Two distinct conformational states define the interaction of human RAD51‐ATP with single‐stranded DNA
An essential mechanism for repairing DNA double‐strand breaks is homologous recombination (HR). One of its core catalysts is human RAD51 (hRAD51), which assembles as a helical nucleoprotein filament on single‐stranded DNA, promoting DNA‐strand exchange. Here, we study the interaction of hRAD51 with...
Saved in:
Published in | The EMBO journal Vol. 37; no. 7 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
03.04.2018
Springer Nature B.V EMBO Press John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An essential mechanism for repairing DNA double‐strand breaks is homologous recombination (HR). One of its core catalysts is human RAD51 (hRAD51), which assembles as a helical nucleoprotein filament on single‐stranded DNA, promoting DNA‐strand exchange. Here, we study the interaction of hRAD51 with single‐stranded DNA using a single‐molecule approach. We show that ATP‐bound hRAD51 filaments can exist in two different states with different contour lengths and with a free‐energy difference of ~4 k
B
T per hRAD51 monomer. Upon ATP hydrolysis, the filaments convert into a disassembly‐competent ADP‐bound configuration. In agreement with the single‐molecule analysis, we demonstrate the presence of two distinct protomer interfaces in the crystal structure of a hRAD51‐ATP filament, providing a structural basis for the two conformational states of the filament. Together, our findings provide evidence that hRAD51‐ATP filaments can exist in two interconvertible conformational states, which might be functionally relevant for DNA homology recognition and strand exchange.
Synopsis
Single‐molecule studies of RAD51 binding to single‐stranded DNA, together with a new crystal structure of the hRAD51 filament, reveal two distinct conformational states of ATP‐bound RAD51 that may be important for DNA homology recognition and strand exchange.
ATP‐bound hRAD51‐ssDNA filaments exist in two distinct states with different contour lengths and with a free energy difference of ˜4 kBT per hRAD51 monomer.
hRAD51 disassembly from ssDNA is independent of tension in the DNA template and occurs from an ADP‐bound state.
The crystal structure of a hRAD51‐ATP filament reveals the presence of two distinct protomer interfaces.
Combined evidence from single‐molecule and crystallographic experiments shows that the ATP‐bound hRAD51‐ssDNA filament is a highly flexible entity.
Graphical Abstract
Single‐molecule studies of RAD51 DNA binding and a new crystal structure of the hRAD51 filament suggest that different conformations of ATP‐bound RAD51 may be involved in DNA homology recognition and strand exchange. |
---|---|
AbstractList | An essential mechanism for repairing DNA double-strand breaks is homologous recombination (HR). One of its core catalysts is human RAD51 (hRAD51), which assembles as a helical nucleoprotein filament on single-stranded DNA, promoting DNA-strand exchange. Here, we study the interaction of hRAD51 with single-stranded DNA using a single-molecule approach. We show that ATP-bound hRAD51 filaments can exist in two different states with different contour lengths and with a free-energy difference of~4 k B T per hRAD51 monomer. Upon ATP hydrolysis, the filaments convert into a disassembly-competent ADP-bound configuration. In agreement with the single-molecule analysis, we demonstrate the presence of two distinct protomer interfaces in the crystal structure of a hRAD51-ATP filament, providing a structural basis for the two conformational states of the filament. Together, our findings provide evidence that hRAD51-ATP filaments can exist in two inter-convertible conformational states, which might be functionally relevant for DNA homology recognition and strand exchange. An essential mechanism for repairing DNA double-strand breaks is homologous recombination (HR). One of its core catalysts is human RAD51 (hRAD51), which assembles as a helical nucleoprotein filament on single-stranded DNA, promoting DNA-strand exchange. Here, we study the interaction of hRAD51 with single-stranded DNA using a single-molecule approach. We show that ATP-bound hRAD51 filaments can exist in two different states with different contour lengths and with a free-energy difference of ~4 k T per hRAD51 monomer. Upon ATP hydrolysis, the filaments convert into a disassembly-competent ADP-bound configuration. In agreement with the single-molecule analysis, we demonstrate the presence of two distinct protomer interfaces in the crystal structure of a hRAD51-ATP filament, providing a structural basis for the two conformational states of the filament. Together, our findings provide evidence that hRAD51-ATP filaments can exist in two interconvertible conformational states, which might be functionally relevant for DNA homology recognition and strand exchange. An essential mechanism for repairing DNA double‐strand breaks is homologous recombination (HR). One of its core catalysts is human RAD51 (hRAD51), which assembles as a helical nucleoprotein filament on single‐stranded DNA, promoting DNA‐strand exchange. Here, we study the interaction of hRAD51 with single‐stranded DNA using a single‐molecule approach. We show that ATP‐bound hRAD51 filaments can exist in two different states with different contour lengths and with a free‐energy difference of ~4 k B T per hRAD51 monomer. Upon ATP hydrolysis, the filaments convert into a disassembly‐competent ADP‐bound configuration. In agreement with the single‐molecule analysis, we demonstrate the presence of two distinct protomer interfaces in the crystal structure of a hRAD51‐ATP filament, providing a structural basis for the two conformational states of the filament. Together, our findings provide evidence that hRAD51‐ATP filaments can exist in two interconvertible conformational states, which might be functionally relevant for DNA homology recognition and strand exchange. Synopsis Single‐molecule studies of RAD51 binding to single‐stranded DNA, together with a new crystal structure of the hRAD51 filament, reveal two distinct conformational states of ATP‐bound RAD51 that may be important for DNA homology recognition and strand exchange. ATP‐bound hRAD51‐ssDNA filaments exist in two distinct states with different contour lengths and with a free energy difference of ˜4 kBT per hRAD51 monomer. hRAD51 disassembly from ssDNA is independent of tension in the DNA template and occurs from an ADP‐bound state. The crystal structure of a hRAD51‐ATP filament reveals the presence of two distinct protomer interfaces. Combined evidence from single‐molecule and crystallographic experiments shows that the ATP‐bound hRAD51‐ssDNA filament is a highly flexible entity. Graphical Abstract Single‐molecule studies of RAD51 DNA binding and a new crystal structure of the hRAD51 filament suggest that different conformations of ATP‐bound RAD51 may be involved in DNA homology recognition and strand exchange. An essential mechanism for repairing DNA double-strand breaks is homologous recombination (HR). One of its core catalysts is human RAD51 (hRAD51), which assembles as a helical nucleoprotein filament on single-stranded DNA, promoting DNA-strand exchange. Here, we study the interaction of hRAD51 with single-stranded DNA using a single-molecule approach. We show that ATP-bound hRAD51 filaments can exist in two different states with different contour lengths and with a free-energy difference of ~4 kBT per hRAD51 monomer. Upon ATP hydrolysis, the filaments convert into a disassembly-competent ADP-bound configuration. In agreement with the single-molecule analysis, we demonstrate the presence of two distinct protomer interfaces in the crystal structure of a hRAD51-ATP filament, providing a structural basis for the two conformational states of the filament. Together, our findings provide evidence that hRAD51-ATP filaments can exist in two interconvertible conformational states, which might be functionally relevant for DNA homology recognition and strand exchange.An essential mechanism for repairing DNA double-strand breaks is homologous recombination (HR). One of its core catalysts is human RAD51 (hRAD51), which assembles as a helical nucleoprotein filament on single-stranded DNA, promoting DNA-strand exchange. Here, we study the interaction of hRAD51 with single-stranded DNA using a single-molecule approach. We show that ATP-bound hRAD51 filaments can exist in two different states with different contour lengths and with a free-energy difference of ~4 kBT per hRAD51 monomer. Upon ATP hydrolysis, the filaments convert into a disassembly-competent ADP-bound configuration. In agreement with the single-molecule analysis, we demonstrate the presence of two distinct protomer interfaces in the crystal structure of a hRAD51-ATP filament, providing a structural basis for the two conformational states of the filament. Together, our findings provide evidence that hRAD51-ATP filaments can exist in two interconvertible conformational states, which might be functionally relevant for DNA homology recognition and strand exchange. An essential mechanism for repairing DNA double‐strand breaks is homologous recombination (HR). One of its core catalysts is human RAD51 (hRAD51), which assembles as a helical nucleoprotein filament on single‐stranded DNA, promoting DNA‐strand exchange. Here, we study the interaction of hRAD51 with single‐stranded DNA using a single‐molecule approach. We show that ATP‐bound hRAD51 filaments can exist in two different states with different contour lengths and with a free‐energy difference of ~4 kBT per hRAD51 monomer. Upon ATP hydrolysis, the filaments convert into a disassembly‐competent ADP‐bound configuration. In agreement with the single‐molecule analysis, we demonstrate the presence of two distinct protomer interfaces in the crystal structure of a hRAD51‐ATP filament, providing a structural basis for the two conformational states of the filament. Together, our findings provide evidence that hRAD51‐ATP filaments can exist in two interconvertible conformational states, which might be functionally relevant for DNA homology recognition and strand exchange. An essential mechanism for repairing DNA double‐strand breaks is homologous recombination ( HR ). One of its core catalysts is human RAD 51 ( hRAD 51), which assembles as a helical nucleoprotein filament on single‐stranded DNA , promoting DNA ‐strand exchange. Here, we study the interaction of hRAD 51 with single‐stranded DNA using a single‐molecule approach. We show that ATP ‐bound hRAD 51 filaments can exist in two different states with different contour lengths and with a free‐energy difference of ~4 k B T per hRAD 51 monomer. Upon ATP hydrolysis, the filaments convert into a disassembly‐competent ADP ‐bound configuration. In agreement with the single‐molecule analysis, we demonstrate the presence of two distinct protomer interfaces in the crystal structure of a hRAD 51‐ ATP filament, providing a structural basis for the two conformational states of the filament. Together, our findings provide evidence that hRAD 51‐ ATP filaments can exist in two interconvertible conformational states, which might be functionally relevant for DNA homology recognition and strand exchange. An essential mechanism for repairing DNA double‐strand breaks is homologous recombination (HR). One of its core catalysts is human RAD51 (hRAD51), which assembles as a helical nucleoprotein filament on single‐stranded DNA, promoting DNA‐strand exchange. Here, we study the interaction of hRAD51 with single‐stranded DNA using a single‐molecule approach. We show that ATP‐bound hRAD51 filaments can exist in two different states with different contour lengths and with a free‐energy difference of ~4 kBT per hRAD51 monomer. Upon ATP hydrolysis, the filaments convert into a disassembly‐competent ADP‐bound configuration. In agreement with