Learning a Statistical Full Spine Model from Partial Observations

The study of the morphology of the human spine has attracted research attention for its many potential applications, such as image segmentation, bio-mechanics or pathology detection. However, as of today there is no publicly available statistical model of the 3D surface of the full spine. This is ma...

Full description

Saved in:
Bibliographic Details
Published inShape in Medical Imaging Vol. 12474; pp. 122 - 133
Main Authors Meng, Di, Keller, Marilyn, Boyer, Edmond, Black, Michael, Pujades, Sergi
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2020
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN3030610551
9783030610555
ISSN0302-9743
1611-3349
DOI10.1007/978-3-030-61056-2_10

Cover

Abstract The study of the morphology of the human spine has attracted research attention for its many potential applications, such as image segmentation, bio-mechanics or pathology detection. However, as of today there is no publicly available statistical model of the 3D surface of the full spine. This is mainly due to the lack of openly available 3D data where the full spine is imaged and segmented. In this paper we propose to learn a statistical surface model of the full-spine (7 cervical, 12 thoracic and 5 lumbar vertebrae) from partial and incomplete views of the spine. In order to deal with the partial observations we use probabilistic principal component analysis (PPCA) to learn a surface shape model of the full spine. Quantitative evaluation demonstrates that the obtained model faithfully captures the shape of the population in a low dimensional space and generalizes to left out data. Furthermore, we show that the model faithfully captures the global correlations among the vertebrae shape. Given a partial observation of the spine, i.e. a few vertebrae, the model can predict the shape of unseen vertebrae with a mean error under 3 mm. The full-spine statistical model is trained on the VerSe 2019 public dataset and is publicly made available to the community for non-commercial purposes. (https://gitlab.inria.fr/spine/spine_model)
AbstractList The study of the morphology of the human spine has attracted research attention for its many potential applications, such as image segmentation, bio-mechanics or pathology detection. However, as of today there is no publicly available statistical model of the 3D surface of the full spine. This is mainly due to the lack of openly available 3D data where the full spine is imaged and segmented. In this paper we propose to learn a statistical surface model of the full-spine (7 cervical, 12 thoracic and 5 lumbar vertebrae) from partial and incomplete views of the spine. In order to deal with the partial observations we use probabilistic principal component analysis (PPCA) to learn a surface shape model of the full spine. Quantitative evaluation demonstrates that the obtained model faithfully captures the shape of the population in a low dimensional space and generalizes to left out data. Furthermore, we show that the model faithfully captures the global correlations among the vertebrae shape. Given a partial observation of the spine, i.e. a few vertebrae, the model can predict the shape of unseen vertebrae with a mean error under 3 mm. The full-spine statistical model is trained on the VerSe 2019 public dataset and is publicly made available to the community for non-commercial purposes. (https://gitlab.inria.fr/spine/spine_model)
Author Boyer, Edmond
Black, Michael
Pujades, Sergi
Keller, Marilyn
Meng, Di
Author_xml – sequence: 1
  givenname: Di
  surname: Meng
  fullname: Meng, Di
  email: di.meng@inria.fr
– sequence: 2
  givenname: Marilyn
  surname: Keller
  fullname: Keller, Marilyn
– sequence: 3
  givenname: Edmond
  surname: Boyer
  fullname: Boyer, Edmond
– sequence: 4
  givenname: Michael
  surname: Black
  fullname: Black, Michael
– sequence: 5
  givenname: Sergi
  surname: Pujades
  fullname: Pujades, Sergi
BookMark eNqVkMFOwzAMQAMMxDb2Bxz6A4HETtPmOE0MkIaGNJC4RWmbskJpR5Lx_WQbgjOnOLafE78RGXR9Zwm55OyKM5ZdqyynSBkyKjlLJQXN2REZYczsEy_HZMgl5xRRqJO_QsoHZBhjoCoTeEZGHBiIVOUczsnE-zfG4h0ky8SQTBfWuK7pXhOTrIIJjQ9Nadpkvm3bZLVpOps89JVtk9r1H8mjcaGJ1WXhrfuK3X3nL8hpbVpvJz_nmDzPb55md3SxvL2fTRd0jTIPFAplDQBIUZVQVKgM5lUqq9qWjCmQvC5M7KhsBaIsUZisFKrAPEeJKTKBYwKHuX7j4n-t00Xfv_soRe906ahLo457670dvdMVIXGANq7_3FoftN1Rpe2CM225NptgndcyPsIUas6V5pD9AwOVyV_sGyT9fEo
ContentType Book Chapter
Copyright Springer Nature Switzerland AG 2020
Copyright_xml – notice: Springer Nature Switzerland AG 2020
DBID FFUUA
DOI 10.1007/978-3-030-61056-2_10
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 303061056X
