Deep Convolutional Transform Learning

This work introduces a new unsupervised representation learning technique called Deep Convolutional Transform Learning (DCTL). By stacking convolutional transforms, our approach is able to learn a set of independent kernels at different layers. The features extracted in an unsupervised manner can th...

Full description

Saved in:
Bibliographic Details
Published inNeural Information Processing Vol. 1333; pp. 300 - 307
Main Authors Maggu, Jyoti, Majumdar, Angshul, Chouzenoux, Emilie, Chierchia, Giovanni
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2020
Springer International Publishing
SeriesCommunications in Computer and Information Science
Subjects
Online AccessGet full text
ISBN9783030638221
3030638227
ISSN1865-0929
1865-0937
DOI10.1007/978-3-030-63823-8_35

Cover

Abstract This work introduces a new unsupervised representation learning technique called Deep Convolutional Transform Learning (DCTL). By stacking convolutional transforms, our approach is able to learn a set of independent kernels at different layers. The features extracted in an unsupervised manner can then be used to perform machine learning tasks, such as classification and clustering. The learning technique relies on a well-sounded alternating proximal minimization scheme with established convergence guarantees. Our experimental results show that the proposed DCTL technique outperforms its shallow version CTL, on several benchmark datasets.
AbstractList This work introduces a new unsupervised representation learning technique called Deep Convolutional Transform Learning (DCTL). By stacking convolutional transforms, our approach is able to learn a set of independent kernels at different layers. The features extracted in an unsupervised manner can then be used to perform machine learning tasks, such as classification and clustering. The learning technique relies on a well-sounded alternating proximal minimization scheme with established convergence guarantees. Our experimental results show that the proposed DCTL technique outperforms its shallow version CTL, on several benchmark datasets.
Author Chierchia, Giovanni
Majumdar, Angshul
Maggu, Jyoti
Chouzenoux, Emilie
Author_xml – sequence: 1
  givenname: Jyoti
  surname: Maggu
  fullname: Maggu, Jyoti
– sequence: 2
  givenname: Angshul
  surname: Majumdar
  fullname: Majumdar, Angshul
  email: angshul@iiitd.ac.in
– sequence: 3
  givenname: Emilie
  surname: Chouzenoux
  fullname: Chouzenoux, Emilie
– sequence: 4
  givenname: Giovanni
  surname: Chierchia
  fullname: Chierchia, Giovanni
BookMark eNo9kMtOAzEMRQMURFv6Byy6YRlwHjNJlqg8pUpsyjpKZhJaGJIhmfL9pC0gWbZk-9i6d4JGIQaH0CWBawIgbpSQmGFggGsmKcNSs-oITVjp7BvVMRoTWVcYFBMnaFb2_2aUjP5nVJ2hCaG0prIEP0eznN8BgHJaMh-jqzvn-vkihu_YbYdNDKabr5IJ2cf0OV86k8ImvF2gU2-67Ga_dYpeH-5Xiye8fHl8Xtwu8ZpRNmBjLbBWEd4o8NZzZ73iwntoiPeqta2lIL0XrSQCWsuIcI0hzsgGfAsVsCmih7u5T-WtS9rG-JE1Ab1zRReVmumiU-9N0DtXCsQPUJ_i19blQbsd1bgwJNM1a9MPLmVd88IRojkUilbsB0-TYj0
ContentType Book Chapter
Copyright Springer Nature Switzerland AG 2020
Copyright_xml – notice: Springer Nature Switzerland AG 2020
DBID FFUUA
DEWEY 006.32
DOI 10.1007/978-3-030-63823-8_35
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISBN 3030638235
9783030638238
EISSN 1865-0937
Editor King, Irwin
Kwok, James T
Yang, Haiqin
Leung, Andrew Chi Sing
Chan, Jonathan H
Pasupa, Kitsuchart
Editor_xml – sequence: 1
  fullname: King, Irwin
– sequence: 2
  fullname: Chan, Jonathan H
– sequence: 3
  fullname: Kwok, James T
– sequence: 4
  fullname: Yang, Haiqin
– sequence: 5
  fullname: Leung, Andrew Chi Sing
– sequence: 6
  fullname: Pasupa, Kitsuchart
EndPage 307
ExternalDocumentID EBC6403011_408_325
GroupedDBID 38.
9-X
AABBV
AEJLV
AEJNW
AEKFX
ALMA_UNASSIGNED_HOLDINGS
AVCSZ
AZTDL
BBABE
