
  publication-title: Mol Cell
– volume: 19
  start-page: 233
  year: 1997
  end-page: 240
  article-title: The FEN‐1 family of structure‐specific nucleases in eukaryotic DNA replication, recombination and repair
  publication-title: Bioessays
– volume: 6
  start-page: e149
  year: 2008
  article-title: Crystal structure of the FeS cluster‐containing nucleotide excision repair helicase XPD
  publication-title: PLoS Biol
– volume: 31
  start-page: 9
  year: 2008
  end-page: 20
  article-title: Nucleotide excision repair driven by the dissociation of CAK from TFIIH
  publication-title: Mol Cell
– volume: 7
  start-page: e1000220
  year: 2009
  article-title: Differentiation driven changes in the dynamic organization of Basal transcription initiation
  publication-title: PLoS Biol
– volume: 2
  start-page: 1013
  year: 2001
  end-page: 1017
  article-title: Local UV‐induced DNA damage in cell nuclei results in local transcription inhibition
  publication-title: EMBO Rep
– volume: 26
  start-page: 8868
  year: 2006
  end-page: 8879
  article-title: Recruitment of the nucleotide excision repair endonuclease XPG to sites of UV‐induced dna damage depends on functional TFIIH
  publication-title: Mol Cell Biol
– volume: 18
  start-page: 73
  year: 2008
  end-page: 84
  article-title: Transcription‐coupled nucleotide excision repair in mammalian cells: molecular mechanisms and biological effects
  publication-title: Cell Res
– volume: 36
  start-page: 4454
  year: 2008
  end-page: 4464
  article-title: PARP inhibition versus PARP‐1 silencing: different outcomes in terms of single‐strand break repair and radiation susceptibility
  publication-title: Nucleic Acids Res
– volume: 26
  start-page: 231
  year: 2007
  end-page: 243
  article-title: XPG stabilizes TFIIH, allowing transactivation of nuclear receptors: implications for Cockayne syndrome in XP‐G/CS patients
  publication-title: Mol Cell
– volume: 12
  start-page: 3693
  year: 1993
  end-page: 3701
  article-title: Evidence for a repair enzyme complex involving ERCC1 and complementing activities of ERCC4, ERCC11 and xeroderma pigmentosum group F
  publication-title: EMBO J
– volume: 4
  start-page: e156
  year: 2006
  article-title: Dynamic interaction of TTDA with TFIIH is stabilized by nucleotide excision repair in living cells
  publication-title: PLoS Biol
– volume: 133
  start-page: 789
  year: 2008
  end-page: 800
  article-title: XPD helicase structures and activities: insights into the cancer and aging phenotypes from XPD mutations
  publication-title: Cell
– volume: 296
  start-page: 1276
  year: 2002
  end-page: 1279
  article-title: Premature aging in mice deficient in DNA repair and transcription
  publication-title: Science
– volume: 39
  start-page: 632
  year: 2010
  end-page: 640
  article-title: MMXD, a TFIIH‐independent XPD‐MMS19 protein complex involved in chromosome segregation
  publication-title: Mol Cell
– volume: 25
  start-page: 8368
  year: 2005
  end-page: 8378
  article-title: Transcription‐associated breaks in xeroderma pigmentosum group D cells from patients with combined features of xeroderma pigmentosum and Cockayne syndrome
  publication-title: Mol Cell Biol
– volume: 37
  start-page: 714
  year: 2010
  end-page: 727
  article-title: Three DNA polymerases, recruited by different mechanisms, carry out NER repair synthesis in human cells
  publication-title: Mol Cell
– volume: 121
  start-page: 2850
  year: 2008
  end-page: 2859
  article-title: Versatile DNA damage detection by the global genome nucleotide excision repair protein XPC
  publication-title: J Cell Sci
– volume: 27
  start-page: 311
  year: 2007
  end-page: 323
  article-title: Sealing of chromosomal DNA nicks during nucleotide excision repair requires XRCC1 and DNA ligase III alpha in a cell‐cycle‐specific manner
  publication-title: Mol Cell
– volume: 109
  start-page: 125
  year: 2002
  end-page: 135
  article-title: XPD mutations prevent TFIIH‐dependent transactivation by nuclear receptors and phosphorylation of RARalpha
  publication-title: Cell
– volume: 271
  start-page: 15898
  year: 1996
  end-page: 15904
  article-title: A 3′→5′ XPB helicase defect in repair/transcription factor TFIIH of xeroderma pigmentosum group B affects both DNA repair and transcription
  publication-title: J Biol Chem
– volume: 40
  start-page: 50
  year: 2010
  end-page: 62
  article-title: Exo1 competes with repair synthesis, converts NER intermediates to long ssDNA gaps, and promotes checkpoint activation
  publication-title: Mol Cell
– volume: 9
  start-page: 90
  year: 2010
  end-page: 96
  article-title: The long unwinding road: XPB and XPD helicases in damaged DNA opening
  publication-title: Cell Cycle
– volume: 56
  start-page: 167
  year: 1995
  end-page: 174
  article-title: Molecular and cellular analysis of the DNA repair defect in a patient in xeroderma pigmentosum complementation group D who has the clinical features of xeroderma pigmentosum and Cockayne syndrome
  publication-title: Am J Hum Genet
– reference: 17643379 - Mol Cell. 2007 Jul 20;27(2):311-23
– reference: 8001136 - Cell. 1994 Dec 16;79(6):1103-9
– reference: 11709541 - Hum Mol Genet. 2001 Oct 15;10(22):2539-47
– reference: 21808022 - Proc Natl Acad Sci U S A. 2011 Aug 16;108(33):13647-52
– reference: 20932474 - Mol Cell. 2010 Oct 8;40(1):50-62
– reference: 1453273 - J Photochem Photobiol B. 1992 Aug 31;15(3):199-213
– reference: 18603595 - Nucleic Acids Res. 2008 Aug;36(13):4454-64
– reference: 19279666 - EMBO J. 2009 Apr 22;28(8):1111-20
– reference: 17466625 - Mol Cell. 2007 Apr 27;26(2):231-43
– reference: 10698956 - EMBO J. 2000 Mar 1;19(5):1157-66
– reference: 11950998 - Science. 2002 May 17;296(5571):1276-9
– reference: 11511374 - Mol Cell. 2001 Jul;8(1):213-24
– reference: 16904611 - Cancer Cell. 2006 Aug;10(2):121-32
– reference: 7801121 - Science. 1994 Dec 23;266(5193):1957-8
– reference: 21224401 - J Cell Sci. 2011 Feb 1;124(Pt 3):435-46
– reference: 11266560 - Nucleic Acids Res. 2001 Apr 1;29(7):1574-81
– reference: 10390531 - Nucleic Acids Res. 1999 Jul 15;27(14):2898-904
– reference: 7825573 - Am J Hum Genet. 1995 Jan;56(1):167-74
– reference: 18166977 - Cell Res. 2008 Jan;18(1):73-84
– reference: 16669699 - PLoS Biol. 2006 Jun;4(6):e156
– reference: 9823303 - Cancer Res. 1998 Nov 15;58(22):5027-31
– reference: 12453423 - Mol Cell. 2002 Nov;10(5):1163-74
– reference: 9080773 - Bioessays. 1997 Mar;19(3):233-40
– reference: 8483493 - Nature. 1993 May 13;363(6425):114-5
– reference: 18510924 - Cell. 2008 May 30;133(5):789-800
– reference: 17276014 - Neuroscience. 2007 Apr 14;145(4):1388-96
– reference: 8253091 - EMBO J. 1993 Sep;12(9):3693-701
– reference: 20693538 - Nucleic Acids Res. 2010 Dec;38(22):8083-94
– reference: 11955452 - Cell. 2002 Apr 5;109(1):125-35
– reference: 11445587 - J Biol Chem. 2001 Sep 21;276(38):35328-33
– reference: 20797633 - Mol Cell. 2010 Aug 27;39(4):632-40
– reference: 18682493 - J Cell Sci. 2008 Sep 1;121(Pt 17):2850-9
– reference: 19682467 - Mutat Res. 2010 Mar 1;685(1-2):29-37
– reference: 10064601 - EMBO J. 1999 Mar 1;18(5):1357-66
– reference: 16227586 - Mol Cell Biol. 2005 Nov;25(21):9350-9
– reference: 16135823 - Mol Cell Biol. 2005 Sep;25(18):8368-78
– reference: 19841728 - PLoS Biol. 2009 Oct;7(10):e1000220
– reference: 11713193 - EMBO Rep. 2001 Nov;2(11):1013-7
– reference: 20227374 - Mol Cell. 2010 Mar 12;37(5):714-27
– reference: 20016270 - Cell Cycle. 2010 Jan 1;9(1):90-6
– reference: 18578568 - PLoS Biol. 2008 Jun 24;6(6):e149
– reference: 4855436 - Helv Paediatr Acta. 1974 Aug;29(3):213-9
– reference: 18510925 - Cell. 2008 May 30;133(5):801-12
– reference: 9734359 - Mol Cell. 1998 Aug;2(2):223-32
– reference: 20208140 - Cell Oncol. 2010;32(1-2):121-30
– reference: 17000769 - Mol Cell Biol. 2006 Dec;26(23):8868-79
– reference: 18614043 - Mol Cell. 2008 Jul 11;31(1):9-20
– reference: 8663148 - J Biol Chem. 1996 Jul 5;271(27):15898-904
– reference: 17327276 - J Cell Sci. 2007 Mar 15;120(Pt 6):1104-12
– reference: 19893054 - J Biol Chem. 2010 Jan 8;285(2):1414-23
SSID ssj0005871
Score 2.1658602
Snippet Nucleotide excision repair (NER) is a precisely coordinated process essential to avoid DNA damage‐induced cellular malfunction and mutagenesis. Here, we...