the single‐molecule analysis, we demonstrate the presence of two distinct protomer interfaces in the crystal structure of a hRAD51‐ATP filament, providing a structural basis for the two conformational states of the filament. Together, our findings provide evidence that hRAD51‐ATP filaments can exist in two interconvertible conformational states, which might be functionally relevant for DNA homology recognition and strand exchange. Synopsis Single‐molecule studies of RAD51 binding to single‐stranded DNA, together with a new crystal structure of the hRAD51 filament, reveal two distinct conformational states of ATP‐bound RAD51 that may be important for DNA homology recognition and strand exchange. ATP‐bound hRAD51‐ssDNA filaments exist in two distinct states with different contour lengths and with a free energy difference of ˜4 kBT per hRAD51 monomer. hRAD51 disassembly from ssDNA is independent of tension in the DNA template and occurs from an ADP‐bound state. The crystal structure of a hRAD51‐ATP filament reveals the presence of two distinct protomer interfaces. Combined evidence from single‐molecule and crystallographic experiments shows that the ATP‐bound hRAD51‐ssDNA filament is a highly flexible entity. Single‐molecule studies of RAD51 DNA binding and a new crystal structure of the hRAD51 filament suggest that different conformations of ATP‐bound RAD51 may be involved in DNA homology recognition and strand exchange. |
Author | Moschetti, Tommaso Wuite, Gijs JL Peterman, Erwin JG Brouwer, Ineke Garcin, Edwige B Modesti, Mauro Candelli, Andrea Pellegrini, Luca |
AuthorAffiliation | 1 Department of Physics and Astronomy and LaserLaB Vrije Universiteit Amsterdam Amsterdam The Netherlands 3 Cancer Research Center of Marseille CNRS UMR7258 Inserm U1068 Institut Paoli‐Calmettes Aix‐Marseille Université Marseille France 4 Present address: Department of Gene Regulation The Netherlands Cancer Institute Amsterdam The Netherlands 2 Department of Biochemistry University of Cambridge Cambridge UK |
AuthorAffiliation_xml | – name: 1 Department of Physics and Astronomy and LaserLaB Vrije Universiteit Amsterdam Amsterdam The Netherlands – name: 3 Cancer Research Center of Marseille CNRS UMR7258 Inserm U1068 Institut Paoli‐Calmettes Aix‐Marseille Université Marseille France – name: 2 Department of Biochemistry University of Cambridge Cambridge UK – name: 4 Present address: Department of Gene Regulation The Netherlands Cancer Institute Amsterdam The Netherlands |
Author_xml | – sequence: 1 givenname: Ineke surname: Brouwer fullname: Brouwer, Ineke organization: Department of Physics and Astronomy and LaserLaB, Vrije Universiteit Amsterdam, Department of Gene Regulation, The Netherlands Cancer Institute – sequence: 2 givenname: Tommaso surname: Moschetti fullname: Moschetti, Tommaso organization: Department of Biochemistry, University of Cambridge – sequence: 3 givenname: Andrea surname: Candelli fullname: Candelli, Andrea organization: Department of Physics and Astronomy and LaserLaB, Vrije Universiteit Amsterdam – sequence: 4 givenname: Edwige B surname: Garcin fullname: Garcin, Edwige B organization: Cancer Research Center of Marseille, CNRS UMR7258, Inserm U1068, Institut Paoli‐Calmettes, Aix‐Marseille Université – sequence: 5 givenname: Mauro surname: Modesti fullname: Modesti, Mauro organization: Cancer Research Center of Marseille, CNRS UMR7258, Inserm U1068, Institut Paoli‐Calmettes, Aix‐Marseille Université – sequence: 6 givenname: Luca orcidid: 0000-0002-9300-497X surname: Pellegrini fullname: Pellegrini, Luca email: lp212@cam.ac.uk organization: Department of Biochemistry, University of Cambridge – sequence: 7 givenname: Gijs JL orcidid: 0000-0002-5706-043X surname: Wuite fullname: Wuite, Gijs JL email: g.j.l.wuite@vu.nl organization: Department of Physics and Astronomy and LaserLaB, Vrije Universiteit Amsterdam – sequence: 8 givenname: Erwin JG orcidid: 0000-0003-1058-249X surname: Peterman fullname: Peterman, Erwin JG email: e.j.g.peterman@vu.nl organization: Department of Physics and Astronomy and LaserLaB, Vrije Universiteit Amsterdam |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29507080$$D View this record in MEDLINE/PubMed https://amu.hal.science/hal-01789423$$DView record in HAL |
BookMark | eNp1Uk1v1DAQtVArui2cuSFLXOCQMuN82RyQQlta0PIhtHfLSZyNV4ld4qSr3vgJ_EZ-CQ5bFqjExdbMvPdmNPOOyYF1VhPyBOEUU5ayl7ovN6cMMBccM_aALDDJIGKQpwdkASzDKEEujsix9xsASHmOD8kREynkwGFBzGrraG38aGw10srZxg29Go2zqqN-VKP2tNaNsZqOrabGjnpQ1VynrqHt1CtLvxTnKf749r1YfaZbM7bUG7vudMj4cVC21jU9_1g8IoeN6rx-fPefkNXbi9XZVbT8dPnurFhGbcKARXFSIs9U0wiGiBoaVKysQiC4KNM8h4Q1sa7j8NZQ1rzGJkVABOAaVRWfkNc72eup7HVdaRtm6OT1YHo13EqnjPy3Yk0r1-5GpnzeoAgCL3YC7T3aVbGUcy4sm4uExTcYsM_vmg3u66T9KHvjK911ymo3eRkOgywTIskD9Nk96MZNQ9jyjGIgYkARB9TTv6ff9_99sAB4tQNsTadv93UE-csPcvaD3PtBXnx4834fBTLsyD7w7FoPf2b4j0D8Ex-ru5c |
ContentType | Journal Article |
Copyright | The Author(s) 2018 2018 The Authors. Published under the terms of the CC BY 4.0 license 2018 The Authors. Published under the terms of the CC BY 4.0 license. 2018 EMBO Attribution |
Copyright_xml | – notice: The Author(s) 2018 – notice: 2018 The Authors. Published under the terms of the CC BY 4.0 license – notice: 2018 The Authors. Published under the terms of the CC BY 4.0 license. – notice: 2018 EMBO – notice: Attribution |
DBID | C6C 24P CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7X8 1XC VOOES 5PM |
DOI | 10.15252/embj.201798162 |
DatabaseName | Springer Nature OA Free Journals Wiley Online Library Open Access Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
DocumentTitleAlternate | Ineke Brouwer et al |
EISSN | 1460-2075 |
EndPage | n/a |
ExternalDocumentID | PMC5881629 oai_HAL_hal_01789423v1 29507080 EMBJ201798162 10_15252_embj_201798162 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Investissements d'Avenir French Government Program – fundername: H2020 | H2020 Priority Excellent Science | H2020 European Research Council (ERC) funderid: 10.13039/100010663 – fundername: Fondazione Cenci‐Bolognetti funderid: 10.13039/501100004588 – fundername: French National Cancer Institute grantid: PLBIO13‐103 funderid: 10.13039/501100006364 – fundername: Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) funderid: 10.13039/501100003246 – fundername: Wellcome grantid: 104641/Z/14/Z funderid: 10.13039/100010269 – fundername: A*MIDEX Project grantid: ANR‐11‐IDEX‐0001‐02 – fundername: Fondation Aix‐Marseille Université funderid: 10.13039/100007587 – fundername: ARC Foundation for Cancer Research funderid: 10.13039/501100004097 – fundername: Fondazione Cenci‐Bolognetti – fundername: H2020 | H2020 Priority Excellent Science | H2020 European Research Council (ERC) – fundername: A*MIDEX Project funderid: ANR‐11‐IDEX‐0001‐02 – fundername: French National Cancer Institute funderid: PLBIO13‐103 – fundername: Wellcome funderid: 104641/Z/14/Z – fundername: Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) – fundername: ARC Foundation for Cancer Research – fundername: Fondation Aix‐Marseille Université – fundername: Wellcome Trust – fundername: Wellcome Trust grantid: 104641/Z/14/Z – fundername: French National Cancer Institute grantid: PLBIO13‐103 – fundername: Wellcome grantid: 104641/Z/14/Z |
GroupedDBID | --- -DZ -Q- -~X 0R~ 123 1OC 24P 29G 2WC 33P 36B 39C 53G 5VS 70F 8R4 8R5 A8Z AAESR AAEVG AAHBH AAHHS AAIHA AAJSJ AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABLJU ACAHQ ACCFJ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AENEX AEQDE AEUYR AFBPY AFFNX AFGKR AFPWT AFRAH AFWVQ AFZJQ AHMBA AIAGR AIURR AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AOIJS AUFTA AZBYB AZFZN AZVAB BAWUL BDRZF BENPR BFHJK BMNLL BMXJE BRXPI BTFSW C6C CS3 DCZOG DIK DPXWK DRFUL DRSTM DU5 E3Z EBD EBLON EBS EJD EMB EMOBN F5P G-S GROUPED_DOAJ GX1 HH5 HK~ HYE KQ8 LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM MY~ O9- OK1 P2P P2W Q2X R.K RHF RHI RNS ROL RPM SV3 TN5 TR2 WBKPD WH7 WIH WIK WIN WOHZO WXSBR WYJ YSK ZCA ZZTAW ~KM ABJNI CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7T5 7TK 7TM 7TO 7U9 8FD AAMMB AASML ABZEH AEFGJ AGXDD AIDQK AIDYY C1K FR3 H94 K9. M7N NAO P64 RC3 7X8 1XC VOOES 5PM |
ID | FETCH-LOGICAL-h4202-34b186aff92111e0f1a2bc921989b577042f3ed32f3d0bd8d1f51011008e1ac3 |
IEDL.DBID | 24P |
ISSN | 0261-4189 1460-2075 |
IngestDate | Thu Aug 21 14:12:56 EDT 2025 Thu May 29 05:47:19 EDT 2025 Fri Jul 11 09:33:13 EDT 2025 Fri Jul 25 19:32:31 EDT 2025 Wed Feb 19 02:31:50 EST 2025 Wed Jan 22 16:53:41 EST 2025 Fri Feb 21 02:40:42 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | RAD51 homologous recombination DNA repair single‐stranded DNA Repair & Recombination single-stranded DNA Subject Categories DNA Replication Structural Biology |
Language | English |
License | Attribution 2018 The Authors. Published under the terms of the CC BY 4.0 license. Attribution: http://creativecommons.org/licenses/by This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-h4202-34b186aff92111e0f1a2bc921989b577042f3ed32f3d0bd8d1f51011008e1ac3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work |
ORCID | 0000-0002-9300-497X 0000-0002-5706-043X 0000-0003-1058-249X 0000-0002-4964-331X |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembj.201798162 |
PMID | 29507080 |
PQID | 2020930193 |
PQPubID | 35985 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5881629 hal_primary_oai_HAL_hal_01789423v1 proquest_miscellaneous_2011269947 proquest_journals_2020930193 pubmed_primary_29507080 wiley_primary_10_15252_embj_201798162_EMBJ201798162 springer_journals_10_15252_embj_201798162 |
PublicationCentury | 2000 |
PublicationDate | 03 April 2018 |
PublicationDateYYYYMMDD | 2018-04-03 |
PublicationDate_xml | – month: 04 year: 2018 text: 03 April 2018 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: New York – name: Hoboken |
PublicationTitle | The EMBO journal |
PublicationTitleAbbrev | EMBO J |
PublicationTitleAlternate | EMBO J |
PublicationYear | 2018 |
Publisher | Nature Publishing Group UK Springer Nature B.V EMBO Press John Wiley and Sons Inc |
Publisher_xml | – name: Nature Publishing Group UK – name: Springer Nature B.V – name: EMBO Press – name: John Wiley and Sons Inc |
References | Carreira, Hilario, Amitani, Baskin, Shivji, Venkitaraman, Kowalczykowski (CR12) 2009; 136 Prentiss, Prévost, Danilowicz (CR35) 2015; 50 Lee, Terakawa, Qi, Steinfeld, Redding, Kwon, Gaines, Zhao, Sung, Greene (CR26) 2015; 349 Kim, Ragunathan, Park, Joo, Kim, Ha (CR23) 2014; 136 Ristic, Modesti, van der Heijden, van Noort, Dekker, Kanaar, Wyman (CR36) 2005; 33 Bugreev, Mazin (CR8) 2004; 101 Liu, Stasiak, Masson, McIlwraith, Stasiak, West (CR27) 2004; 337 Chen, Yang, Pavletich (CR14) 2008; 453 Holthausen, Wyman, Kanaar (CR22) 2010; 9 van Mameren, Gross, Farge, Hooijman, Modesti, Falkenberg, Wuite, Peterman (CR31) 2009; 106 Broekmans, King, Stephens, Wuite (CR6) 2016; 116 van Mameren, Modesti, Kanaar, Wyman, Peterman, Wuite (CR32) 2009; 457 Taylor, Špírek, Chaurasiya, Ward, Carzaniga, Yu, Egelman, Collinson, Rueda, Krejčí, Boulton (CR40) 2015; 162 Lodish, Berk, Matsudaira, Kaiser, Krieger, Scott, Zipursky, Darnell (CR28) 2004 Heller, Hoekstra, King, Peterman, Wuite (CR19) 2014; 114 Bianco, Tracy, Kowalczykowski (CR5) 1998; 3 Candelli, Hoekstra, Farge, Gross, Peterman, Wuite (CR10) 2013; 99 Benson, Stasiak, West (CR4) 1994; 13 Conway, Lynch, Zhang, Fortin, Fung, Symington, Rice (CR15) 2004; 11 Yu, Jacobs, West, Ogawa, Egelman (CR44) 2001; 98 Wong, Pero, Ormonde, Tavtigian, Bartel (CR42) 1997; 272 Atwell, Disseau, Stasiak, Stasiak, Renodon‐Corniere, Takahashi, Viovy, Cappello (CR2) 2012; 40 Hoeijmakers (CR21) 2001; 411 Candelli, Wuite, Peterman (CR9) 2011; 13 Xu, Zhao, Xu, Zhao, Sung, Wang (CR43) 2017; 24 Chen, Chen, Chen, Xiao, Sharp, Lee (CR13) 1998; 95 Short, Liu, Chen, Soni, Madhusudhan, Shivji, Venkitaraman (CR38) 2016; 44 Sung, Klein (CR39) 2006; 7 Hilario, Amitani, Baskin, Kowalczykowski (CR20) 2009; 106 