Local Optimal Transport for Functional Brain Template Estimation
An important goal of cognitive brain imaging studies is to model the functional organization of the brain; yet there exists currently no functional brain atlas built from existing data. One of the main roadblocks to the creation of such an atlas is the functional variability that is observed in subj...
Saved in:
Published in | Information Processing in Medical Imaging Vol. 11492; pp. 237 - 248 |
---|---|
Main Authors | , , , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
2019
Springer International Publishing |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
ISBN | 3030203506 9783030203504 |
ISSN | 0302-9743 1611-3349 |
DOI | 10.1007/978-3-030-20351-1_18 |
Cover
Loading…
Abstract | An important goal of cognitive brain imaging studies is to model the functional organization of the brain; yet there exists currently no functional brain atlas built from existing data. One of the main roadblocks to the creation of such an atlas is the functional variability that is observed in subjects performing the same task; this variability goes far beyond anatomical variability in brain shape and size. Function-based alignment procedures have recently been proposed in order to improve the correspondence of activation patterns across individuals. However, the corresponding computational solutions are costly and not well-principled. Here, we propose a new framework based on optimal transport theory to create such a template. We leverage entropic smoothing as an efficient means to create brain templates without losing fine-grain structural information; it is implemented in a computationally efficient way. We evaluate our approach on rich multi-subject, multi-contrasts datasets. These experiments demonstrate that the template-based inference procedure improves the transfer of information across individuals with respect to state of the art methods. |
---|---|
AbstractList | An important goal of cognitive brain imaging studies is to model the functional organization of the brain; yet there exists currently no functional brain atlas built from existing data. One of the main roadblocks to the creation of such an atlas is the functional variability that is observed in subjects performing the same task; this variability goes far beyond anatomical variability in brain shape and size. Function-based alignment procedures have recently been proposed in order to improve the correspondence of activation patterns across individuals. However, the corresponding computational solutions are costly and not well-principled. Here, we propose a new framework based on optimal transport theory to create such a template. We leverage entropic smoothing as an efficient means to create brain templates without losing fine-grain structural information; it is implemented in a computationally efficient way. We evaluate our approach on rich multi-subject, multi-contrasts datasets. These experiments demonstrate that the template-based inference procedure improves the transfer of information across individuals with respect to state of the art methods. |
Author | Thirion, B. Bazeille, T. Richard, H. Janati, H. |