Nucleotide excision repair (NER) is a precisely coordinated process essential to avoid DNA damage-induced cellular malfunction and mutagenesis. Here, we...
Strong tumorigenic effects of a particular mutation in the key nucleotide excision repair factor XPD may not be due to DNA break generation, but caused by...
SourceID pubmedcentral
proquest
pubmed
wiley
springer
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 3550
SubjectTerms Animals
Cell Line
Deoxyribonucleic acid
DNA
DNA Damage
DNA Repair
DNA, Single-Stranded - genetics
DNA-Binding Proteins - genetics
EMBO13
EMBO24
Endonucleases - genetics
Exo1
Humans
Irradiation
Lesions
Mice
Mice, Transgenic
Molecular biology
Mutagenesis
Mutation
Nuclear Proteins - genetics
nucleotide excision repair
Signal transduction
Transcription Factors - genetics
Ultraviolet radiation
Ultraviolet Rays
Xeroderma Pigmentosum Group D Protein - genetics
XPD helicase
XPG endonuclease
γH2AX
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BKwQXBOUVKMhICHEJTWJv7JxQWbqtKjUXWtibZdcTdXkkJbuV2n-Px3mUFVVviTJJ7HnY45nRNwDv_KaQYJabuKCzibBejc0Eq9gvfM5wZ0wSwKqPyvzgRBzOJ_M-4LbsyyqHNTEs1K45pRj5DgF585xzLj-d_4mpaxRlV_sWGndhM0CXeX2Wc3ld4qHCgSvEWESqigG0kasd_G2bH1TZlX0MSedNYurlTW7m_9WSY8p03aENO9LsETzsXUm228n-MdzBegvudc0lr7bg_nTo5fYEvnXo0iQE1lTsS7nLKEbwC2OKdNSOucUyVGdRrJDZK0aV5m3jX0fHaoI8blYLhwwvu448rPW72KJ9CiezvePpQdx3VIjPCGgtVpTn5BITKVWKVeq8N2eksamojEV1ar2B5w6FSo0qlC24EAYVGqXQ-wIu4c9go25qfAHMuaLChKMonBVWerMWhfLbv3Cy4kbICN4HlurzDjVDm_YnFZHJif5e7uv9spx-nR_PdBrB9sBz3dvPUl9LO4K342M_a0pnmBqbi0Aj89wfT8VtNDQH76L63zzvxDgOKMtUzqXkEcg1AY8EhLy9_qRenAUEbi44ATVG8GFQhX-HHkavg4Zp0jDtNSyCJKjK-PGbyfTe0edDuvHXL29nzCt4QIQU386KbdhYtRf42jtIK_smWMFfjekNpg
  priority: 102
  providerName: ProQuest
Title Generation of DNA single-strand displacement by compromised nucleotide excision repair
URI https://api.istex.fr/ark:/67375/WNG-GNNCSXTF-1/fulltext.pdf
https://link.springer.com/article/10.1038/emboj.2012.193
https://onlinelibrary.wiley.com/doi/abs/10.1038%2Femboj.2012.193
https://www.ncbi.nlm.nih.gov/pubmed/22863773
https://www.proquest.com/docview/1038363337
https://www.proquest.com/docview/1037660944
https://www.proquest.com/docview/1093443261
https://pubmed.ncbi.nlm.nih.gov/PMC3433779
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELboVoheEJRXoFRGQohLIIm9sXPcprstixoh2orcLAc76lJIUHYrtTd-Ar-RX8KM84CFCnFxnNia-DH2PDz6TMhzEAqBjWLtJ2ib8ALYWI9t6cPGZzQzWgcOrPooiw9P-Twf552huOzCKltIS7dN99Fhr-2Xov6EkVjRK1A5NsimBNEXjcjmZDI_nv8K6pDOxHJeFR7KpIdpZPIPCqCL4jBeXqdY_h0fORySrquwTgbN7pDbnfJIJ21z75IbttomN9vrJK-2ya20v73tHslbPGkcdlqXdD-bUPQKfLY_vn1H70ZlqFksXUQW-gdpcUUxurypgYA1tEKY43q1MJbay_YWHtqA5Fo098npbHqSHvrdLQr-GYKr-RLPNpmwgRAytGVoQIPTQhchL3Vh5ccCFnVsLJehloksEsa5ttJqKS3IfxOwB2RU1ZV9RKgxSWkDZnliCl4IWMo8kSDyuREl01x45IUbVPW1RcpQujnHwDExVh-yA3WQZelxfjJToUd2-lFX3ZpZKpwlFjPGgM6zoRh6jUcYurL1hasj4hhMUv6vOtgHUEvhNw_biRwaFEUyZkIwj4i1KR4qINr2ekm1OHOo24wzBGf0yMueGX5vumu9cjymkMcU8JhHAscsA_Hrq6np0d4cXyD_-P-pPyFbmEX_dpTskNGqubBPQUFaFbtkQ-QCUpmGu90KgefeNHv3Hr6mcQrp_pu3PwHEgRN-
