Local Optimal Transport for Functional Brain Template Estimation

An important goal of cognitive brain imaging studies is to model the functional organization of the brain; yet there exists currently no functional brain atlas built from existing data. One of the main roadblocks to the creation of such an atlas is the functional variability that is observed in subj...

Full description

Saved in:
Bibliographic Details
Published inInformation Processing in Medical Imaging Vol. 11492; pp. 237 - 248
Main Authors Bazeille, T., Richard, H., Janati, H., Thirion, B.
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2019
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN3030203506
9783030203504
ISSN0302-9743
1611-3349
DOI10.1007/978-3-030-20351-1_18

Cover

Loading…
Abstract An important goal of cognitive brain imaging studies is to model the functional organization of the brain; yet there exists currently no functional brain atlas built from existing data. One of the main roadblocks to the creation of such an atlas is the functional variability that is observed in subjects performing the same task; this variability goes far beyond anatomical variability in brain shape and size. Function-based alignment procedures have recently been proposed in order to improve the correspondence of activation patterns across individuals. However, the corresponding computational solutions are costly and not well-principled. Here, we propose a new framework based on optimal transport theory to create such a template. We leverage entropic smoothing as an efficient means to create brain templates without losing fine-grain structural information; it is implemented in a computationally efficient way. We evaluate our approach on rich multi-subject, multi-contrasts datasets. These experiments demonstrate that the template-based inference procedure improves the transfer of information across individuals with respect to state of the art methods.
AbstractList An important goal of cognitive brain imaging studies is to model the functional organization of the brain; yet there exists currently no functional brain atlas built from existing data. One of the main roadblocks to the creation of such an atlas is the functional variability that is observed in subjects performing the same task; this variability goes far beyond anatomical variability in brain shape and size. Function-based alignment procedures have recently been proposed in order to improve the correspondence of activation patterns across individuals. However, the corresponding computational solutions are costly and not well-principled. Here, we propose a new framework based on optimal transport theory to create such a template. We leverage entropic smoothing as an efficient means to create brain templates without losing fine-grain structural information; it is implemented in a computationally efficient way. We evaluate our approach on rich multi-subject, multi-contrasts datasets. These experiments demonstrate that the template-based inference procedure improves the transfer of information across individuals with respect to state of the art methods.
Author Thirion, B.
Bazeille, T.
Richard, H.
Janati, H.
Author_xml – sequence: 1
  givenname: T.
  surname: Bazeille
  fullname: Bazeille, T.
  email: thomas.bazeille@inria.fr
  organization: Inria, CEA Neurospin, Saclay, France
– sequence: 2
  givenname: H.
  surname: Richard
  fullname: Richard, H.
  organization: Inria, CEA Neurospin, Saclay, France
– sequence: 3
  givenname: H.
  surname: Janati
  fullname: Janati, H.
  organization: CREST ENSAE, Palaiseau, France
– sequence: 4
  givenname: B.
  surname: Thirion
  fullname: Thirion, B.
  organization: Inria, CEA Neurospin, Saclay, France
BookMark eNpFUMtOwzAQNFAQbekfcMgPGHZtJ45vQNUCUqVeytlyjEMDaRzs8P84LRKnGc1jpZ0ZmXS-c4TcItwhgLxXsqScAgfKgOdIUWN5RmY8KUdBnJMpFoiUc6Eu_g0oJmQ6cqqk4FdkhgiSociRX5NFjJ8AwBgokPmUPGy8NW227YfmkHAXTBd7H4as9iFb_3R2aHyXjKdgmi7buUPfmsFlqzjmR--GXNamjW7xh3Pytl7tli90s31-XT5u6J6XaqDCgrG5lDWvHCtdUXDhSl4ICciq2gJWuRTvtpK5kAwq5-oaKsWVQ5uy6PicsNPd2Iem-3BBV95_RY2gx7V0Wktznd7Wx3H0uFYqiVOpD_77x8VBu7FlXTcE09q96QcXos4VEyUUmmGuE-O_k2Zprw
ContentType Book Chapter
Copyright Springer Nature Switzerland AG 2019
Copyright_xml – notice: Springer Nature Switzerland AG 2019
DBID FFUUA
DOI 10.1007/978-3-030-20351-1_18
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 3030203514
9783030203511
EISSN 1611-3349
Editor Chung, Albert C. S
Yushkevich, Paul A
Gee, James C
Bao, Siqi
Editor_xml – sequence: 1
  fullname: Chung, Albert C. S
– sequence: 2
  fullname: Yushkevich, Paul A
– sequence: 3
  fullname: Bao, Siqi
– sequence: 4
  fullname: Gee, James C
EndPage 248
ExternalDocumentID EBC5924806_215_248
GroupedDBID 38.
AABBV
AEDXK
AEJLV
AEKFX
AIFIR
ALEXF
ALMA_UNASSIGNED_HOLDINGS
AYMPB
BBABE
CXBFT
CZZ
EXGDT
FCSXQ
FFUUA
I4C
IEZ
MGZZY
NSQWD
OORQV
SBO
TPJZQ
TSXQS
Z5O
Z7R
Z7S
Z7U
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z84