King, Gross, Bockelmann, Modesti, Wuite, Peterman (CR24) 2013; 110 Gross, Farge, Peterman, Wuite (CR17) 2010; 475 Taylor, Špírek, Jian Ma, Carzaniga, Takaki, Collinson, Greene, Krejci, Boulton (CR41) 2016; 64 Candelli, Holthausen, Depken, Brouwer, Mariëlla, Maman, Pellegrini, Bernard, Garcin, Wyman, Wuite, Peterman (CR11) 2014; 111 van Mameren, Peterman, Wuite (CR30) 2008; 36 Gross, Laurens, Oddershede, Bockelmann, Peterman, Wuite (CR18) 2011; 7 Brouwer, Sitters, Candelli, Heerema, Heller, de Melo, Zhang, Normanno, Modesti, Peterman, Wuite (CR7) 2016; 535 Ogawa, Yu, Shinohara, Egelman (CR34) 1993; 259 Modesti, Ristic, van der Heijden, Dekker, van Mameren, Peterman, Wuite, Kanaar, Wyman (CR33) 2007; 15 Emsley, Lohkamp, Scott, Cowtan (CR16) 2010; 66 van Mameren, Modesti, Kanaar, Wyman, Wuite, Peterman (CR29) 2006; 91 San Filippo, Sung, Klein (CR37) 2008; 77 Adams, Grosse‐Kunstleve, Hung, Ioerger, McCoy, Moriarty, Read, Sacchettini, Sauter, Terwilliger (CR1) 2002; 58 Kolinjivadi, Sannino, De Antoni, Zadorozhny, Kilkenny, Técher, Baldi, Shen, Ciccia, Pellegrini, Krejci, Costanzo (CR25) 2017; 67 2004; 101 2015; 162 2002; 58 2006; 91 1997; 272 2015; 50 2017; 24 2017; 67 2008; 36 2006; 7 2011; 13 2004 2008; 77 2015; 349 2014; 111 2009; 136 2014; 114 2014; 136 2011; 7 2007; 15 2004; 11 2010; 66 2009b; 457 2009a; 106 2013; 99 2010; 475 2016; 64 1994; 13 1998; 3 2016; 535 2016; 116 2013; 110 2008; 453 1998; 95 1993; 259 2004; 337 2005; 33 2001; 411 2010; 9 2012; 40 2009; 106 2016; 44 2001; 98 |
References_xml | – volume: 91 start-page: L78 year: 2006 end-page: L80 ident: CR29 article-title: Dissecting elastic heterogeneity along DNA molecules coated partly with Rad51 using concurrent fluorescence microscopy and optical tweezers publication-title: Biophys J – volume: 3 start-page: D570 year: 1998 end-page: D603 ident: CR5 article-title: DNA strand exchange proteins: a biochemical and physical comparison publication-title: Front Biosci – volume: 7 start-page: 739 year: 2006 end-page: 750 ident: CR39 article-title: Mechanism of homologous recombination: mediators and helicases take on regulatory functions publication-title: Nat Rev Mol Cell Biol – volume: 13 start-page: 7263 year: 2011 end-page: 7272 ident: CR9 article-title: Combining optical trapping, fluorescence microscopy and micro‐fluidics for single molecule studies of DNA‐protein interactions publication-title: Phys Chem Chem Phys – volume: 411 start-page: 366 year: 2001 end-page: 374 ident: CR21 article-title: Genome maintenance mechanisms for preventing cancer publication-title: Nature – volume: 457 start-page: 745 year: 2009 end-page: 748 ident: CR32 article-title: Counting RAD51 proteins disassembling from nucleoprotein filaments under tension publication-title: Nature – volume: 24 start-page: 40 year: 2017 end-page: 46 ident: CR43 article-title: Cryo‐EM structures of human RAD51 recombinase filaments during catalysis of DNA‐strand exchange publication-title: Nat Struct Mol Biol – volume: 475 start-page: 427 year: 2010 end-page: 453 ident: CR17 article-title: Combining optical tweezers, single‐molecule fluorescence microscopy, and microfluidics for studies of DNA‐protein interactions publication-title: Methods Enzymol – volume: 349 start-page: 977 year: 2015 end-page: 981 ident: CR26 article-title: Base triplet stepping by the Rad51/RecA family of recombinases publication-title: Science – volume: 136 start-page: 14796 year: 2014 end-page: 14800 ident: CR23 article-title: Cooperative conformational transitions keep RecA filament active during ATPase cycle publication-title: J Am Chem Soc – volume: 67 start-page: 867 year: 2017 end-page: 881 ident: CR25 article-title: Smarcal1‐mediated fork reversal triggers Mre11‐dependent degradation of nascent DNA in the absence of Brca2 and stable Rad51 nucleofilaments publication-title: Mol Cell – volume: 136 start-page: 1032 year: 2009 end-page: 1043 ident: CR12 article-title: The BRC repeats of BRCA2 modulate the DNA‐binding selectivity of RAD51 publication-title: Cell – volume: 259 start-page: 1896 year: 1993 end-page: 1899 ident: CR34 article-title: Similarity of the yeast RAD51 filament to the bacterial RecA filament publication-title: Science – volume: 13 start-page: 5764 year: 1994 end-page: 5771 ident: CR4 article-title: Purification and characterization of the human Rad51 protein, an analogue of RecA publication-title: EMBO J – volume: 162 start-page: 271 year: 2015 end-page: 286 ident: CR40 article-title: Rad51 paralogs remodel pre‐synaptic Rad51 filaments to stimulate homologous recombination publication-title: Cell – volume: 58 start-page: 1948 year: 2002 end-page: 1954 ident: CR1 article-title: : building new software for automated crystallographic structure determination publication-title: Acta Crystallogr D Biol Crystallogr – volume: 44 start-page: 9017 year: 2016 end-page: 9030 ident: CR38 article-title: High‐resolution structure of the presynaptic RAD51 filament on single‐stranded DNA by electron cryo‐microscopy publication-title: Nucleic Acids Res – volume: 272 start-page: 31941 year: 1997 end-page: 31944 ident: CR42 article-title: RAD51 interacts with the evolutionarily conserved BRC motifs in the human breast cancer susceptibility gene brca2 publication-title: J Biol Chem – volume: 99 start-page: 611 year: 2013 end-page: 620 ident: CR10 article-title: A toolbox for generating single‐stranded DNA in optical tweezers experiments publication-title: Biopolymers – volume: 453 start-page: 489–4 year: 2008 ident: CR14 article-title: Mechanism of homologous recombination from the RecA‐ssDNA/dsDNA structures publication-title: Nature – volume: 95 start-page: 5287 year: 1998 end-page: 5292 ident: CR13 article-title: The BRC repeats in BRCA2 are critical for RAD51 binding and resistance to methyl methanesulfonate treatment publication-title: Proc Natl Acad Sci USA – volume: 15 start-page: 599 year: 2007 end-page: 609 ident: CR33 article-title: Fluorescent human RAD51 reveals multiple