Two distinct conformational states define the interaction of human RAD51‐ATP with single‐stranded DNA

An essential mechanism for repairing DNA double‐strand breaks is homologous recombination (HR). One of its core catalysts is human RAD51 (hRAD51), which assembles as a helical nucleoprotein filament on single‐stranded DNA, promoting DNA‐strand exchange. Here, we study the interaction of hRAD51 with...

Full description

Saved in:
Bibliographic Details
Published inThe EMBO journal Vol. 37; no. 7
Main Authors Brouwer, Ineke, Moschetti, Tommaso, Candelli, Andrea, Garcin, Edwige B, Modesti, Mauro, Pellegrini, Luca, Wuite, Gijs JL, Peterman, Erwin JG
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 03.04.2018
Springer Nature B.V
EMBO Press
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An essential mechanism for repairing DNA double‐strand breaks is homologous recombination (HR). One of its core catalysts is human RAD51 (hRAD51), which assembles as a helical nucleoprotein filament on single‐stranded DNA, promoting DNA‐strand exchange. Here, we study the interaction of hRAD51 with single‐stranded DNA using a single‐molecule approach. We show that ATP‐bound hRAD51 filaments can exist in two different states with different contour lengths and with a free‐energy difference of ~4 k B T per hRAD51 monomer. Upon ATP hydrolysis, the filaments convert into a disassembly‐competent ADP‐bound configuration. In agreement with the single‐molecule analysis, we demonstrate the presence of two distinct protomer interfaces in the crystal structure of a hRAD51‐ATP filament, providing a structural basis for the two conformational states of the filament. Together, our findings provide evidence that hRAD51‐ATP filaments can exist in two interconvertible conformational states, which might be functionally relevant for DNA homology recognition and strand exchange. Synopsis Single‐molecule studies of RAD51 binding to single‐stranded DNA, together with a new crystal structure of the hRAD51 filament, reveal two distinct conformational states of ATP‐bound RAD51 that may be important for DNA homology recognition and strand exchange. ATP‐bound hRAD51‐ssDNA filaments exist in two distinct states with different contour lengths and with a free energy difference of ˜4 kBT per hRAD51 monomer. hRAD51 disassembly from ssDNA is independent of tension in the DNA template and occurs from an ADP‐bound state. The crystal structure of a hRAD51‐ATP filament reveals the presence of two distinct protomer interfaces. Combined evidence from single‐molecule and crystallographic experiments shows that the ATP‐bound hRAD51‐ssDNA filament is a highly flexible entity. Graphical Abstract Single‐molecule studies of RAD51 DNA binding and a new crystal structure of the hRAD51 filament suggest that different conformations of ATP‐bound RAD51 may be involved in DNA homology recognition and strand exchange.
AbstractList An essential mechanism for repairing DNA double-strand breaks is homologous recombination (HR). One of its core catalysts is human RAD51 (hRAD51), which assembles as a helical nucleoprotein filament on single-stranded DNA, promoting DNA-strand exchange. Here, we study the interaction of hRAD51 with single-stranded DNA using a single-molecule approach. We show that ATP-bound hRAD51 filaments can exist in two different states with different contour lengths and with a free-energy difference of~4 k B T per hRAD51 monomer. Upon ATP hydrolysis, the filaments convert into a disassembly-competent ADP-bound configuration. In agreement with the single-molecule analysis, we demonstrate the presence of two distinct protomer interfaces in the crystal structure of a hRAD51-ATP filament, providing a structural basis for the two conformational states of the filament. Together, our findings provide evidence that hRAD51-ATP filaments can exist in two inter-convertible conformational states, which might be functionally relevant for DNA homology recognition and strand exchange.
An essential mechanism for repairing DNA double-strand breaks is homologous recombination (HR). One of its core catalysts is human RAD51 (hRAD51), which assembles as a helical nucleoprotein filament on single-stranded DNA, promoting DNA-strand exchange. Here, we study the interaction of hRAD51 with single-stranded DNA using a single-molecule approach. We show that ATP-bound hRAD51 filaments can exist in two different states with different contour lengths and with a free-energy difference of ~4 k T per hRAD51 monomer. Upon ATP hydrolysis, the filaments convert into a disassembly-competent ADP-bound configuration. In agreement with the single-molecule analysis, we demonstrate the presence of two distinct protomer interfaces in the crystal structure of a hRAD51-ATP filament, providing a structural basis for the two conformational states of the filament. Together, our findings provide evidence that hRAD51-ATP filaments can exist in two interconvertible conformational states, which might be functionally relevant for DNA homology recognition and strand exchange.
An essential mechanism for repairing DNA double‐strand breaks is homologous recombination (HR). One of its core catalysts is human RAD51 (hRAD51), which assembles as a helical nucleoprotein filament on single‐stranded DNA, promoting DNA‐strand exchange. Here, we study the interaction of hRAD51 with single‐stranded DNA using a single‐molecule approach. We show that ATP‐bound hRAD51 filaments can exist in two different states with different contour lengths and with a free‐energy difference of ~4 k B T per hRAD51 monomer. Upon ATP hydrolysis, the filaments convert into a disassembly‐competent ADP‐bound configuration. In agreement with the single‐molecule analysis, we demonstrate the presence of two distinct protomer interfaces in the crystal structure of a hRAD51‐ATP filament, providing a structural basis for the two conformational states of the filament. Together, our findings provide evidence that hRAD51‐ATP filaments can exist in two interconvertible conformational states, which might be functionally relevant for DNA homology recognition and strand exchange. Synopsis Single‐molecule studies of RAD51 binding to single‐stranded DNA, together with a new crystal structure of the hRAD51 filament, reveal two distinct conformational states of ATP‐bound RAD51 that may be important for DNA homology recognition and strand exchange. ATP‐bound hRAD51‐ssDNA filaments exist in two distinct states with different contour lengths and with a free energy difference of ˜4 kBT per hRAD51 monomer. hRAD51 disassembly from ssDNA is independent of tension in the DNA template and occurs from an ADP‐bound state. The crystal structure of a hRAD51‐ATP filament reveals the presence of two distinct protomer interfaces. Combined evidence from single‐molecule and crystallographic experiments shows that the ATP‐bound hRAD51‐ssDNA filament is a highly flexible entity. Graphical Abstract Single‐molecule studies of RAD51 DNA binding and a new crystal structure of the hRAD51 filament suggest that different conformations of ATP‐bound RAD51 may be involved in DNA homology recognition and strand exchange.