Z85
Z87
Z88
-DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RIG
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-h389t-4c0ac577f3be28e6634e83647012bfc01b574dcb754720beeff0b939e1c6631e3
ISBN 3030203506
9783030203504
ISSN 0302-9743
IngestDate Tue Jul 29 19:51:00 EDT 2025
Thu May 29 16:31:15 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
LCCallNum TA1634
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-h389t-4c0ac577f3be28e6634e83647012bfc01b574dcb754720beeff0b939e1c6631e3
OCLC 1107214513
OpenAccessLink https://hal.science/hal-02278663
PQID EBC5924806_215_248
PageCount 12
ParticipantIDs springer_books_10_1007_978_3_030_20351_1_18
proquest_ebookcentralchapters_5924806_215_248
PublicationCentury 2000
PublicationDate 2019
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 2019
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesSubtitle Image Processing, Computer Vision, Pattern Recognition, and Graphics
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle 26th International Conference, IPMI 2019, Hong Kong, China, June 2-7, 2019, Proceedings
PublicationTitle Information Processing in Medical Imaging
PublicationYear 2019
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Kleinberg, Jon M.
Hartmanis, Juris
Mattern, Friedemann
Goos, Gerhard
Steffen, Bernhard
Kittler, Josef
Naor, Moni
Mitchell, John C.
Terzopoulos, Demetri
Pandu Rangan, C.
Kanade, Takeo
Hutchison, David
Tygar, Doug
RelatedPersons_xml – sequence: 1
  givenname: David
  surname: Hutchison
  fullname: Hutchison, David
  organization: Lancaster University, Lancaster, UK
– sequence: 2
  givenname: Takeo
  surname: Kanade
  fullname: Kanade, Takeo
  organization: Carnegie Mellon University, Pittsburgh, USA
– sequence: 3
  givenname: Josef
  surname: Kittler
  fullname: Kittler, Josef
  organization: University of Surrey, Guildford, UK
– sequence: 4
  givenname: Jon M.
  surname: Kleinberg
  fullname: Kleinberg, Jon M.
  organization: Cornell University, Ithaca, USA
– sequence: 5
  givenname: Friedemann
  surname: Mattern
  fullname: Mattern, Friedemann
  organization: ETH Zurich, Zurich, Switzerland
– sequence: 6
  givenname: John C.
  surname: Mitchell
  fullname: Mitchell, John C.
  organization: Stanford University, Stanford, USA
– sequence: 7
  givenname: Moni
  surname: Naor
  fullname: Naor, Moni
  organization: Weizmann Institute of Science, Rehovot, Israel
– sequence: 8
  givenname: C.
  surname: Pandu Rangan
  fullname: Pandu Rangan, C.
  organization: Indian Institute of Technology Madras, Chennai, India
– sequence: 9
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
  organization: TU Dortmund University, Dortmund, Germany
– sequence: 10
  givenname: Demetri
  surname: Terzopoulos
  fullname: Terzopoulos, Demetri
  organization: University of California, Los Angeles, USA
– sequence: 11
  givenname: Doug
  surname: Tygar
  fullname: Tygar, Doug
  organization: University of California, Berkeley, USA
– sequence: 12
  givenname: Gerhard
  surname: Goos
  fullname: Goos, Gerhard
  organization: Karlsruhe, Germany
– sequence: 13
  givenname: Juris
  surname: Hartmanis
  fullname: Hartmanis, Juris
  organization: Ithaca, USA
SSID ssj0002209075
ssj0002792
Score 2.2381017
Snippet An important goal of cognitive brain imaging studies is to model the functional organization of the brain; yet there exists currently no functional brain atlas...
SourceID springer
proquest
SourceType Publisher
StartPage 237
SubjectTerms Atlas inference
Brain
fMRI
Functional alignment
Title Local Optimal Transport for Functional Brain Template Estimation
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5924806&ppg=248
http://link.springer.com/10.1007/978-3-030-20351-1_18
Volume 11492
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwELagXNAeeCxoecoHbpVR4th53HiovATspSBuVuw64rAtiJYLv54Z106aqBf2EkWWHTnzWeOZ8XxjQk7KouJgt-dMitIwsIhHrMxSzUwhNAzBGuBIcH54TG-exN2LfGnuc3Tskpk-NV9LeSX_gyq0Aa7Ikv0BsvVHoQHeAV94AsLw7Bi_7TCrTxesiYch3d_zU8Lhy-3YXUG0uCrucevq_wU9MUZifqhs7pINr2CL85HBC7w4oj-04_d_YIv2B1PsX0PogwTIS2oFCUKQsBNmXIh0nV-3HEvY2PCIUs6vBq41JbhTfKneXUy1gKEMx8YsVl63tspcc9FpdLvp4OJSgi-YR6kCK0TB2ypZzXLZI2vng7v75zpwxnkEDr1Enk6YZDqvpNRMeoEjuWxOLW-icwDu7IrhJvmFXBOKJBCY5RZZsZNtsuE9A-r17vQ3OXO4UY8brXGjgBttcKMONxpwow1uO-TpajC8vGH-7gv2CibkjAkTlUZmWZVoy3MLdqGwOdb6B4NCVyaKtczEyOhMioxH2tqqinSRFDY20De2yS7pTd4m9g-hNo0KrrkWiTVCJ7I06IWC3jaRNiOZ7hEWpKHcCb1PCzbzf5-qDi57pB9EprD7VIXS1yBrlSiQtXKyVijr_R9-_YCsNwv4kPRmH5_2COy-mT72K-EbuahTaQ
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Information+Processing+in+Medical+Imaging&rft.atitle=Local+Optimal+Transport+for+Functional+Brain+Template+Estimation&rft.date=2019-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783030203504&rft.volume=11492&rft_id=info:doi/10.1007%2F978-3-030-20351-1_18&rft.externalDBID=248&rft.externalDocID=EBC5924806_215_248
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5924806-l.jpg