Histograms of oriented gradients for human detection

We study the question of feature sets for robust visual object recognition; adopting linear SVM based human detection as a test case. After reviewing existing edge and gradient based descriptors, we show experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly out...

Full description

Saved in:
Bibliographic Details
Published in2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) Vol. 1; pp. 886 - 893 vol. 1
Main Authors Dalal, N., Triggs, B.
Format Conference Proceeding
LanguageEnglish
Published IEEE 2005
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We study the question of feature sets for robust visual object recognition; adopting linear SVM based human detection as a test case. After reviewing existing edge and gradient based descriptors, we show experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection. We study the influence of each stage of the computation on performance, concluding that fine-scale gradients, fine orientation binning, relatively coarse spatial binning, and high-quality local contrast normalization in overlapping descriptor blocks are all important for good results. The new approach gives near-perfect separation on the original MIT pedestrian database, so we introduce a more challenging dataset containing over 1800 annotated human images with a large range of pose variations and backgrounds.
AbstractList We study the question of feature sets for robust visual object recognition; adopting linear SVM based human detection as a test case. After reviewing existing edge and gradient based descriptors, we show experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection. We study the influence of each stage of the computation on performance, concluding that fine-scale gradients, fine orientation binning, relatively coarse spatial binning, and high-quality local contrast normalization in overlapping descriptor blocks are all important for good results. The new approach gives near-perfect separation on the original MIT pedestrian database, so we introduce a more challenging dataset containing over 1800 annotated human images with a large range of pose variations and backgrounds.
Author Triggs, B.
Dalal, N.
Author_xml – sequence: 1
  givenname: N.
  surname: Dalal
  fullname: Dalal, N.
  organization: INRIA Rhone-Alps, Montbonnot, France
– sequence: 2
  givenname: B.
  surname: Triggs
  fullname: Triggs, B.
  organization: INRIA Rhone-Alps, Montbonnot, France
BookMark eNpNjMFOwzAQRC0oEm3pkRMX_0CC197Y3iOKgCJVAiHgWrnJmgaRGMXhwN9TBAfmMk_zpFmI2ZAGFuIcVAmg6LJ-eXgstVJVCc4diTkoawpLQMdioZylShun9eyfOBWrnN_UIYaMRz0XuO7ylF7H0GeZokxjx8PErTws7Q9mGdMo9599GGTLEzdTl4YzcRLDe-bVXy_F8831U70uNve3d_XVptgbsFNBVIVIFJW3nlC5xiE52rURCaxXMe4Co_agA0SDiI7Rk26ois7aKnizFBe_vx0zbz_Grg_j1xbQOmOV-QbYk0dC
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2005.177
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1063-6919
EndPage 893 vol. 1
ExternalDocumentID 1467360
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-h316t-995af99f08689407c74979bdf491680ffbae42812a1f34447e4892c95f7665a83
IEDL.DBID RIE
ISBN 0769523722
9780769523729
ISSN 1063-6919
IngestDate Wed Aug 27 02:18:29 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-h316t-995af99f08689407c74979bdf491680ffbae42812a1f34447e4892c95f7665a83
OpenAccessLink https://inria.hal.science/inria-00548512v1/file/hog_cvpr2005.pdf
ParticipantIDs ieee_primary_1467360
PublicationCentury 2000
PublicationDate 20050000
PublicationDateYYYYMMDD 2005-01-01
PublicationDate_xml – year: 2005
  text: 20050000
PublicationDecade 2000
PublicationTitle 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)
PublicationTitleAbbrev CVPR
PublicationYear 2005
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000393842
ssj0023720
ssj0003211698
Score 2.2862964
Snippet We study the question of feature sets for robust visual object recognition; adopting linear SVM based human detection as a test case. After reviewing existing...
SourceID ieee
SourceType Publisher
StartPage 886
SubjectTerms High performance computing
Histograms
Humans
Image databases
Image edge detection
Object detection
Object recognition
Robustness
Support vector machines
Testing
Title Histograms of oriented gradients for human detection
URI https://ieeexplore.ieee.org/document/1467360
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKJ6YCLeItD4ykTeL3XFFVSEUVoqhb5Ti2kJASRNOlv56z86hADGy5y5I4se77znffIXTPuIGoTVxEqdERJbGLAIWQiMVOSjC1Jb5RePHM5yv6tGbrHnroemGstaH4zI79ZTjLz0uz86myid_VhANBPwLiVvdqdfkU32MqG5rnbQLMhqvuRCH101jCyScnEVeJqim8Yv5G2ijxtLY6iHFOpm_Llzr1koifI1hCBJoN0KJ99rrw5GO8q7Kx2f-Sdfzvy52g0aHXDy-7KHaKerY4Q4MGnOJm62_B1c5_aH1DRIPGiC_v2uLS4dJLJgOAxeDxdWTVFgMixmEKIM5tFYq-ihFazR5fp_OomcIQvZOEV_DpmHZKOeA-UgH9M4IqobLcUUCWMnYu0xY4TJLqxBFKqbBUqtQo5gTnTEtyjvpFWdgLhAEeqJjHVhorKJdS28RwqonIFM8zl1-ioV-XzWcttLFpluTqb_c1Og46qiEfcoP61dfO3gJCqLK78Gt8Axo1r-8
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3JTsMwEB2xHODE0iJ2fIBj2iR2HPvAqVC10FYVAtRbyWILCalFJBWCb-FX-DfGTtIKxBWJW2YiJYonid9sbwBOA57grk21w1gSOYy62kEUQp3A1UKgGClqGoX7A965Y1ejYLQEH_NeGKWULT5TDXNoc_npNJmZUFnTfNWUu2UJ5bV6e0UHLTvvXqA1z3y_fXnb6jjlDAHnkXo8xxsHkZZSI3IXEp2XJGQylHGqGeIi4WodRwoRuOdHnqaMsVAxIf1EBjrkPIgExesuwyrijMAvusPmERzT1SpKx9LIFH0pLuc5DN_Mf7G5Vk4dLj1ZBA1kYE74JfdPJcsF_WezdT-8KYI9Xvh96Ivd89ob8FmtVlHq8tSY5XEjef9BJPlfl3MT6otuRjKc79NbsKQm27BRwm9S_twyVFUTLipdDZhlUTEFbBmZajI1pNAI0QlqTKVcnhHE_MTOOSSpym1Z26QOd3_yUDuwMplO1C4QBEDS5a4SiQoZFyJSXsJZRMNY8jTW6R7UjB3GzwWVyLg0wf7v6hNY69z2e-Ned3B9AOuWNdZGfw5hJX-ZqSPEQ3l8bF9LAg9_bbgvTJwKlQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2005+IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%2705%29&rft.atitle=Histograms+of+oriented+gradients+for+human+detection&rft.au=Dalal%2C+N.&rft.au=Triggs%2C+B.&rft.date=2005-01-01&rft.pub=IEEE&rft.isbn=9780769523729&rft.issn=1063-6919&rft.eissn=1063-6919&rft.volume=1&rft.spage=886&rft.epage=893+vol.+1&rft_id=info:doi/10.1109%2FCVPR.2005.177&rft.externalDocID=1467360
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon