Deep Convolutional Transform Learning
This work introduces a new unsupervised representation learning technique called Deep Convolutional Transform Learning (DCTL). By stacking convolutional transforms, our approach is able to learn a set of independent kernels at different layers. The features extracted in an unsupervised manner can th...
Saved in:
Published in | Neural Information Processing Vol. 1333; pp. 300 - 307 |
---|---|
Main Authors | , , , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
2020
Springer International Publishing |
Series | Communications in Computer and Information Science |
Subjects | |
Online Access | Get full text |
ISBN | 9783030638221 3030638227 |
ISSN | 1865-0929 1865-0937 |
DOI | 10.1007/978-3-030-63823-8_35 |
Cover
Abstract | This work introduces a new unsupervised representation learning technique called Deep Convolutional Transform Learning (DCTL). By stacking convolutional transforms, our approach is able to learn a set of independent kernels at different layers. The features extracted in an unsupervised manner can then be used to perform machine learning tasks, such as classification and clustering. The learning technique relies on a well-sounded alternating proximal minimization scheme with established convergence guarantees. Our experimental results show that the proposed DCTL technique outperforms its shallow version CTL, on several benchmark datasets. |
---|---|
AbstractList | This work introduces a new unsupervised representation learning technique called Deep Convolutional Transform Learning (DCTL). By stacking convolutional transforms, our approach is able to learn a set of independent kernels at different layers. The features extracted in an unsupervised manner can then be used to perform machine learning tasks, such as classification and clustering. The learning technique relies on a well-sounded alternating proximal minimization scheme with established convergence guarantees. Our experimental results show that the proposed DCTL technique outperforms its shallow version CTL, on several benchmark datasets. |
Author | Chierchia, Giovanni Majumdar, Angshul Maggu, Jyoti Chouzenoux, Emilie |
Author_xml | – sequence: 1 givenname: Jyoti surname: Maggu fullname: Maggu, Jyoti – sequence: 2 givenname: Angshul surname: Majumdar fullname: Majumdar, Angshul email: angshul@iiitd.ac.in – sequence: 3 givenname: Emilie surname: Chouzenoux fullname: Chouzenoux, Emilie – sequence: 4 givenname: Giovanni surname: Chierchia fullname: Chierchia, Giovanni |
BookMark | eNo9kMtOAzEMRQMURFv6Byy6YRlwHjNJlqg8pUpsyjpKZhJaGJIhmfL9pC0gWbZk-9i6d4JGIQaH0CWBawIgbpSQmGFggGsmKcNSs-oITVjp7BvVMRoTWVcYFBMnaFb2_2aUjP5nVJ2hCaG0prIEP0eznN8BgHJaMh-jqzvn-vkihu_YbYdNDKabr5IJ2cf0OV86k8ImvF2gU2-67Ga_dYpeH-5Xiye8fHl8Xtwu8ZpRNmBjLbBWEd4o8NZzZ73iwntoiPeqta2lIL0XrSQCWsuIcI0hzsgGfAsVsCmih7u5T-WtS9rG-JE1Ab1zRReVmumiU-9N0DtXCsQPUJ_i19blQbsd1bgwJNM1a9MPLmVd88IRojkUilbsB0-TYj0 |
ContentType | Book Chapter |
Copyright | Springer Nature Switzerland AG 2020 |
Copyright_xml | – notice: Springer Nature Switzerland AG 2020 |
DBID | FFUUA |
DEWEY | 006.32 |
DOI | 10.1007/978-3-030-63823-8_35 |
DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISBN | 3030638235 9783030638238 |
EISSN | 1865-0937 |
Editor | King, Irwin Kwok, James T Yang, Haiqin Leung, Andrew Chi Sing Chan, Jonathan H Pasupa, Kitsuchart |
Editor_xml | – sequence: 1 fullname: King, Irwin – sequence: 2 fullname: Chan, Jonathan H – sequence: 3 fullname: Kwok, James T – sequence: 4 fullname: Yang, Haiqin – sequence: 5 fullname: Leung, Andrew Chi Sing – sequence: 6 fullname: Pasupa, Kitsuchart |
EndPage | 307 |
ExternalDocumentID | EBC6403011_408_325 |
GroupedDBID | 38. 9-X AABBV AEJLV AEJNW AEKFX ALMA_UNASSIGNED_HOLDINGS AVCSZ AZTDL BBABE CYNQG CZZ DACMV ESBCR FFUUA I4C IEZ OAOFD OPOMJ SBO SNUHX TPJZQ Z7R Z7X Z81 Z83 Z84 Z85 Z88 AEHEY |
ID | FETCH-LOGICAL-h323t-abb03d914c90fbf4ebf947ff0c1ff9dbdb208ff7d8170db317eca1ea8c0fd0503 |