An essential mechanism for repairing DNA double-strand breaks is homologous recombination (HR). One of its core catalysts is human RAD51 (hRAD51), which assembles as a helical nucleoprotein filament on single-stranded DNA, promoting DNA-strand exchange. Here, we study the interaction of hRAD51 with single-stranded DNA using a single-molecule approach. We show that ATP-bound hRAD51 filaments can exist in two different states with different contour lengths and with a free-energy difference of ~4 kBT per hRAD51 monomer. Upon ATP hydrolysis, the filaments convert into a disassembly-competent ADP-bound configuration. In agreement with the single-molecule analysis, we demonstrate the presence of two distinct protomer interfaces in the crystal structure of a hRAD51-ATP filament, providing a structural basis for the two conformational states of the filament. Together, our findings provide evidence that hRAD51-ATP filaments can exist in two interconvertible conformational states, which might be functionally relevant for DNA homology recognition and strand exchange.An essential mechanism for repairing DNA double-strand breaks is homologous recombination (HR). One of its core catalysts is human RAD51 (hRAD51), which assembles as a helical nucleoprotein filament on single-stranded DNA, promoting DNA-strand exchange. Here, we study the interaction of hRAD51 with single-stranded DNA using a single-molecule approach. We show that ATP-bound hRAD51 filaments can exist in two different states with different contour lengths and with a free-energy difference of ~4 kBT per hRAD51 monomer. Upon ATP hydrolysis, the filaments convert into a disassembly-competent ADP-bound configuration. In agreement with the single-molecule analysis, we demonstrate the presence of two distinct protomer interfaces in the crystal structure of a hRAD51-ATP filament, providing a structural basis for the two conformational states of the filament. Together, our findings provide evidence that hRAD51-ATP filaments can exist in two interconvertible conformational states, which might be functionally relevant for DNA homology recognition and strand exchange.
An essential mechanism for repairing DNA double‐strand breaks is homologous recombination (HR). One of its core catalysts is human RAD51 (hRAD51), which assembles as a helical nucleoprotein filament on single‐stranded DNA, promoting DNA‐strand exchange. Here, we study the interaction of hRAD51 with single‐stranded DNA using a single‐molecule approach. We show that ATP‐bound hRAD51 filaments can exist in two different states with different contour lengths and with a free‐energy difference of ~4 kBT per hRAD51 monomer. Upon ATP hydrolysis, the filaments convert into a disassembly‐competent ADP‐bound configuration. In agreement with the single‐molecule analysis, we demonstrate the presence of two distinct protomer interfaces in the crystal structure of a hRAD51‐ATP filament, providing a structural basis for the two conformational states of the filament. Together, our findings provide evidence that hRAD51‐ATP filaments can exist in two interconvertible conformational states, which might be functionally relevant for DNA homology recognition and strand exchange.
An essential mechanism for repairing DNA double‐strand breaks is homologous recombination ( HR ). One of its core catalysts is human RAD 51 ( hRAD 51), which assembles as a helical nucleoprotein filament on single‐stranded DNA , promoting DNA ‐strand exchange. Here, we study the interaction of hRAD 51 with single‐stranded DNA using a single‐molecule approach. We show that ATP ‐bound hRAD 51 filaments can exist in two different states with different contour lengths and with a free‐energy difference of ~4 k B T per hRAD 51 monomer. Upon ATP hydrolysis, the filaments convert into a disassembly‐competent ADP ‐bound configuration. In agreement with the single‐molecule analysis, we demonstrate the presence of two distinct protomer interfaces in the crystal structure of a hRAD 51‐ ATP filament, providing a structural basis for the two conformational states of the filament. Together, our findings provide evidence that hRAD 51‐ ATP filaments can exist in two interconvertible conformational states, which might be functionally relevant for DNA homology recognition and strand exchange.
An essential mechanism for repairing DNA double‐strand breaks is homologous recombination (HR). One of its core catalysts is human RAD51 (hRAD51), which assembles as a helical nucleoprotein filament on single‐stranded DNA, promoting DNA‐strand exchange. Here, we study the interaction of hRAD51 with single‐stranded DNA using a single‐molecule approach. We show that ATP‐bound hRAD51 filaments can exist in two different states with different contour lengths and with a free‐energy difference of ~4 kBT per hRAD51 monomer. Upon ATP hydrolysis, the filaments convert into a disassembly‐competent ADP‐bound configuration. In agreement with the single‐molecule analysis, we demonstrate the presence of two distinct protomer interfaces in the crystal structure of a hRAD51‐ATP filament, providing a structural basis for the two conformational states of the filament. Together, our findings provide evidence that hRAD51‐ATP filaments can exist in two interconvertible conformational states, which might be functionally relevant for DNA homology recognition and strand exchange. Synopsis Single‐molecule studies of RAD51 binding to single‐stranded DNA, together with a new crystal structure of the hRAD51 filament, reveal two distinct conformational states of ATP‐bound RAD51 that may be important for DNA homology recognition and strand exchange. ATP‐bound hRAD51‐ssDNA filaments exist in two distinct states with different contour lengths and with a free energy difference of ˜4 kBT per hRAD51 monomer. hRAD51 disassembly from ssDNA is independent of tension in the DNA template and occurs from an ADP‐bound state. The crystal structure of a hRAD51‐ATP filament reveals the presence of two distinct protomer interfaces. Combined evidence from single‐molecule and crystallographic experiments shows that the ATP‐bound hRAD51‐ssDNA filament is a highly flexible entity. Single‐molecule studies of RAD51 DNA binding and a new crystal structure of the hRAD51 filament suggest that different conformations of ATP‐bound RAD51 may be involved in DNA homology recognition and strand exchange.