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NVmi8IDa-AmMYCRAvYUnsxs4DQlvXrvtohKCDvhlndrTykYy2E-s_xd-Iz2k6Kqa97S1RnMT2_Wyf786_A3hpF4XARLHyE9ybsMzCWLVM7tuJTyuqlQocWXU_jXvH7GDYGq7An_osDIZV1nOim6h1eYI28i0k8qYxpZS_P_vlY9Yo9K7WKTQqWBya2W-7ZZu829-18n0VRd3OoN3z51kF_FMkG_MF-vooNwHnIjR5qK1Go7jKQparzIiTzII81oaJUIlEZAllTBlhlBDGroc6oPa7t6DJ8ERrA5o7nfTDx8ugEuG2eM6qw0KR1DSRVGyZn1n5DWPJorfOzd1EMV5cpdj-H5-5cNIuq9BuDezeg7tz5ZVsV2hbgxVTrMPtKp3lbB1W23X2uPvwueKzRrGTMie76TZBq8QP46NtpdBEjyYuHgytkySbEYxtH5f2daNJgSTL5XSkDTEXVQ4gMrbr5mj8AI5vpLcfQqMoC_MYiNZJbgJqWKIzlnE7kbBEWIWDaZ5TxbgHr12XyrOKp0Oq8XcMW-Mt-SXdk3tp2v40HHRl6MFG3edyPmIn8hJfHrxYPLatRgeKKkx57srwOLYbYnZdGWyDVYrtbx5VYlxUKIpETDmnHvAlAS8KINf38pNidOo4vymjSA3pwZsaCv9W3dVeOoRJRJi0CPMgcFBZfPzqYrLT3znAG3v95PqOeQ6rvUH_SB7tp4dP4Q6-hNb1KNmAxnR8bp5Z9Wyabc7HBIGvNz0M_wLIBUr_
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwEB6VVlAuCMpfoICREOKSksTe2Dku227LQiOktmJvloMddQskVbqV2huPwDPyJMw4m8BChbglsTXxz0z8eTz5BuAFLgqRS1ITZrQ3EQWqsRm4MsQPnzXcGhN5sur9PN07EpPpYLoCSfcvjA_a95SW_jPdRYe9dl-L-oQisZIthBxbp7a8BmtKigx1e204nBxMfgV2KL_N8p4VEauso2rk6g8piEdpKC-uApd_x0j2B6XLMNavQ-PbcGsBINmwbfIdWHHVBlxvU0pebsD6qMvgdhemLac0DT2rS7adDxl5Br64H9--k4ejsszOznxUFvkIWXHJKMK8qVGAs6wiquN6PrOOuYs2Ew9rcPWaNffgaLxzONoLF5kUwmMiWAsVnW9y6SIpVezK2CKKM9IUsShN4dSnAg07tU6o2KhMFRkXwjjljFIOMYCN-H1YrerKPQRmbVa6iDuR2UIUEs1ZZAqXfWFlyY2QAbz0g6pPW7YMbZrPFDwmB_pjvqt383x0MD0c6ziAzW7U9cJuzjTNEk855yjneV-MvaZjDFO5-tzXkWmK21LxrzrUB4Sm-JoH7UT2DUoSlXIpeQByaYr7CsS4vVxSzY498zYXnAgaA3jVKcPvTfet117HNOmYRh0LIPLK0gu_upre2X8zoRu8fvT_0p_BjQ_bY_3-bf7uMdykp-TuTrJNWJ035-4J4qV58XRhID8Bef0SWw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generation+of+DNA+single%E2%80%90strand+displacement+by+compromised+nucleotide+excision+repair&rft.jtitle=The+EMBO+journal&rft.au=Godon%2C+Camille&rft.au=Mourgues%2C+Sophie&rft.au=Nonnekens%2C+Julie&rft.au=Mourcet%2C+Amandine&rft.date=2012-08-29&rft.pub=Nature+Publishing+Group+UK&rft.issn=0261-4189&rft.eissn=1460-2075&rft.volume=31&rft.issue=17&rft.spage=3550&rft.epage=3563&rft_id=info:doi/10.1038%2Femboj.2012.193&rft.externalDocID=10_1038_emboj_2012_193
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-4189&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-4189&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-4189&client=summon