Author_xml | – sequence: 1 givenname: T. surname: Bazeille fullname: Bazeille, T. email: thomas.bazeille@inria.fr organization: Inria, CEA Neurospin, Saclay, France – sequence: 2 givenname: H. surname: Richard fullname: Richard, H. organization: Inria, CEA Neurospin, Saclay, France – sequence: 3 givenname: H. surname: Janati fullname: Janati, H. organization: CREST ENSAE, Palaiseau, France – sequence: 4 givenname: B. surname: Thirion fullname: Thirion, B. organization: Inria, CEA Neurospin, Saclay, France |
BookMark | eNpFUMtOwzAQNFAQbekfcMgPGHZtJ45vQNUCUqVeytlyjEMDaRzs8P84LRKnGc1jpZ0ZmXS-c4TcItwhgLxXsqScAgfKgOdIUWN5RmY8KUdBnJMpFoiUc6Eu_g0oJmQ6cqqk4FdkhgiSociRX5NFjJ8AwBgokPmUPGy8NW227YfmkHAXTBd7H4as9iFb_3R2aHyXjKdgmi7buUPfmsFlqzjmR--GXNamjW7xh3Pytl7tli90s31-XT5u6J6XaqDCgrG5lDWvHCtdUXDhSl4ICciq2gJWuRTvtpK5kAwq5-oaKsWVQ5uy6PicsNPd2Iem-3BBV95_RY2gx7V0Wktznd7Wx3H0uFYqiVOpD_77x8VBu7FlXTcE09q96QcXos4VEyUUmmGuE-O_k2Zprw |
ContentType | Book Chapter |
Copyright | Springer Nature Switzerland AG 2019 |
Copyright_xml | – notice: Springer Nature Switzerland AG 2019 |
DBID | FFUUA |
DOI | 10.1007/978-3-030-20351-1_18 |
DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISBN | 3030203514 9783030203511 |
EISSN | 1611-3349 |
Editor | Chung, Albert C. S Yushkevich, Paul A Gee, James C Bao, Siqi |
Editor_xml | – sequence: 1 fullname: Chung, Albert C. S – sequence: 2 fullname: Yushkevich, Paul A – sequence: 3 fullname: Bao, Siqi – sequence: 4 fullname: Gee, James C |
EndPage | 248 |
ExternalDocumentID | EBC5924806_215_248 |
GroupedDBID | 38. AABBV AEDXK AEJLV AEKFX AIFIR ALEXF ALMA_UNASSIGNED_HOLDINGS AYMPB BBABE CXBFT CZZ EXGDT FCSXQ FFUUA I4C IEZ MGZZY NSQWD OORQV SBO TPJZQ TSXQS Z5O Z7R Z7S Z7U Z7W Z7X Z7Y Z7Z Z81 Z82 Z83 Z84 Z85 Z87 Z88 -DT -GH -~X 1SB 29L 2HA 2HV 5QI 875 AASHB ABMNI ACGFS ADCXD AEFIE EJD F5P FEDTE HVGLF LAS LDH P2P RIG RNI RSU SVGTG VI1 ~02 |
ID | FETCH-LOGICAL-h389t-4c0ac577f3be28e6634e83647012bfc01b574dcb754720beeff0b939e1c6631e3 |
ISBN | 3030203506 9783030203504 |
ISSN | 0302-9743 |
IngestDate | Tue Jul 29 19:51:00 EDT 2025 Thu May 29 16:31:15 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
LCCallNum | TA1634 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-h389t-4c0ac577f3be28e6634e83647012bfc01b574dcb754720beeff0b939e1c6631e3 |
OCLC | 1107214513 |
OpenAccessLink | https://hal.science/hal-02278663 |
PQID | EBC5924806_215_248 |
PageCount | 12 |
ParticipantIDs | springer_books_10_1007_978_3_030_20351_1_18 proquest_ebookcentralchapters_5924806_215_248 |
PublicationCentury | 2000 |
PublicationDate | 2019 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – year: 2019 text: 2019 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Cham |
PublicationSeriesSubtitle | Image Processing, Computer Vision, Pattern Recognition, and Graphics |
PublicationSeriesTitle | Lecture Notes in Computer Science |
PublicationSeriesTitleAlternate | Lect.Notes Computer |
PublicationSubtitle | 26th International Conference, IPMI 2019, Hong Kong, China, June 2-7, 2019, Proceedings |
PublicationTitle | Information Processing in Medical Imaging |
PublicationYear | 2019 |
Publisher | Springer International Publishing AG Springer International Publishing |
Publisher_xml | – name: Springer International Publishing AG – name: Springer International Publishing |
RelatedPersons | Kleinberg, Jon M. Hartmanis, Juris Mattern, Friedemann Goos, Gerhard Steffen, Bernhard Kittler, Josef Naor, Moni Mitchell, John C. Terzopoulos, Demetri Pandu Rangan, C. Kanade, Takeo Hutchison, David Tygar, Doug |