Author Moschetti, Tommaso
Wuite, Gijs JL
Peterman, Erwin JG
Brouwer, Ineke
Garcin, Edwige B
Modesti, Mauro
Candelli, Andrea
Pellegrini, Luca
AuthorAffiliation 1 Department of Physics and Astronomy and LaserLaB Vrije Universiteit Amsterdam Amsterdam The Netherlands
3 Cancer Research Center of Marseille CNRS UMR7258 Inserm U1068 Institut Paoli‐Calmettes Aix‐Marseille Université Marseille France
4 Present address: Department of Gene Regulation The Netherlands Cancer Institute Amsterdam The Netherlands
2 Department of Biochemistry University of Cambridge Cambridge UK
AuthorAffiliation_xml – name: 1 Department of Physics and Astronomy and LaserLaB Vrije Universiteit Amsterdam Amsterdam The Netherlands
– name: 3 Cancer Research Center of Marseille CNRS UMR7258 Inserm U1068 Institut Paoli‐Calmettes Aix‐Marseille Université Marseille France
– name: 2 Department of Biochemistry University of Cambridge Cambridge UK
– name: 4 Present address: Department of Gene Regulation The Netherlands Cancer Institute Amsterdam The Netherlands
Author_xml – sequence: 1
  givenname: Ineke
  surname: Brouwer
  fullname: Brouwer, Ineke
  organization: Department of Physics and Astronomy and LaserLaB, Vrije Universiteit Amsterdam, Department of Gene Regulation, The Netherlands Cancer Institute
– sequence: 2
  givenname: Tommaso
  surname: Moschetti
  fullname: Moschetti, Tommaso
  organization: Department of Biochemistry, University of Cambridge
– sequence: 3
  givenname: Andrea
  surname: Candelli
  fullname: Candelli, Andrea
  organization: Department of Physics and Astronomy and LaserLaB, Vrije Universiteit Amsterdam
– sequence: 4
  givenname: Edwige B
  surname: Garcin
  fullname: Garcin, Edwige B
  organization: Cancer Research Center of Marseille, CNRS UMR7258, Inserm U1068, Institut Paoli‐Calmettes, Aix‐Marseille Université
– sequence: 5
  givenname: Mauro
  surname: Modesti
  fullname: Modesti, Mauro
  organization: Cancer Research Center of Marseille, CNRS UMR7258, Inserm U1068, Institut Paoli‐Calmettes, Aix‐Marseille Université
– sequence: 6
  givenname: Luca
  orcidid: 0000-0002-9300-497X
  surname: Pellegrini
  fullname: Pellegrini, Luca
  email: lp212@cam.ac.uk
  organization: Department of Biochemistry, University of Cambridge
– sequence: 7
  givenname: Gijs JL
  orcidid: 0000-0002-5706-043X
  surname: Wuite
  fullname: Wuite, Gijs JL
  email: g.j.l.wuite@vu.nl
  organization: Department of Physics and Astronomy and LaserLaB, Vrije Universiteit Amsterdam
– sequence: 8
  givenname: Erwin JG
  orcidid: 0000-0003-1058-249X
  surname: Peterman
  fullname: Peterman, Erwin JG
  email: e.j.g.peterman@vu.nl
  organization: Department of Physics and Astronomy and LaserLaB, Vrije Universiteit Amsterdam
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29507080$$D View this record in MEDLINE/PubMed
https://amu.hal.science/hal-01789423$$DView record in HAL
BookMark eNp1Uk1v1DAQtVArui2cuSFLXOCQMuN82RyQQlta0PIhtHfLSZyNV4ld4qSr3vgJ_EZ-CQ5bFqjExdbMvPdmNPOOyYF1VhPyBOEUU5ayl7ovN6cMMBccM_aALDDJIGKQpwdkASzDKEEujsix9xsASHmOD8kREynkwGFBzGrraG38aGw10srZxg29Go2zqqN-VKP2tNaNsZqOrabGjnpQ1VynrqHt1CtLvxTnKf749r1YfaZbM7bUG7vudMj4cVC21jU9_1g8IoeN6rx-fPefkNXbi9XZVbT8dPnurFhGbcKARXFSIs9U0wiGiBoaVKysQiC4KNM8h4Q1sa7j8NZQ1rzGJkVABOAaVRWfkNc72eup7HVdaRtm6OT1YHo13EqnjPy3Yk0r1-5GpnzeoAgCL3YC7T3aVbGUcy4sm4uExTcYsM_vmg3u66T9KHvjK911ymo3eRkOgywTIskD9Nk96MZNQ9jyjGIgYkARB9TTv6ff9_99sAB4tQNsTadv93UE-csPcvaD3PtBXnx4834fBTLsyD7w7FoPf2b4j0D8Ex-ru5c
ContentType Journal Article
Copyright The Author(s) 2018
2018 The Authors. Published under the terms of the CC BY 4.0 license
2018 The Authors. Published under the terms of the CC BY 4.0 license.
2018 EMBO
Attribution
Copyright_xml – notice: The Author(s) 2018
– notice: 2018 The Authors. Published under the terms of the CC BY 4.0 license
– notice: 2018 The Authors. Published under the terms of the CC BY 4.0 license.
– notice: 2018 EMBO
– notice: Attribution
DBID C6C
24P
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
1XC
VOOES
5PM
DOI 10.15252/embj.201798162
DatabaseName Springer Nature OA Free Journals
Wiley Online Library Open Access
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic
Virology and AIDS Abstracts


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
DocumentTitleAlternate Ineke Brouwer et al
EISSN 1460-2075
EndPage n/a
ExternalDocumentID PMC5881629
oai_HAL_hal_01789423v1
29507080
EMBJ201798162
10_15252_embj_201798162
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Investissements d'Avenir French Government Program
– fundername: H2020 | H2020 Priority Excellent Science | H2020 European Research Council (ERC)
  funderid: 10.13039/100010663
– fundername: Fondazione Cenci‐Bolognetti
  funderid: 10.13039/501100004588
– fundername: French National Cancer Institute
  grantid: PLBIO13‐103
  funderid: 10.13039/501100006364
– fundername: Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO)
  funderid: 10.13039/501100003246
– fundername: Wellcome
  grantid: 104641/Z/14/Z
  funderid: 10.13039/100010269
– fundername: A*MIDEX Project
  grantid: ANR‐11‐IDEX‐0001‐02
– fundername: Fondation Aix‐Marseille Université
  funderid: 10.13039/100007587
– fundername: ARC Foundation for Cancer Research
  funderid: 10.13039/501100004097
– fundername: Fondazione Cenci‐Bolognetti
– fundername: H2020 | H2020 Priority Excellent Science | H2020 European Research Council (ERC)
– fundername: A*MIDEX Project
  funderid: ANR‐11‐IDEX‐0001‐02
– fundername: French National Cancer Institute
  funderid: PLBIO13‐103
– fundername: Wellcome
  funderid: 104641/Z/14/Z
– fundername: Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO)
– fundername: ARC Foundation for Cancer Research
– fundername: Fondation Aix‐Marseille Université
– fundername: Wellcome Trust
– fundername: Wellcome Trust
  grantid: 104641/Z/14/Z
– fundername: French National Cancer Institute
  grantid: PLBIO13‐103
– fundername: Wellcome
  grantid: 104641/Z/14/Z
GroupedDBID ---
-DZ
-Q-
-~X
0R~
123
1OC
24P
29G
2WC
33P
36B
39C
53G
5VS
70F
8R4
8R5
A8Z
AAESR
AAEVG
AAHBH
AAHHS
AAIHA
AAJSJ
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABLJU
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFNX
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHMBA
AIAGR
AIURR
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOIJS
AUFTA
AZBYB
AZFZN
AZVAB
BAWUL
BDRZF
BENPR
BFHJK
BMNLL
BMXJE
BRXPI
BTFSW
C6C
CS3
DCZOG
DIK
DPXWK
DRFUL
DRSTM
DU5
E3Z
EBD
EBLON
EBS
EJD
EMB
EMOBN
F5P
G-S
GROUPED_DOAJ
GX1
HH5
HK~
HYE
KQ8
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
MY~
O9-
OK1
P2P
P2W
Q2X
R.K
RHF
RHI
RNS
ROL
RPM
SV3
TN5
TR2
WBKPD
WH7
WIH
WIK
WIN
WOHZO
WXSBR
WYJ
YSK
ZCA
ZZTAW
~KM
ABJNI
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7T5
7TK
7TM
7TO
7U9
8FD
AAMMB
AASML
ABZEH
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
H94
K9.