9783030610562
EISSN 1611-3349
Editor Lombaert, Hervé
Goksel, Orcun
Reuter, Martin
Wachinger, Christian
Paniagua, Beatriz
Rekik, Islem
Editor_xml – sequence: 1
  fullname: Goksel, Orcun
– sequence: 2
  fullname: Reuter, Martin
– sequence: 3
  fullname: Paniagua, Beatriz
– sequence: 4
  fullname: Rekik, Islem
– sequence: 5
  fullname: Lombaert, Hervé
– sequence: 6
  fullname: Wachinger, Christian
EndPage 133
ExternalDocumentID EBC6363093_119_127
EBC6362976_119_127
GroupedDBID 38.
AABBV
ACGCR
AEDXK
AEJLV
AEJNW
AEKFX
ALMA_UNASSIGNED_HOLDINGS
APEJL
AVCSZ
AZTDL
BBABE
CYNQG
CZZ
DACMV
ESBCR
FFUUA
I4C
IEZ
OAOFD
OPOMJ
SBO
TPJZQ
TSXQS
Z5O
Z7R
Z7S
Z7U
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z84
Z85
Z87
Z88
AEHEY
-DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RIG
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-h368t-2b9ea22264dc2bd39a38d56dfec009261fba9eaded24cc34a7c49b38836353043
ISBN 3030610551
9783030610555
ISSN 0302-9743
IngestDate Tue Jul 29 20:15:05 EDT 2025
Sat Aug 02 21:41:01 EDT 2025
Thu May 29 16:50:57 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
LCCallNum QA75.5-76.95
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-h368t-2b9ea22264dc2bd39a38d56dfec009261fba9eaded24cc34a7c49b38836353043
OCLC 1202459812
OpenAccessLink https://inria.hal.science/hal-02983880
PQID EBC6362976_119_127
PageCount 12
ParticipantIDs springer_books_10_1007_978_3_030_61056_2_10
proquest_ebookcentralchapters_6363093_119_127
proquest_ebookcentralchapters_6362976_119_127
PublicationCentury 2000
PublicationDate 2020
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 2020
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesSubtitle Image Processing, Computer Vision, Pattern Recognition, and Graphics
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle International Workshop, ShapeMI 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4, 2020, Proceedings
PublicationTitle Shape in Medical Imaging
PublicationYear 2020
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Hartmanis, Juris
Gao, Wen
Bertino, Elisa
Woeginger, Gerhard
Goos, Gerhard
Steffen, Bernhard
Yung, Moti
RelatedPersons_xml – sequence: 1
  givenname: Gerhard
  surname: Goos
  fullname: Goos, Gerhard
– sequence: 2
  givenname: Juris
  surname: Hartmanis
  fullname: Hartmanis, Juris
– sequence: 3
  givenname: Elisa
  surname: Bertino
  fullname: Bertino, Elisa
– sequence: 4
  givenname: Wen
  surname: Gao
  fullname: Gao, Wen
– sequence: 5
  givenname: Bernhard
  orcidid: 0000-0001-9619-1558
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 6
  givenname: Gerhard
  orcidid: 0000-0001-8816-2693
  surname: Woeginger
  fullname: Woeginger, Gerhard
– sequence: 7
  givenname: Moti
  surname: Yung
  fullname: Yung, Moti
SSID ssj0002426074
ssj0002792
Score 2.029658
Snippet The study of the morphology of the human spine has attracted research attention for its many potential applications, such as image segmentation, bio-mechanics...
SourceID springer
proquest
SourceType Publisher
StartPage 122
SubjectTerms Incomplete data
Spine statistical model
Vertebrae surface
Title Learning a Statistical Full Spine Model from Partial Observations
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6362976&ppg=127
http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6363093&ppg=127&c=UERG
http://link.springer.com/10.1007/978-3-030-61056-2_10
Volume 12474
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1NT9wwEIYt2F6qHoBCVT7lAzfkKrEdxzkuaIEioJWAiptlJ15xoFvELhd-PTNOvJsEDtBLtMo6kePHsmbGfmcI2VdWO-0LydLMaia958xZnbA8tUWWlBZcZxQ4X1yq0xt5dpvdLupjBnXJzP0on9_UlfwPVbgHXFEl-wGy85fCDfgNfOEKhOHaM367YdZaw3FnH0LGj7jX8vNvqDjUngTnMfBhg1UZkjJDS_Q7D64e0MDEWmj3tcjkN84i-PeXm0dqO0EBnvSCAjEo2AsrtiJbw5OOIynQdcBamVlnZeSyLqHzap1tH62ARxk-qxg3zRHVTlrrtBb_99Jajw6PlFC4DwtOSGGg0TJZzrUckE_D0dn5n3mgDG0IsHNQlxM7mdaZkxadbmki3-pTx3vobXgHO-J6lXxBbQlF0Qf0co0s-clXstJ4ArRZZ6frZBjBUUtb4CiCowEcDeAogqMNONoGt0FujkfXR6esKXbB7oTSM8Zd4S1HWXNVcleJwgpdZaoa-xLzYql07GyBp9srLstSSJuXsnBCaxjETCRSfCODyb-J_06o8FWSuHycp9xDmxxeK3PlrVK5rXiqNgmLw2HClnxzDrisP35qAAwHMzWCeU_7NshNchDH2GDzqYm5sQGOEQbgmADHIJytD759m3xezPgdMpg9PvldMAxnbq-ZOi9o6FzR
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Shape+in+Medical+Imaging&rft.atitle=Learning+a+Statistical+Full+Spine+Model+from+Partial+Observations&rft.date=2020-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783030610555&rft.volume=12474&rft_id=info:doi/10.1007%2F978-3-030-61056-2_10&rft.externalDBID=127&rft.externalDocID=EBC6363093_119_127
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6362976-l.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6363093-l.jpg