RelatedPersons_xml | – sequence: 1 givenname: David surname: Hutchison fullname: Hutchison, David organization: Lancaster University, Lancaster, UK – sequence: 2 givenname: Takeo surname: Kanade fullname: Kanade, Takeo organization: Carnegie Mellon University, Pittsburgh, USA – sequence: 3 givenname: Josef surname: Kittler fullname: Kittler, Josef organization: University of Surrey, Guildford, UK – sequence: 4 givenname: Jon M. surname: Kleinberg fullname: Kleinberg, Jon M. organization: Cornell University, Ithaca, USA – sequence: 5 givenname: Friedemann surname: Mattern fullname: Mattern, Friedemann organization: ETH Zurich, Zurich, Switzerland – sequence: 6 givenname: John C. surname: Mitchell fullname: Mitchell, John C. organization: Stanford University, Stanford, USA – sequence: 7 givenname: Moni surname: Naor fullname: Naor, Moni organization: Weizmann Institute of Science, Rehovot, Israel – sequence: 8 givenname: C. surname: Pandu Rangan fullname: Pandu Rangan, C. organization: Indian Institute of Technology Madras, Chennai, India – sequence: 9 givenname: Bernhard surname: Steffen fullname: Steffen, Bernhard organization: TU Dortmund University, Dortmund, Germany – sequence: 10 givenname: Demetri surname: Terzopoulos fullname: Terzopoulos, Demetri organization: University of California, Los Angeles, USA – sequence: 11 givenname: Doug surname: Tygar fullname: Tygar, Doug organization: University of California, Berkeley, USA – sequence: 12 givenname: Gerhard surname: Goos fullname: Goos, Gerhard organization: Karlsruhe, Germany – sequence: 13 givenname: Juris surname: Hartmanis fullname: Hartmanis, Juris organization: Ithaca, USA |
SSID | ssj0002209075 ssj0002792 |
Score | 2.2381017 |
Snippet | An important goal of cognitive brain imaging studies is to model the functional organization of the brain; yet there exists currently no functional brain atlas... |
SourceID | springer proquest |
SourceType | Publisher |
StartPage | 237 |
SubjectTerms | Atlas inference Brain fMRI Functional alignment |
Title | Local Optimal Transport for Functional Brain Template Estimation |
URI | http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5924806&ppg=248 http://link.springer.com/10.1007/978-3-030-20351-1_18 |
Volume | 11492 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwELagXNAeeCxoecoHbpVR4th53HiovATspSBuVuw64rAtiJYLv54Z106aqBf2EkWWHTnzWeOZ8XxjQk7KouJgt-dMitIwsIhHrMxSzUwhNAzBGuBIcH54TG-exN2LfGnuc3Tskpk-NV9LeSX_gyq0Aa7Ikv0BsvVHoQHeAV94AsLw7Bi_7TCrTxesiYch3d_zU8Lhy-3YXUG0uCrucevq_wU9MUZifqhs7pINr2CL85HBC7w4oj-04_d_YIv2B1PsX0PogwTIS2oFCUKQsBNmXIh0nV-3HEvY2PCIUs6vBq41JbhTfKneXUy1gKEMx8YsVl63tspcc9FpdLvp4OJSgi-YR6kCK0TB2ypZzXLZI2vng7v75zpwxnkEDr1Enk6YZDqvpNRMeoEjuWxOLW-icwDu7IrhJvmFXBOKJBCY5RZZsZNtsuE9A-r17vQ3OXO4UY8brXGjgBttcKMONxpwow1uO-TpajC8vGH-7gv2CibkjAkTlUZmWZVoy3MLdqGwOdb6B4NCVyaKtczEyOhMioxH2tqqinSRFDY20De2yS7pTd4m9g-hNo0KrrkWiTVCJ7I06IWC3jaRNiOZ7hEWpKHcCb1PCzbzf5-qDi57pB9EprD7VIXS1yBrlSiQtXKyVijr_R9-_YCsNwv4kPRmH5_2COy-mT72K-EbuahTaQ |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Information+Processing+in+Medical+Imaging&rft.atitle=Local+Optimal+Transport+for+Functional+Brain+Template+Estimation&rft.date=2019-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783030203504&rft.volume=11492&rft_id=info:doi/10.1007%2F978-3-030-20351-1_18&rft.externalDBID=248&rft.externalDocID=EBC5924806_215_248 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5924806-l.jpg |