M7N
NAO
P64
RC3
7X8
1XC
VOOES
5PM
ID FETCH-LOGICAL-h4202-34b186aff92111e0f1a2bc921989b577042f3ed32f3d0bd8d1f51011008e1ac3
IEDL.DBID 24P
ISSN 0261-4189
1460-2075
IngestDate Thu Aug 21 14:12:56 EDT 2025
Thu May 29 05:47:19 EDT 2025
Fri Jul 11 09:33:13 EDT 2025
Fri Jul 25 19:32:31 EDT 2025
Wed Feb 19 02:31:50 EST 2025
Wed Jan 22 16:53:41 EST 2025
Fri Feb 21 02:40:42 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords RAD51
homologous recombination
DNA repair
single‐stranded DNA
Repair & Recombination
single-stranded DNA Subject Categories DNA Replication
Structural Biology
Language English
License Attribution
2018 The Authors. Published under the terms of the CC BY 4.0 license.
Attribution: http://creativecommons.org/licenses/by
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-h4202-34b186aff92111e0f1a2bc921989b577042f3ed32f3d0bd8d1f51011008e1ac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work
ORCID 0000-0002-9300-497X
0000-0002-5706-043X
0000-0003-1058-249X
0000-0002-4964-331X
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembj.201798162
PMID 29507080
PQID 2020930193
PQPubID 35985
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5881629
hal_primary_oai_HAL_hal_01789423v1
proquest_miscellaneous_2011269947
proquest_journals_2020930193
pubmed_primary_29507080
wiley_primary_10_15252_embj_201798162_EMBJ201798162
springer_journals_10_15252_embj_201798162
PublicationCentury 2000
PublicationDate 03 April 2018
PublicationDateYYYYMMDD 2018-04-03
PublicationDate_xml – month: 04
  year: 2018
  text: 03 April 2018
  day: 03
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: New York
– name: Hoboken
PublicationTitle The EMBO journal
PublicationTitleAbbrev EMBO J
PublicationTitleAlternate EMBO J
PublicationYear 2018
Publisher Nature Publishing Group UK
Springer Nature B.V
EMBO Press
John Wiley and Sons Inc
Publisher_xml – name: Nature Publishing Group UK
– name: Springer Nature B.V
– name: EMBO Press
– name: John Wiley and Sons Inc
References Carreira, Hilario, Amitani, Baskin, Shivji, Venkitaraman, Kowalczykowski (CR12) 2009; 136
Prentiss, Prévost, Danilowicz (CR35) 2015; 50
Lee, Terakawa, Qi, Steinfeld, Redding, Kwon, Gaines, Zhao, Sung, Greene (CR26) 2015; 349
Kim, Ragunathan, Park, Joo, Kim, Ha (CR23) 2014; 136
Ristic, Modesti, van der Heijden, van Noort, Dekker, Kanaar, Wyman (CR36) 2005; 33
Bugreev, Mazin (CR8) 2004; 101
Liu, Stasiak, Masson, McIlwraith, Stasiak, West (CR27) 2004; 337
Chen, Yang, Pavletich (CR14) 2008; 453
Holthausen, Wyman, Kanaar (CR22) 2010; 9
van Mameren, Gross, Farge, Hooijman, Modesti, Falkenberg, Wuite, Peterman (CR31) 2009; 106
Broekmans, King, Stephens, Wuite (CR6) 2016; 116
van Mameren, Modesti, Kanaar, Wyman, Peterman, Wuite (CR32) 2009; 457
Taylor, Špírek, Chaurasiya, Ward, Carzaniga, Yu, Egelman, Collinson, Rueda, Krejčí, Boulton (CR40) 2015; 162
Lodish, Berk, Matsudaira, Kaiser, Krieger, Scott, Zipursky, Darnell (CR28) 2004
Heller, Hoekstra, King, Peterman, Wuite (CR19) 2014; 114
Bianco, Tracy, Kowalczykowski (CR5) 1998; 3
Candelli, Hoekstra, Farge, Gross, Peterman, Wuite (CR10) 2013; 99
Benson, Stasiak, West (CR4) 1994; 13
Conway, Lynch, Zhang, Fortin, Fung, Symington, Rice (CR15) 2004; 11
Yu, Jacobs, West, Ogawa, Egelman (CR44) 2001; 98
Wong, Pero, Ormonde, Tavtigian, Bartel (CR42) 1997; 272
Atwell, Disseau, Stasiak, Stasiak, Renodon‐Corniere, Takahashi, Viovy, Cappello (CR2) 2012; 40
Hoeijmakers (CR21) 2001; 411
Candelli, Wuite, Peterman (CR9) 2011; 13
Xu, Zhao, Xu, Zhao, Sung, Wang (CR43) 2017; 24
Chen, Chen, Chen, Xiao, Sharp, Lee (CR13) 1998; 95
Short, Liu, Chen, Soni, Madhusudhan, Shivji, Venkitaraman (CR38) 2016; 44
Sung, Klein (CR39) 2006; 7
Hilario, Amitani, Baskin, Kowalczykowski (CR20) 2009; 106
King, Gross, Bockelmann, Modesti, Wuite, Peterman (CR24) 2013; 110
Gross, Farge, Peterman, Wuite (CR17) 2010; 475
Taylor, Špírek, Jian Ma, Carzaniga, Takaki, Collinson, Greene, Krejci, Boulton (CR41) 2016; 64
Candelli, Holthausen, Depken, Brouwer, Mariëlla, Maman, Pellegrini, Bernard, Garcin, Wyman, Wuite, Peterman (CR11) 2014; 111
van Mameren, Peterman, Wuite (CR30) 2008; 36
Gross, Laurens, Oddershede, Bockelmann, Peterman, Wuite (CR18) 2011; 7
Brouwer, Sitters, Candelli, Heerema, Heller, de Melo, Zhang, Normanno, Modesti, Peterman, Wuite (CR7) 2016; 535
Ogawa, Yu, Shinohara, Egelman (CR34) 1993; 259
Modesti, Ristic, van der Heijden, Dekker, van Mameren, Peterman, Wuite, Kanaar, Wyman (CR33) 2007; 15
Emsley, Lohkamp, Scott, Cowtan (CR16) 2010; 66
van Mameren, Modesti, Kanaar, Wyman, Wuite, Peterman (CR29) 2006; 91
San Filippo, Sung, Klein (CR37) 2008; 77
Adams, Grosse‐Kunstleve, Hung, Ioerger, McCoy, Moriarty, Read, Sacchettini, Sauter, Terwilliger (CR1) 2002; 58
Kolinjivadi, Sannino, De Antoni, Zadorozhny, Kilkenny, Técher, Baldi, Shen, Ciccia, Pellegrini, Krejci, Costanzo (CR25) 2017; 67
2004; 101
2015; 162
2002; 58
2006; 91
1997; 272
2015; 50
2017; 24
2017; 67
2008; 36
2006; 7
2011; 13
2004
2008; 77
2015; 349
2014; 111
2009; 136
2014; 114
2014; 136
2011; 7
2007; 15
2004; 11
2010; 66
2009b; 457
2009a; 106
2013; 99
2010; 475
2016; 64
1994; 13
1998; 3
2016; 535
2016; 116
2013; 110
2008; 453
1998; 95
1993; 259
2004; 337
2005; 33
2001; 411
2010; 9
2012; 40
2009; 106
2016; 44
2001; 98
References_xml – volume: 91
  start-page: L78
  year: 2006
  end-page: L80
  ident: CR29
  article-title: Dissecting elastic heterogeneity along DNA molecules coated partly with Rad51 using concurrent fluorescence microscopy and optical tweezers
  publication-title: Biophys J
– volume: 3
  start-page: D570
  year: 1998
  end-page: D603
  ident: CR5
  article-title: DNA strand exchange proteins: a biochemical and physical comparison
  publication-title: Front Biosci
– volume: 7
  start-page: 739
  year: 2006
  end-page: 750
  ident: CR39
  article-title: Mechanism of homologous recombination: mediators and helicases take on regulatory functions