CYNQG
CZZ
DACMV
ESBCR
FFUUA
I4C
IEZ
OAOFD
OPOMJ
SBO
SNUHX
TPJZQ
Z7R
Z7X
Z81
Z83
Z84
Z85
Z88
AEHEY
ID FETCH-LOGICAL-h323t-abb03d914c90fbf4ebf947ff0c1ff9dbdb208ff7d8170db317eca1ea8c0fd0503
ISBN 9783030638221
3030638227
ISSN 1865-0929
IngestDate Tue Jul 29 20:36:29 EDT 2025
Mon Apr 21 02:09:43 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
LCCallNum Q337.5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-h323t-abb03d914c90fbf4ebf947ff0c1ff9dbdb208ff7d8170db317eca1ea8c0fd0503
Notes This work was supported by the CNRS-CEFIPRA project under grant NextGenBP PRC2017.
OCLC 1226286284
OpenAccessLink https://hal.science/hal-02943652
PQID EBC6403011_408_325
PageCount 8
ParticipantIDs springer_books_10_1007_978_3_030_63823_8_35
proquest_ebookcentralchapters_6403011_408_325
PublicationCentury 2000
PublicationDate 2020
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 2020
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesTitle Communications in Computer and Information Science
PublicationSeriesTitleAlternate Communic.Comp.Inf.Science
PublicationSubtitle 27th International Conference, ICONIP 2020, Bangkok, Thailand, November 18-22, 2020, Proceedings, Part V
PublicationTitle Neural Information Processing
PublicationYear 2020
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Zhou, Lizhu
Filipe, Joaquim
Ghosh, Ashish
Prates, Raquel Oliveira
RelatedPersons_xml – sequence: 1
  givenname: Joaquim
  orcidid: 0000-0002-5961-6606
  surname: Filipe
  fullname: Filipe, Joaquim
– sequence: 2
  givenname: Ashish
  surname: Ghosh
  fullname: Ghosh, Ashish
– sequence: 3
  givenname: Raquel Oliveira
  orcidid: 0000-0002-7128-4974
  surname: Prates
  fullname: Prates, Raquel Oliveira
– sequence: 4
  givenname: Lizhu
  surname: Zhou
  fullname: Zhou, Lizhu
SSID ssj0002420004
ssj0000580895
ssib054953581
Score 2.0644696
Snippet This work introduces a new unsupervised representation learning technique called Deep Convolutional Transform Learning (DCTL). By stacking convolutional...
SourceID springer
proquest
SourceType Publisher
StartPage 300
SubjectTerms Alternating minimization
Classification
Clustering
Convolutional neural networks
Deep learning
Proximal methods
Transform learning
Title Deep Convolutional Transform Learning
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6403011&ppg=325
http://link.springer.com/10.1007/978-3-030-63823-8_35
Volume 1333
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6l4QI9AAVEeckHOCGjtXcd28eqBFUVcGpRbyvvKwmiDsJ2JfoP-NfMrHdrO_RSLlayseLdmcnOI_N9S8hbqRMkzNGxUqmGBEUvYpnBD09pY62u0GMiUPjL18XJOT-9yC5msz-jrqWulR_U9a24kv_RKoyBXhElewfN3nwpDMBr0C9cQcNw3Ql-p2VWT7jkGDM8nsip0Xf9B2_kCs2rVec09XvbbobR792l7lurj-pVsx66A4_X2-4aeVudU1pebn5szPAZ-FDsjXbFdOxirevN2OY-GvMTMYRXftWI_Q-BcWBy7aeG4jHNFJ7S9AjE_pQJ36c8rM1vQuMqRUp3qhShSrlT5xxKbZO0lmEiwyB0SUY7c7HIYlr68ogZj_WsMX4HZpSOnDnrj9T9x0-MW0PgYTE-jcWFYNke2csLPif3jpann7-FrSnDNtzAFNfTxhe08JBmfA-RDobHmN6HiSKSKCwk77mehoWNUJy3zWKS7-z8Re8in7NHZB_RMBHCVECkj8nM1AfkYdBS5LVyQB6MiC2fkHdoCdHEEqIbS4iCJTwl55-WZ8cnsT-QI16zlLVxJSVluky4KqmVlhtpS55bS1VibamlliktrM01sj5qCaGpUVViqkJRq5F46BmZ19vaPCdRUUHeALmsYZpzraRkJqVVUtEKElht80MSBwEI1zbge5VVv9xGLLhL5gWnIK80OyTvg5QE3t6IwMcN4hVMwM3CiVegeF_c6e6X5P5g0q_IvP3VmdcQirbyjTeTv9DFgaw
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Neural+Information+Processing&rft.au=Maggu%2C+Jyoti&rft.au=Majumdar%2C+Angshul&rft.au=Chouzenoux%2C+Emilie&rft.au=Chierchia%2C+Giovanni&rft.atitle=Deep+Convolutional+Transform+Learning&rft.series=Communications+in+Computer+and+Information+Science&rft.date=2020-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783030638221&rft.issn=1865-0929&rft.eissn=1865-0937&rft.spage=300&rft.epage=307&rft_id=info:doi/10.1007%2F978-3-030-63823-8_35
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6403011-l.jpg