ISBN | 9783030638221 3030638227 |
ISSN | 1865-0929 |
IngestDate | Tue Jul 29 20:36:29 EDT 2025 Mon Apr 21 02:09:43 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
LCCallNum | Q337.5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-h323t-abb03d914c90fbf4ebf947ff0c1ff9dbdb208ff7d8170db317eca1ea8c0fd0503 |
Notes | This work was supported by the CNRS-CEFIPRA project under grant NextGenBP PRC2017. |
OCLC | 1226286284 |
OpenAccessLink | https://hal.science/hal-02943652 |
PQID | EBC6403011_408_325 |
PageCount | 8 |
ParticipantIDs | springer_books_10_1007_978_3_030_63823_8_35 proquest_ebookcentralchapters_6403011_408_325 |
PublicationCentury | 2000 |
PublicationDate | 2020 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – year: 2020 text: 2020 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Cham |
PublicationSeriesTitle | Communications in Computer and Information Science |
PublicationSeriesTitleAlternate | Communic.Comp.Inf.Science |
PublicationSubtitle | 27th International Conference, ICONIP 2020, Bangkok, Thailand, November 18-22, 2020, Proceedings, Part V |
PublicationTitle | Neural Information Processing |
PublicationYear | 2020 |
Publisher | Springer International Publishing AG Springer International Publishing |
Publisher_xml | – name: Springer International Publishing AG – name: Springer International Publishing |
RelatedPersons | Zhou, Lizhu Filipe, Joaquim Ghosh, Ashish Prates, Raquel Oliveira |
RelatedPersons_xml | – sequence: 1 givenname: Joaquim orcidid: 0000-0002-5961-6606 surname: Filipe fullname: Filipe, Joaquim – sequence: 2 givenname: Ashish surname: Ghosh fullname: Ghosh, Ashish – sequence: 3 givenname: Raquel Oliveira orcidid: 0000-0002-7128-4974 surname: Prates fullname: Prates, Raquel Oliveira – sequence: 4 givenname: Lizhu surname: Zhou fullname: Zhou, Lizhu |
SSID | ssj0002420004 ssj0000580895 ssib054953581 |
Score | 2.0644696 |
Snippet | This work introduces a new unsupervised representation learning technique called Deep Convolutional Transform Learning (DCTL). By stacking convolutional... |
SourceID | springer proquest |
SourceType | Publisher |
StartPage | 300 |
SubjectTerms | Alternating minimization Classification Clustering Convolutional neural networks Deep learning Proximal methods Transform learning |
Title | Deep Convolutional Transform Learning |
URI | http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6403011&ppg=325 http://link.springer.com/10.1007/978-3-030-63823-8_35 |
Volume | 1333 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6l4QI9AAVEeckHOCGjtXcd28eqBFUVcGpRbyvvKwmiDsJ2JfoP-NfMrHdrO_RSLlayseLdmcnOI_N9S8hbqRMkzNGxUqmGBEUvYpnBD09pY62u0GMiUPjL18XJOT-9yC5msz-jrqWulR_U9a24kv_RKoyBXhElewfN3nwpDMBr0C9cQcNw3Ql-p2VWT7jkGDM8nsip0Xf9B2_kCs2rVec09XvbbobR792l7lurj-pVsx66A4_X2-4aeVudU1pebn5szPAZ-FDsjXbFdOxirevN2OY-GvMTMYRXftWI_Q-BcWBy7aeG4jHNFJ7S9AjE_pQJ36c8rM1vQuMqRUp3qhShSrlT5xxKbZO0lmEiwyB0SUY7c7HIYlr68ogZj_WsMX4HZpSOnDnrj9T9x0-MW0PgYTE-jcWFYNke2csLPif3jpann7-FrSnDNtzAFNfTxhe08JBmfA-RDobHmN6HiSKSKCwk77mehoWNUJy3zWKS7-z8Re8in7NHZB_RMBHCVECkj8nM1AfkYdBS5LVyQB6MiC2fkHdoCdHEEqIbS4iCJTwl55-WZ8cnsT-QI16zlLVxJSVluky4KqmVlhtpS55bS1VibamlliktrM01sj5qCaGpUVViqkJRq5F46BmZ19vaPCdRUUHeALmsYZpzraRkJqVVUtEKElht80MSBwEI1zbge5VVv9xGLLhL5gWnIK80OyTvg5QE3t6IwMcN4hVMwM3CiVegeF_c6e6X5P5g0q_IvP3VmdcQirbyjTeTv9DFgaw |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Neural+Information+Processing&rft.au=Maggu%2C+Jyoti&rft.au=Majumdar%2C+Angshul&rft.au=Chouzenoux%2C+Emilie&rft.au=Chierchia%2C+Giovanni&rft.atitle=Deep+Convolutional+Transform+Learning&rft.series=Communications+in+Computer+and+Information+Science&rft.date=2020-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783030638221&rft.issn=1865-0929&rft.eissn=1865-0937&rft.spage=300&rft.epage=307&rft_id=info:doi/10.1007%2F978-3-030-63823-8_35 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6403011-l.jpg |