  publication-title: Nat Rev Mol Cell Biol
– volume: 13
  start-page: 7263
  year: 2011
  end-page: 7272
  ident: CR9
  article-title: Combining optical trapping, fluorescence microscopy and micro‐fluidics for single molecule studies of DNA‐protein interactions
  publication-title: Phys Chem Chem Phys
– volume: 411
  start-page: 366
  year: 2001
  end-page: 374
  ident: CR21
  article-title: Genome maintenance mechanisms for preventing cancer
  publication-title: Nature
– volume: 457
  start-page: 745
  year: 2009
  end-page: 748
  ident: CR32
  article-title: Counting RAD51 proteins disassembling from nucleoprotein filaments under tension
  publication-title: Nature
– volume: 24
  start-page: 40
  year: 2017
  end-page: 46
  ident: CR43
  article-title: Cryo‐EM structures of human RAD51 recombinase filaments during catalysis of DNA‐strand exchange
  publication-title: Nat Struct Mol Biol
– volume: 475
  start-page: 427
  year: 2010
  end-page: 453
  ident: CR17
  article-title: Combining optical tweezers, single‐molecule fluorescence microscopy, and microfluidics for studies of DNA‐protein interactions
  publication-title: Methods Enzymol
– volume: 349
  start-page: 977
  year: 2015
  end-page: 981
  ident: CR26
  article-title: Base triplet stepping by the Rad51/RecA family of recombinases
  publication-title: Science
– volume: 136
  start-page: 14796
  year: 2014
  end-page: 14800
  ident: CR23
  article-title: Cooperative conformational transitions keep RecA filament active during ATPase cycle
  publication-title: J Am Chem Soc
– volume: 67
  start-page: 867
  year: 2017
  end-page: 881
  ident: CR25
  article-title: Smarcal1‐mediated fork reversal triggers Mre11‐dependent degradation of nascent DNA in the absence of Brca2 and stable Rad51 nucleofilaments
  publication-title: Mol Cell
– volume: 136
  start-page: 1032
  year: 2009
  end-page: 1043
  ident: CR12
  article-title: The BRC repeats of BRCA2 modulate the DNA‐binding selectivity of RAD51
  publication-title: Cell
– volume: 259
  start-page: 1896
  year: 1993
  end-page: 1899
  ident: CR34
  article-title: Similarity of the yeast RAD51 filament to the bacterial RecA filament
  publication-title: Science
– volume: 13
  start-page: 5764
  year: 1994
  end-page: 5771
  ident: CR4
  article-title: Purification and characterization of the human Rad51 protein, an analogue of RecA
  publication-title: EMBO J
– volume: 162
  start-page: 271
  year: 2015
  end-page: 286
  ident: CR40
  article-title: Rad51 paralogs remodel pre‐synaptic Rad51 filaments to stimulate homologous recombination
  publication-title: Cell
– volume: 58
  start-page: 1948
  year: 2002
  end-page: 1954
  ident: CR1
  article-title: : building new software for automated crystallographic structure determination
  publication-title: Acta Crystallogr D Biol Crystallogr
– volume: 44
  start-page: 9017
  year: 2016
  end-page: 9030
  ident: CR38
  article-title: High‐resolution structure of the presynaptic RAD51 filament on single‐stranded DNA by electron cryo‐microscopy
  publication-title: Nucleic Acids Res
– volume: 272
  start-page: 31941
  year: 1997
  end-page: 31944
  ident: CR42
  article-title: RAD51 interacts with the evolutionarily conserved BRC motifs in the human breast cancer susceptibility gene brca2
  publication-title: J Biol Chem
– volume: 99
  start-page: 611
  year: 2013
  end-page: 620
  ident: CR10
  article-title: A toolbox for generating single‐stranded DNA in optical tweezers experiments
  publication-title: Biopolymers
– volume: 453
  start-page: 489–4
  year: 2008
  ident: CR14
  article-title: Mechanism of homologous recombination from the RecA‐ssDNA/dsDNA structures
  publication-title: Nature
– volume: 95
  start-page: 5287
  year: 1998
  end-page: 5292
  ident: CR13
  article-title: The BRC repeats in BRCA2 are critical for RAD51 binding and resistance to methyl methanesulfonate treatment
  publication-title: Proc Natl Acad Sci USA
– volume: 15
  start-page: 599
  year: 2007
  end-page: 609
  ident: CR33
  article-title: Fluorescent human RAD51 reveals multiple nucleation sites and filament segments tightly associated along a single DNA molecule
  publication-title: Structure
– year: 2004
  ident: CR28
  publication-title: Molecular cell biology
– volume: 106
  start-page: 18231
  year: 2009
  end-page: 18236
  ident: CR31
  article-title: Unraveling the structure of DNA during overstretching by using multicolor, single‐molecule fluorescence imaging
  publication-title: Proc Natl Acad Sci USA
– volume: 98
  start-page: 8419
  year: 2001
  end-page: 8424
  ident: CR44
  article-title: Domain structure and dynamics in the helical filaments formed by RecA and Rad51 on DNA
  publication-title: Proc Natl Acad Sci USA
– volume: 66
  start-page: 486
  year: 2010
  end-page: 501
  ident: CR16
  article-title: Features and development of
  publication-title: Acta Crystallogr D Biol Crystallogr
– volume: 114
  start-page: 3087
  year: 2014
  end-page: 3119
  ident: CR19
  article-title: Optical tweezers analysis of DNA – protein complexes
  publication-title: Chem Rev
– volume: 11
  start-page: 791
  year: 2004
  end-page: 796
  ident: CR15
  article-title: Crystal structure of a Rad51 filament
  publication-title: Nat Struct Mol Biol
– volume: 110
  start-page: 3859
  year: 2013
  end-page: 3864
  ident: CR24
  article-title: Revealing the competition between peeled ssDNA, melting bubbles, and S‐DNA during DNA overstretching using fluorescence microscopy
  publication-title: Proc Natl Acad Sci USA
– volume: 111
  start-page: 15090
  year: 2014
  end-page: 15095
  ident: CR11
  article-title: Visualization and quantification of RAD51 filament formation at single‐monomer resolution
  publication-title: Proc Natl Acad Sci USA
– volume: 106
  start-page: 361