nucleation sites and filament segments tightly associated along a single DNA molecule publication-title: Structure – year: 2004 ident: CR28 publication-title: Molecular cell biology – volume: 106 start-page: 18231 year: 2009 end-page: 18236 ident: CR31 article-title: Unraveling the structure of DNA during overstretching by using multicolor, single‐molecule fluorescence imaging publication-title: Proc Natl Acad Sci USA – volume: 98 start-page: 8419 year: 2001 end-page: 8424 ident: CR44 article-title: Domain structure and dynamics in the helical filaments formed by RecA and Rad51 on DNA publication-title: Proc Natl Acad Sci USA – volume: 66 start-page: 486 year: 2010 end-page: 501 ident: CR16 article-title: Features and development of publication-title: Acta Crystallogr D Biol Crystallogr – volume: 114 start-page: 3087 year: 2014 end-page: 3119 ident: CR19 article-title: Optical tweezers analysis of DNA – protein complexes publication-title: Chem Rev – volume: 11 start-page: 791 year: 2004 end-page: 796 ident: CR15 article-title: Crystal structure of a Rad51 filament publication-title: Nat Struct Mol Biol – volume: 110 start-page: 3859 year: 2013 end-page: 3864 ident: CR24 article-title: Revealing the competition between peeled ssDNA, melting bubbles, and S‐DNA during DNA overstretching using fluorescence microscopy publication-title: Proc Natl Acad Sci USA – volume: 111 start-page: 15090 year: 2014 end-page: 15095 ident: CR11 article-title: Visualization and quantification of RAD51 filament formation at single‐monomer resolution publication-title: Proc Natl Acad Sci USA – volume: 106 start-page: 361 year: 2009 end-page: 368 ident: CR20 article-title: Direct imaging of human Rad51 nucleoprotein dynamics on individual DNA molecules publication-title: Proc Natl Acad Sci USA – volume: 535 start-page: 566 year: 2016 end-page: 569 ident: CR7 article-title: Sliding sleeves of XRCC4–XLF bridge DNA and connect fragments of broken DNA publication-title: Nature – volume: 9 start-page: 1264 year: 2010 end-page: 1272 ident: CR22 article-title: Regulation of DNA strand exchange in homologous recombination publication-title: DNA Repair (Amst) – volume: 101 start-page: 9988 year: 2004 end-page: 9993 ident: CR8 article-title: Ca2+ activates human homologous recombination protein Rad51 by modulating its ATPase activity publication-title: Proc Natl Acad Sci USA – volume: 36 start-page: 4381 year: 2008 end-page: 4389 ident: CR30 article-title: See me, feel me: methods to concurrently visualize and manipulate single DNA molecules and associated proteins publication-title: Nucleic Acids Res – volume: 64 start-page: 926 year: 2016 end-page: 939 ident: CR41 article-title: A polar and nucleotide‐dependent mechanism of action for RAD51 paralogs in RAD51 filament remodeling publication-title: Mol Cell – volume: 77 start-page: 229 year: 2008 end-page: 257 ident: CR37 article-title: Mechanism of eukaryotic homologous recombination publication-title: Annu Rev Biochem – volume: 7 start-page: 731 year: 2011 end-page: 736 ident: CR18 article-title: Quantifying how DNA stretches, melts and changes twist under tension publication-title: Nat Phys – volume: 33 start-page: 3292 year: 2005 end-page: 3302 ident: CR36 article-title: Human Rad51 filaments on double‐ and single‐stranded DNA: correlating regular and irregular forms with recombination function publication-title: Nucleic Acids Res – volume: 337 start-page: 817 year: 2004 end-page: 827 ident: CR27 article-title: Conformational changes modulate the activity of human RAD51 protein publication-title: J Mol Biol – volume: 40 start-page: 11769 year: 2012 end-page: 11776 ident: CR2 article-title: Probing Rad51‐DNA interactions by changing DNA twist publication-title: Nucleic Acids Res – volume: 116 start-page: 1 year: 2016 end-page: 5 ident: CR6 article-title: DNA twist stability changes with magnesium(2+) concentration publication-title: Phys Rev Lett – volume: 50 start-page: 453 year: 2015 end-page: 476 ident: CR35 article-title: Structure/function relationships in RecA protein‐mediated homology recognition and strand exchange publication-title: Crit Rev Biochem Mol Biol – volume: 33 start-page: 3292 year: 2005 end-page: 3302 article-title: Human Rad51 filaments on double‐ and single‐stranded DNA: correlating regular and irregular forms with recombination function publication-title: Nucleic Acids Res – volume: 66 start-page: 486 year: 2010 end-page: 501 article-title: Features and development of publication-title: Acta Crystallogr D Biol Crystallogr – volume: 3 start-page: D570 year: 1998 end-page: D603 article-title: DNA strand exchange proteins: a biochemical and physical comparison publication-title: Front Biosci – volume: 116 start-page: 1 year: 2016 end-page: 5 article-title: DNA twist stability changes with magnesium(2+) concentration publication-title: Phys Rev Lett – volume: 453 start-page: 489–4 year: 2008 article-title: Mechanism of homologous recombination from the RecA‐ssDNA/dsDNA structures publication-title: Nature – volume: 101 start-page: 9988 year: 2004 end-page: 9993 article-title: Ca2+ activates human homologous recombination protein Rad51 by modulating its ATPase activity publication-title: Proc Natl Acad Sci USA – volume: 67 start-page: 867 year: 2017 end-page: 881 article-title: Smarcal1‐mediated fork reversal triggers Mre11‐dependent degradation of nascent DNA in the absence of Brca2 and stable Rad51 nucleofilaments publication-title: Mol Cell – volume: 91 start-page: L78 year: 2006 end-page: L80 article-title: Dissecting elastic heterogeneity along DNA molecules coated partly with Rad51 using concurrent fluorescence microscopy and optical tweezers publication-title: Biophys J – volume: 15 start-page: 599 year: 2007 end-page: 609 article-title: Fluorescent human RAD51 reveals multiple nucleation sites and filament segments tightly associated along a single DNA molecule publication-title: Structure – volume: 7 start-page: 731 year: 2011 end-page: 736 article-title: Quantifying how DNA stretches, melts and changes twist under tension publication-title: Nat Phys – volume: 106 start-page: 361 year: 2009 end-page: 368 article-title: Direct imaging of human Rad51 nucleoprotein dynamics on individual DNA molecules publication-title: Proc Natl Acad Sci USA – volume: 64 start-page: 926 year: 2016 end-page: 939 article-title: A polar and nucleotide‐dependent mechanism of action for RAD51 paralogs in RAD51 filament remodeling publication-title: Mol Cell – volume: 259 start-page: 1896 year: 1993 end-page: 1899 article-title: Similarity of the yeast RAD51 filament to the bacterial RecA filament publication-title: Science – volume: 77 start-page: 229 year: 2008 end-page: 257 article-title: Mechanism of eukaryotic homologous recombination publication-title: Annu Rev Biochem – volume: 44 start-page: 9017 year: 2016 end-page: 9030 article-title: High‐resolution structure of the presynaptic RAD51 filament on single‐stranded DNA by electron cryo‐microscopy publication-title: Nucleic Acids Res – volume: 11 start-page: 791 year: 2004 end-page: 796 article-title: Crystal structure of a Rad51 filament publication-title: Nat Struct Mol Biol – volume: 162 start-page: 271 year: 2015 end-page: 286 article-title: Rad51 paralogs remodel pre‐synaptic Rad51 filaments to stimulate homologous recombination publication-title: Cell – volume: 98 start-page: 8419 year: 2001 end-page: 8424 article-title: Domain structure and dynamics in the helical filaments formed by RecA and Rad51 on DNA publication-title: Proc Natl Acad Sci USA – volume: 110 start-page: 3859 year: 2013 end-page: 3864 article-title: Revealing the competition between peeled ssDNA, melting bubbles, and S‐DNA during DNA overstretching using fluorescence microscopy publication-title: Proc Natl Acad Sci USA – volume: 349 start-page: 977 year: 2015 end-page: 981 article-title: Base triplet stepping by the Rad51/RecA family of recombinases publication-title: Science – volume: 411 start-page: 366 year: 2001 end-page: 374 article-title: Genome maintenance mechanisms for preventing cancer publication-title: Nature – volume: 99 start-page: 611 year: 2013 end-page: 620 article-title: A toolbox for generating single‐stranded DNA in optical tweezers experiments publication-title: Biopolymers – volume: 36 start-page: 4381 year: 2008 end-page: 4389 article-title: See me, feel me: methods to concurrently visualize and manipulate single DNA molecules and associated proteins publication-title: Nucleic Acids Res – volume: 24 start-page: 40 year: 2017 end-page: 46 article-title: Cryo‐EM structures of human RAD51 recombinase filaments during catalysis of DNA‐strand exchange publication-title: Nat Struct Mol Biol – volume: 136 start-page: 14796 year: 2014 end-page: 14800 article-title: Cooperative conformational transitions keep RecA filament active during ATPase cycle publication-title: J Am Chem Soc – volume: 457 start-page: 745 year: 2009b end-page: 748 article-title: Counting RAD51 proteins disassembling from nucleoprotein filaments under tension publication-title: Nature – volume: 13 start-page: 7263 year: 2011 end-page: 7272 article-title: Combining optical trapping, fluorescence microscopy and micro‐fluidics for single molecule studies of DNA‐protein interactions publication-title: Phys Chem Chem Phys – volume: 106 start-page: 18231 year: 2009a end-page: 18236 article-title: Unraveling the structure of DNA during overstretching by using multicolor, single‐molecule fluorescence imaging publication-title: Proc Natl Acad Sci USA – volume: 337 start-page: 817 year: 2004 end-page: 827 article-title: Conformational changes modulate the activity of human RAD51 protein publication-title: J Mol Biol – volume: 272 start-page: 31941 year: 1997 end-page: 31944 article-title: RAD51 interacts with the evolutionarily conserved BRC motifs in the human breast cancer susceptibility gene brca2 publication-title: J Biol Chem – volume: 40 start-page: 11769 year: 2012 end-page: 11776 article-title: Probing Rad51‐DNA interactions by changing DNA twist publication-title: Nucleic Acids Res – volume: 13 start-page: 5764 year: 1994 end-page: 5771 article-title: Purification and characterization of the human Rad51 protein, an analogue of RecA publication-title: EMBO J – volume: 535 start-page: 566 year: 2016 end-page: 569 article-title: Sliding sleeves of XRCC4–XLF bridge DNA and connect fragments of broken DNA publication-title: Nature – volume: 9 start-page: 1264 year: 2010 end-page: 1272 article-title: Regulation of DNA strand exchange in homologous recombination publication-title: DNA Repair (Amst) – volume: 95 start-page: 5287 year: 1998 end-page: 5292 article-title: The BRC repeats in BRCA2 are critical for RAD51 binding and resistance to methyl methanesulfonate treatment publication-title: Proc Natl Acad Sci USA – volume: 475 start-page: 427 year: 2010 end-page: 453 article-title: Combining optical tweezers, single‐molecule fluorescence microscopy, and microfluidics for studies of DNA‐protein interactions publication-title: Methods Enzymol – volume: 58 start-page: 1948 year: 2002 end-page: 1954 article-title: : building new software for automated crystallographic structure determination publication-title: Acta Crystallogr D Biol Crystallogr – volume: 114 start-page: 3087 year: 2014 end-page: 3119 article-title: Optical tweezers analysis of DNA – protein complexes publication-title: Chem Rev – year: 2004 – volume: 7 start-page: 739 year: 2006 end-page: 750 article-title: Mechanism of homologous recombination: mediators and helicases take on regulatory functions publication-title: Nat Rev Mol Cell Biol – volume: 136 start-page: 1032 year: 2009 end-page: 1043 article-title: The BRC repeats of BRCA2 modulate the DNA‐binding selectivity of RAD51 publication-title: Cell – volume: 50 start-page: 453 year: 2015 end-page: 476 article-title: Structure/function relationships in RecA protein‐mediated homology recognition and strand exchange publication-title: Crit Rev Biochem Mol Biol – volume: 111 start-page: 15090 year: 2014 end-page: 15095 article-title: Visualization and quantification of RAD51 filament formation at single‐monomer resolution publication-title: Proc Natl Acad Sci USA |