  year: 2009
  end-page: 368
  ident: CR20
  article-title: Direct imaging of human Rad51 nucleoprotein dynamics on individual DNA molecules
  publication-title: Proc Natl Acad Sci USA
– volume: 535
  start-page: 566
  year: 2016
  end-page: 569
  ident: CR7
  article-title: Sliding sleeves of XRCC4–XLF bridge DNA and connect fragments of broken DNA
  publication-title: Nature
– volume: 9
  start-page: 1264
  year: 2010
  end-page: 1272
  ident: CR22
  article-title: Regulation of DNA strand exchange in homologous recombination
  publication-title: DNA Repair (Amst)
– volume: 101
  start-page: 9988
  year: 2004
  end-page: 9993
  ident: CR8
  article-title: Ca2+ activates human homologous recombination protein Rad51 by modulating its ATPase activity
  publication-title: Proc Natl Acad Sci USA
– volume: 36
  start-page: 4381
  year: 2008
  end-page: 4389
  ident: CR30
  article-title: See me, feel me: methods to concurrently visualize and manipulate single DNA molecules and associated proteins
  publication-title: Nucleic Acids Res
– volume: 64
  start-page: 926
  year: 2016
  end-page: 939
  ident: CR41
  article-title: A polar and nucleotide‐dependent mechanism of action for RAD51 paralogs in RAD51 filament remodeling
  publication-title: Mol Cell
– volume: 77
  start-page: 229
  year: 2008
  end-page: 257
  ident: CR37
  article-title: Mechanism of eukaryotic homologous recombination
  publication-title: Annu Rev Biochem
– volume: 7
  start-page: 731
  year: 2011
  end-page: 736
  ident: CR18
  article-title: Quantifying how DNA stretches, melts and changes twist under tension
  publication-title: Nat Phys
– volume: 33
  start-page: 3292
  year: 2005
  end-page: 3302
  ident: CR36
  article-title: Human Rad51 filaments on double‐ and single‐stranded DNA: correlating regular and irregular forms with recombination function
  publication-title: Nucleic Acids Res
– volume: 337
  start-page: 817
  year: 2004
  end-page: 827
  ident: CR27
  article-title: Conformational changes modulate the activity of human RAD51 protein
  publication-title: J Mol Biol
– volume: 40
  start-page: 11769
  year: 2012
  end-page: 11776
  ident: CR2
  article-title: Probing Rad51‐DNA interactions by changing DNA twist
  publication-title: Nucleic Acids Res
– volume: 116
  start-page: 1
  year: 2016
  end-page: 5
  ident: CR6
  article-title: DNA twist stability changes with magnesium(2+) concentration
  publication-title: Phys Rev Lett
– volume: 50
  start-page: 453
  year: 2015
  end-page: 476
  ident: CR35
  article-title: Structure/function relationships in RecA protein‐mediated homology recognition and strand exchange
  publication-title: Crit Rev Biochem Mol Biol
– volume: 33
  start-page: 3292
  year: 2005
  end-page: 3302
  article-title: Human Rad51 filaments on double‐ and single‐stranded DNA: correlating regular and irregular forms with recombination function
  publication-title: Nucleic Acids Res
– volume: 66
  start-page: 486
  year: 2010
  end-page: 501
  article-title: Features and development of
  publication-title: Acta Crystallogr D Biol Crystallogr
– volume: 3
  start-page: D570
  year: 1998
  end-page: D603
  article-title: DNA strand exchange proteins: a biochemical and physical comparison
  publication-title: Front Biosci
– volume: 116
  start-page: 1
  year: 2016
  end-page: 5
  article-title: DNA twist stability changes with magnesium(2+) concentration
  publication-title: Phys Rev Lett
– volume: 453
  start-page: 489–4
  year: 2008
  article-title: Mechanism of homologous recombination from the RecA‐ssDNA/dsDNA structures
  publication-title: Nature
– volume: 101
  start-page: 9988
  year: 2004
  end-page: 9993
  article-title: Ca2+ activates human homologous recombination protein Rad51 by modulating its ATPase activity
  publication-title: Proc Natl Acad Sci USA
– volume: 67
  start-page: 867
  year: 2017
  end-page: 881
  article-title: Smarcal1‐mediated fork reversal triggers Mre11‐dependent degradation of nascent DNA in the absence of Brca2 and stable Rad51 nucleofilaments
  publication-title: Mol Cell
– volume: 91
  start-page: L78
  year: 2006
  end-page: L80
  article-title: Dissecting elastic heterogeneity along DNA molecules coated partly with Rad51 using concurrent fluorescence microscopy and optical tweezers
  publication-title: Biophys J
– volume: 15
  start-page: 599
  year: 2007
  end-page: 609
  article-title: Fluorescent human RAD51 reveals multiple nucleation sites and filament segments tightly associated along a single DNA molecule
  publication-title: Structure
– volume: 7
  start-page: 731
  year: 2011
  end-page: 736
  article-title: Quantifying how DNA stretches, melts and changes twist under tension
  publication-title: Nat Phys
– volume: 106
  start-page: 361
  year: 2009
  end-page: 368
  article-title: Direct imaging of human Rad51 nucleoprotein dynamics on individual DNA molecules
  publication-title: Proc Natl Acad Sci USA
– volume: 64
  start-page: 926
  year: 2016
  end-page: 939
  article-title: A polar and nucleotide‐dependent mechanism of action for RAD51 paralogs in RAD51 filament remodeling
  publication-title: Mol Cell
– volume: 259
  start-page: 1896
  year: 1993
  end-page: 1899
  article-title: Similarity of the yeast RAD51 filament to the bacterial RecA filament
  publication-title: Science
– volume: 77
  start-page: 229
  year: 2008
  end-page: 257
  article-title: Mechanism of eukaryotic homologous recombination
  publication-title: Annu Rev Biochem
– volume: 44
  start-page: 9017
  year: 2016
  end-page: 9030
  article-title: High‐resolution structure of the presynaptic RAD51 filament on single‐stranded DNA by electron cryo‐microscopy
  publication-title: Nucleic Acids Res
– volume: 11
  start-page: 791
  year: 2004
  end-page: 796
  article-title: Crystal structure of a Rad51 filament