SSID | ssj0005871 |
Score | 2.4753146 |
Snippet | An essential mechanism for repairing DNA double‐strand breaks is homologous recombination (HR). One of its core catalysts is human RAD51 (hRAD51), which... An essential mechanism for repairing DNA double-strand breaks is homologous recombination (HR). One of its core catalysts is human RAD51 (hRAD51), which... An essential mechanism for repairing DNA double‐strand breaks is homologous recombination ( HR ). One of its core catalysts is human RAD 51 ( hRAD 51), which... |
SourceID | pubmedcentral hal proquest pubmed wiley springer |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
SubjectTerms | Adenosine diphosphate Adenosine Triphosphate - chemistry Adenosine Triphosphate - metabolism Catalysts Contours Crystal structure Crystallography Crystallography, X-Ray Deoxyribonucleic acid Dismantling DNA DNA - metabolism DNA Breaks, Double-Stranded DNA damage DNA repair DNA Repair - physiology DNA Replication - physiology DNA, Single-Stranded - chemistry DNA, Single-Stranded - metabolism DNA-Binding Proteins - metabolism EMBO13 EMBO40 Exchanging Filaments Free energy Homologous recombination Homologous Recombination - physiology Homology Interfaces Life Sciences Maintenance Models, Molecular Molecular Conformation Monomers Nucleoproteins - metabolism RAD51 Rad51 Recombinase - chemistry Rad51 Recombinase - metabolism Recognition Shape single‐stranded DNA |
SummonAdditionalLinks | – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwEB6hVgguFZS_QEEGceEQESe2Yx_TbatVRSuEFqm3yE5sbRFkq3YL4sYj8Ix9ks442ZRV4cAlin9kW56x_c14Zgzw1nPnhbQ2zYJVKZ74bWqDkClulw5l5ix3Mc720bGafhaHJ_JkCJJEvjB_3t_LXObv_Tf3hSywSqM57bWbkheK2HeiJje2HDpKVlGZIrg2QwyfvzSAR8icLB5vw8nbVpHj1eg6cI0nz8ED2BogI6t6Gj-EO77bhrv9I5I_t-HeZPVm2yM4nf1YsJaWbdcsGYq6o28iNhB9hy5Y6wMiS4bAj1GsiPPes4EtAovv9bFP1Z7kV79-V7OPjLS0jLQJXz3mkFaEFOZs77h6DLOD_dlkmg6PKaRzkeOuVwjHtbIhGBT5uM8Ct7lrMGG0cbIscfGGwrcFftvMtbrlgZYrxf7x3DbFE9joFp1_BkxZZ0srVGiUF41qHUp4TlgUdXheNplN4A1OcX3WR8uoKX71tPpQUx5SQRsEcN95AjsrCtTDqrmocZyZwR3HFAm8HotxCukSw3Z-cUl1yOnJGFEm8LQn2NhVbhDdIgROoFwj5dpY1ku603mMqS01cYdJ4N2K6DfDIjmJWKkmVqpHVkqgiFwxtv6PevX-0e7hmHr-Hz28gPv4r6OhULEDG8vzS_8SMdDSvYr8fw03D_9T priority: 102 providerName: Springer Nature |
Title | Two distinct conformational states define the interaction of human RAD51‐ATP with single‐stranded DNA |
URI | https://link.springer.com/article/10.15252/embj.201798162 https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembj.201798162 https://www.ncbi.nlm.nih.gov/pubmed/29507080 https://www.proquest.com/docview/2020930193 https://www.proquest.com/docview/2011269947 https://amu.hal.science/hal-01789423 https://pubmed.ncbi.nlm.nih.gov/PMC5881629 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwEB5VoKpcKqAtTUuRQb1wiBonTmIf0wW0QgWhaitxi-zE1i6CbMUurbjxCH3GPklnnE1QhLj0Em1-1rE8P56ZzHwD8NlyY0WqdRg5nYW449ehdiINUV0a9Jmj2Hic7bPzbPxDnF6mXTYh1cK0-BB9wI0kw-trEnBtFl3HHkINtTfminKzciU5aeF1KrAl-PxYXDxmeUjvc_kwi-BSrdB9aIgvwwFwc5lSLuRTQ_NpvmT_0XRo0vo96WQTXq-MSVa01N-CF7bZhpdte8n7bXg16rq5vYHZ5Pec1STQTbVk6AT3VYs4gK8qWrDaOlwVhiYhIxSJ27bmgc0d85382PfiKOV_H_4UkwtG8VtGcYZri1coXkKhdHZ0XryFycnxZDQOV20WwqmIUR8mwnCZaecUOoPcRo7r2FR4oqQyaZ6jWLvE1gke68jUsuaOBJlQgSzXVfIO1pp5Y98Dy7TRuRaZqzIrqqw26PsZodEJ4nFeRTqAA1zi8meLo1ESsvW4-FbSNaSCVGja_eIB7HYUKFfytChxnpFCXaSSAPb727iE9HlDN3Z-R89QOZRSIg9gpyVY_6pYod2LxnEA-YCUg7kM7zSzqUfbTiVxhwrgsCP647TIgyJWKomVyp6VAkg8V_SjP_NceXz29bQ_-_Bf__oIG_hb-mSiZBfWlrd39hPaSUuz5yUBj6NstEc7VvoPdlgMpw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6hIlQuCMqjgQIGceEQESdOYh9DH1rK7qpCQerNshNbWwRZ1G5B3PgJ_EZ-CTPObkpUceGyUpysY3kenpnMfAPwynHrRG5MnHhTxHjit7HxIo9RXVr0mZPUBpzt2byYfBTHp_npX7UwPT7EEHAjyQj6mgScAtKblj0EG-q-2E-UnFUqyUkN3xRFWpJwpuLkKs1DBqcrxFkEl2oN70NTvBlPgKfLgpIhr1ua1xMmh6-mY5s2HEpHd-HO2ppkVU_-e3DDdTtwq-8v-WMHtvc37dzuw1n9fclakuiuWTH0goeyRZwglBVdsNZ53BaGNiEjGInzvuiBLT0LrfzYh-og579__qrqE0YBXEaBhs8ORyhgQrF0djCvHkB9dFjvT-J1n4V4IVJUiJmwXBbGe4XeIHeJ5ya1DV4oqWxelijXPnNthr9tYlvZck-STLBAjpsmewhb3bJzu8AKY01pROGbwommaC06f1YY9IJ4WjaJieAlbrH-2gNpaIK2nlRTTWNIBanQtvvGI9jbUECvBepC4zoThcpIZRG8GG7jFtL3DdO55SU9Q_VQSokygkc9wYZXpQoNX7SOIyhHpBytZXynO1sEuO1cEneoCF5viH61LHKhiJU0sZIeWCmCLHDFMPs_ntOHs7fHw9Xj__rXc9ie1LOpnr6bv38Ct3FchsyibA-2VueX7ikaTSv7LEjFH1CQDlA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6hIn4uCMpfoIBBXDhExImT2MfQ7Wop7WqFFombZSe2tgiyVbsFceMReEaehBlnkyqquHCJFCdxLM-MPTOe-QbgtePWidyYOPGmiHHHb2LjRR7jcmnRZk5SG3C2j-fF7JM4_Jz30YSUC9PhQwwON5KMsF6TgJ82vq_YQ6ih7pv9QrFZpZKcVuHr4ciPwJ3F4jLKQwabK7hZBJdqi-5DXbwdd4Cby4piIa8qmlfjJYdD07FKG_ak6V24s1UmWdVR_x5cc-0u3OjKS_7chVv7fTW3-3Cy_LFmDQl0W28YGsFD1iJ2ELKKzlnjPM4KQ5WQEYrEWZfzwNaehUp-7GM1yfmfX7-r5YKR_5aRn-Grwxbyl5ArnU3m1QNYTg-W-7N4W2YhXokU18NMWC4L471CY5C7xHOT2hpvlFQ2L0sUa5-5JsNrk9hGNtyTIBMqkOOmzh7CTrtu3WNghbGmNKLwdeFEXTQWbT8rDBpBPC3rxETwCqdYn3Y4GpqQrWfVkaY2pIJUqNp95xHs9RTQW3k61zjOROFapLIIXg6PcQrpeMO0bn1B71A6lFKijOBRR7DhV6lCvReV4wjKESlHYxk_aU9WAW07l8QdKoI3PdEvh0UWFLGSJlbSAytFkAWuGHr_x3v64Pjd4XD35L--egE3F5OpPno___AUbmOzDHFF2R7sbM4u3DNUmTb2eRCKv64wDYI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two+distinct+conformational+states+define+the+interaction+of+human+RAD51%E2%80%90ATP+with+single%E2%80%90stranded+DNA&rft.jtitle=The+EMBO+journal&rft.au=Brouwer%2C+Ineke&rft.au=Moschetti%2C+Tommaso&rft.au=Candelli%2C+Andrea&rft.au=Garcin%2C+Edwige+B&rft.date=2018-04-03&rft.pub=EMBO+Press&rft.issn=0261-4189&rft.eissn=1460-2075&rft.volume=37&rft.issue=7&rft_id=info:doi/10.15252%2Fembj.201798162&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_01789423v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-4189&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-4189&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-4189&client=summon |