  publication-title: Nat Struct Mol Biol
– volume: 162
  start-page: 271
  year: 2015
  end-page: 286
  article-title: Rad51 paralogs remodel pre‐synaptic Rad51 filaments to stimulate homologous recombination
  publication-title: Cell
– volume: 98
  start-page: 8419
  year: 2001
  end-page: 8424
  article-title: Domain structure and dynamics in the helical filaments formed by RecA and Rad51 on DNA
  publication-title: Proc Natl Acad Sci USA
– volume: 110
  start-page: 3859
  year: 2013
  end-page: 3864
  article-title: Revealing the competition between peeled ssDNA, melting bubbles, and S‐DNA during DNA overstretching using fluorescence microscopy
  publication-title: Proc Natl Acad Sci USA
– volume: 349
  start-page: 977
  year: 2015
  end-page: 981
  article-title: Base triplet stepping by the Rad51/RecA family of recombinases
  publication-title: Science
– volume: 411
  start-page: 366
  year: 2001
  end-page: 374
  article-title: Genome maintenance mechanisms for preventing cancer
  publication-title: Nature
– volume: 99
  start-page: 611
  year: 2013
  end-page: 620
  article-title: A toolbox for generating single‐stranded DNA in optical tweezers experiments
  publication-title: Biopolymers
– volume: 36
  start-page: 4381
  year: 2008
  end-page: 4389
  article-title: See me, feel me: methods to concurrently visualize and manipulate single DNA molecules and associated proteins
  publication-title: Nucleic Acids Res
– volume: 24
  start-page: 40
  year: 2017
  end-page: 46
  article-title: Cryo‐EM structures of human RAD51 recombinase filaments during catalysis of DNA‐strand exchange
  publication-title: Nat Struct Mol Biol
– volume: 136
  start-page: 14796
  year: 2014
  end-page: 14800
  article-title: Cooperative conformational transitions keep RecA filament active during ATPase cycle
  publication-title: J Am Chem Soc
– volume: 457
  start-page: 745
  year: 2009b
  end-page: 748
  article-title: Counting RAD51 proteins disassembling from nucleoprotein filaments under tension
  publication-title: Nature
– volume: 13
  start-page: 7263
  year: 2011
  end-page: 7272
  article-title: Combining optical trapping, fluorescence microscopy and micro‐fluidics for single molecule studies of DNA‐protein interactions
  publication-title: Phys Chem Chem Phys
– volume: 106
  start-page: 18231
  year: 2009a
  end-page: 18236
  article-title: Unraveling the structure of DNA during overstretching by using multicolor, single‐molecule fluorescence imaging
  publication-title: Proc Natl Acad Sci USA
– volume: 337
  start-page: 817
  year: 2004
  end-page: 827
  article-title: Conformational changes modulate the activity of human RAD51 protein
  publication-title: J Mol Biol
– volume: 272
  start-page: 31941
  year: 1997
  end-page: 31944
  article-title: RAD51 interacts with the evolutionarily conserved BRC motifs in the human breast cancer susceptibility gene brca2
  publication-title: J Biol Chem
– volume: 40
  start-page: 11769
  year: 2012
  end-page: 11776
  article-title: Probing Rad51‐DNA interactions by changing DNA twist
  publication-title: Nucleic Acids Res
– volume: 13
  start-page: 5764
  year: 1994
  end-page: 5771
  article-title: Purification and characterization of the human Rad51 protein, an analogue of RecA
  publication-title: EMBO J
– volume: 535
  start-page: 566
  year: 2016
  end-page: 569
  article-title: Sliding sleeves of XRCC4–XLF bridge DNA and connect fragments of broken DNA
  publication-title: Nature
– volume: 9
  start-page: 1264
  year: 2010
  end-page: 1272
  article-title: Regulation of DNA strand exchange in homologous recombination
  publication-title: DNA Repair (Amst)
– volume: 95
  start-page: 5287
  year: 1998
  end-page: 5292
  article-title: The BRC repeats in BRCA2 are critical for RAD51 binding and resistance to methyl methanesulfonate treatment
  publication-title: Proc Natl Acad Sci USA
– volume: 475
  start-page: 427
  year: 2010
  end-page: 453
  article-title: Combining optical tweezers, single‐molecule fluorescence microscopy, and microfluidics for studies of DNA‐protein interactions
  publication-title: Methods Enzymol
– volume: 58
  start-page: 1948
  year: 2002
  end-page: 1954
  article-title: : building new software for automated crystallographic structure determination
  publication-title: Acta Crystallogr D Biol Crystallogr
– volume: 114
  start-page: 3087
  year: 2014
  end-page: 3119
  article-title: Optical tweezers analysis of DNA – protein complexes
  publication-title: Chem Rev
– year: 2004
– volume: 7
  start-page: 739
  year: 2006
  end-page: 750
  article-title: Mechanism of homologous recombination: mediators and helicases take on regulatory functions
  publication-title: Nat Rev Mol Cell Biol
– volume: 136
  start-page: 1032
  year: 2009
  end-page: 1043
  article-title: The BRC repeats of BRCA2 modulate the DNA‐binding selectivity of RAD51
  publication-title: Cell
– volume: 50
  start-page: 453
  year: 2015
  end-page: 476
  article-title: Structure/function relationships in RecA protein‐mediated homology recognition and strand exchange
  publication-title: Crit Rev Biochem Mol Biol
– volume: 111
  start-page: 15090
  year: 2014
  end-page: 15095
  article-title: Visualization and quantification of RAD51 filament formation at single‐monomer resolution
  publication-title: Proc Natl Acad Sci USA
SSID ssj0005871
Score 2.4753146
Snippet An essential mechanism for repairing DNA double‐strand breaks is homologous recombination (HR). One of its core catalysts is human RAD51 (hRAD51), which...
An essential mechanism for repairing DNA double-strand breaks is homologous recombination (HR). One of its core catalysts is human RAD51 (hRAD51), which...
An essential mechanism for repairing DNA double‐strand breaks is homologous recombination ( HR ). One of its core catalysts is human RAD 51 ( hRAD 51), which...
SourceID pubmedcentral
hal
proquest
pubmed
wiley
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
SubjectTerms Adenosine diphosphate
Adenosine Triphosphate - chemistry
Adenosine Triphosphate - metabolism
Catalysts
Contours
Crystal structure
Crystallography
Crystallography, X-Ray
Deoxyribonucleic acid
Dismantling
DNA
DNA - metabolism
DNA Breaks, Double-Stranded
DNA damage
DNA repair
DNA Repair - physiology
DNA Replication - physiology
DNA, Single-Stranded - chemistry
DNA, Single-Stranded - metabolism
DNA-Binding Proteins - metabolism
EMBO13
EMBO40
Exchanging
Filaments
Free energy
Homologous recombination
Homologous Recombination - physiology
Homology
Interfaces
Life Sciences
Maintenance
Models, Molecular
Molecular Conformation
Monomers
Nucleoproteins - metabolism
RAD51
Rad51 Recombinase - chemistry
Rad51 Recombinase - metabolism
Recognition
Shape
single‐stranded DNA
SummonAdditionalLinks – databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwEB6hVgguFZS_QEEGceEQESe2Yx_TbatVRSuEFqm3yE5sbRFkq3YL4sYj8Ix9ks442ZRV4cAlin9kW56x_c14Zgzw1nPnhbQ2zYJVKZ74bWqDkClulw5l5ix3Mc720bGafhaHJ_JkCJJEvjB_3t_LXObv_Tf3hSywSqM57bWbkheK2HeiJje2HDpKVlGZIrg2QwyfvzSAR8icLB5vw8nbVpHj1eg6cI0nz8ED2BogI6t6Gj-EO77bhrv9I5I_t-HeZPVm2yM4nf1YsJaWbdcsGYq6o28iNhB9hy5Y6wMiS4bAj1GsiPPes4EtAovv9bFP1Z7kV79-V7OPjLS0jLQJXz3mkFaEFOZs77h6DLOD_dlkmg6PKaRzkeOuVwjHtbIhGBT5uM8Ct7lrMGG0cbIscfGGwrcFftvMtbrlgZYrxf7x3DbFE9joFp1_BkxZZ0srVGiUF41qHUp4TlgUdXheNplN4A1OcX3WR8uoKX71tPpQUx5SQRsEcN95AjsrCtTDqrmocZyZwR3HFAm8HotxCukSw3Z-cUl1yOnJGFEm8LQn2NhVbhDdIgROoFwj5dpY1ku603mMqS01cYdJ4N2K6DfDIjmJWKkmVqpHVkqgiFwxtv6PevX-0e7hmHr-Hz28gPv4r6OhULEDG8vzS_8SMdDSvYr8fw03D_9T
  priority: 102
  providerName: Springer Nature
Title Two distinct conformational states define the interaction of human RAD51‐ATP with single‐stranded DNA
URI https://link.springer.com/article/10.15252/embj.201798162
https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembj.201798162
https://www.ncbi.nlm.nih.gov/pubmed/29507080
https://www.proquest.com/docview/2020930193
https://www.proquest.com/docview/2011269947
https://amu.hal.science/hal-01789423
https://pubmed.ncbi.nlm.nih.gov/PMC5881629
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwEB5VoKpcKqAtTUuRQb1wiBonTmIf0wW0QgWhaitxi-zE1i6CbMUurbjxCH3GPklnnE1QhLj0Em1-1rE8P56ZzHwD8NlyY0WqdRg5nYW449ehdiINUV0a9Jmj2Hic7bPzbPxDnF6mXTYh1cK0-BB9wI0kw-trEnBtFl3HHkINtTfminKzciU5aeF1KrAl-PxYXDxmeUjvc_kwi-BSrdB9aIgvwwFwc5lSLuRTQ_NpvmT_0XRo0vo96WQTXq-MSVa01N-CF7bZhpdte8n7bXg16rq5vYHZ5Pec1STQTbVk6AT3VYs4gK8qWrDaOlwVhiYhIxSJ27bmgc0d85382PfiKOV_H_4UkwtG8VtGcYZri1coXkKhdHZ0XryFycnxZDQOV20WwqmIUR8mwnCZaecUOoPcRo7r2FR4oqQyaZ6jWLvE1gke68jUsuaOBJlQgSzXVfIO1pp5Y98Dy7TRuRaZqzIrqqw26PsZodEJ4nFeRTqAA1zi8meLo1ESsvW4-FbSNaSCVGja_eIB7HYUKFfytChxnpFCXaSSAPb727iE9HlDN3Z-R89QOZRSIg9gpyVY_6pYod2LxnEA-YCUg7kM7zSzqUfbTiVxhwrgsCP647TIgyJWKomVyp6VAkg8V_SjP_NceXz29bQ_-_Bf__oIG_hb-mSiZBfWlrd39hPaSUuz5yUBj6NstEc7VvoPdlgMpw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6hIlQuCMqjgQIGceEQESdOYh9DH1rK7qpCQerNshNbWwRZ1G5B3PgJ_EZ-CTPObkpUceGyUpysY3kenpnMfAPwynHrRG5MnHhTxHjit7HxIo9RXVr0mZPUBpzt2byYfBTHp_npX7UwPT7EEHAjyQj6mgScAtKblj0EG-q-2E-UnFUqyUkN3xRFWpJwpuLkKs1DBqcrxFkEl2oN70NTvBlPgKfLgpIhr1ua1xMmh6-mY5s2HEpHd-HO2ppkVU_-e3DDdTtwq-8v-WMHtvc37dzuw1n9fclakuiuWTH0goeyRZwglBVdsNZ53BaGNiEjGInzvuiBLT0LrfzYh-og579__qrqE0YBXEaBhs8ORyhgQrF0djCvHkB9dFjvT-J1n4V4IVJUiJmwXBbGe4XeIHeJ5ya1DV4oqWxelijXPnNthr9tYlvZck-STLBAjpsmewhb3bJzu8AKY01pROGbwommaC06f1YY9IJ4WjaJieAlbrH-2gNpaIK2nlRTTWNIBanQtvvGI9jbUECvBepC4zoThcpIZRG8GG7jFtL3DdO55SU9Q_VQSokygkc9wYZXpQoNX7SOIyhHpBytZXynO1sEuO1cEneoCF5viH61LHKhiJU0sZIeWCmCLHDFMPs_ntOHs7fHw9Xj__rXc9ie1LOpnr6bv38Ct3FchsyibA-2VueX7ikaTSv7LEjFH1CQDlA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6hIn4uCMpfoIBBXDhExImT2MfQ7Wop7WqFFombZSe2tgiyVbsFceMReEaehBlnkyqquHCJFCdxLM-MPTOe-QbgtePWidyYOPGmiHHHb2LjRR7jcmnRZk5SG3C2j-fF7JM4_Jz30YSUC9PhQwwON5KMsF6TgJ82vq_YQ6ih7pv9QrFZpZKcVuHr4ciPwJ3F4jLKQwabK7hZBJdqi-5DXbwdd4Cby4piIa8qmlfjJYdD07FKG_ak6V24s1UmWdVR_x5cc-0u3OjKS_7chVv7fTW3-3Cy_LFmDQl0W28YGsFD1iJ2ELKKzlnjPM4KQ5WQEYrEWZfzwNaehUp-7GM1yfmfX7-r5YKR_5aRn-Grwxbyl5ArnU3m1QNYTg-W-7N4W2YhXokU18NMWC4L471CY5C7xHOT2hpvlFQ2L0sUa5-5JsNrk9hGNtyTIBMqkOOmzh7CTrtu3WNghbGmNKLwdeFEXTQWbT8rDBpBPC3rxETwCqdYn3Y4GpqQrWfVkaY2pIJUqNp95xHs9RTQW3k61zjOROFapLIIXg6PcQrpeMO0bn1B71A6lFKijOBRR7DhV6lCvReV4wjKESlHYxk_aU9WAW07l8QdKoI3PdEvh0UWFLGSJlbSAytFkAWuGHr_x3v64Pjd4XD35L--egE3F5OpPno___AUbmOzDHFF2R7sbM4u3DNUmTb2eRCKv64wDYI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two+distinct+conformational+states+define+the+interaction+of+human+RAD51%E2%80%90ATP+with+single%E2%80%90stranded+DNA&rft.jtitle=The+EMBO+journal&rft.au=Brouwer%2C+Ineke&rft.au=Moschetti%2C+Tommaso&rft.au=Candelli%2C+Andrea&rft.au=Garcin%2C+Edwige+B&rft.date=2018-04-03&rft.pub=EMBO+Press&rft.issn=0261-4189&rft.eissn=1460-2075&rft.volume=37&rft.issue=7&rft_id=info:doi/10.15252%2Fembj.201798162&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_01789423v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-4189&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-4189&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-4189&client=summon