Histograms of oriented gradients for human detection
We study the question of feature sets for robust visual object recognition; adopting linear SVM based human detection as a test case. After reviewing existing edge and gradient based descriptors, we show experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly out...
Saved in:
Published in | 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) Vol. 1; pp. 886 - 893 vol. 1 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
2005
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We study the question of feature sets for robust visual object recognition; adopting linear SVM based human detection as a test case. After reviewing existing edge and gradient based descriptors, we show experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection. We study the influence of each stage of the computation on performance, concluding that fine-scale gradients, fine orientation binning, relatively coarse spatial binning, and high-quality local contrast normalization in overlapping descriptor blocks are all important for good results. The new approach gives near-perfect separation on the original MIT pedestrian database, so we introduce a more challenging dataset containing over 1800 annotated human images with a large range of pose variations and backgrounds. |
---|---|
AbstractList | We study the question of feature sets for robust visual object recognition; adopting linear SVM based human detection as a test case. After reviewing existing edge and gradient based descriptors, we show experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection. We study the influence of each stage of the computation on performance, concluding that fine-scale gradients, fine orientation binning, relatively coarse spatial binning, and high-quality local contrast normalization in overlapping descriptor blocks are all important for good results. The new approach gives near-perfect separation on the original MIT pedestrian database, so we introduce a more challenging dataset containing over 1800 annotated human images with a large range of pose variations and backgrounds. |
Author | Triggs, B. Dalal, N. |
Author_xml | – sequence: 1 givenname: N. surname: Dalal fullname: Dalal, N. organization: INRIA Rhone-Alps, Montbonnot, France – sequence: 2 givenname: B. surname: Triggs fullname: Triggs, B. organization: INRIA Rhone-Alps, Montbonnot, France |
BookMark | eNpNjMFOwzAQRC0oEm3pkRMX_0CC197Y3iOKgCJVAiHgWrnJmgaRGMXhwN9TBAfmMk_zpFmI2ZAGFuIcVAmg6LJ-eXgstVJVCc4diTkoawpLQMdioZylShun9eyfOBWrnN_UIYaMRz0XuO7ylF7H0GeZokxjx8PErTws7Q9mGdMo9599GGTLEzdTl4YzcRLDe-bVXy_F8831U70uNve3d_XVptgbsFNBVIVIFJW3nlC5xiE52rURCaxXMe4Co_agA0SDiI7Rk26ois7aKnizFBe_vx0zbz_Grg_j1xbQOmOV-QbYk0dC |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR.2005.177 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISSN | 1063-6919 |
EndPage | 893 vol. 1 |
ExternalDocumentID | 1467360 |
Genre | orig-research |
GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS |
ID | FETCH-LOGICAL-h316t-995af99f08689407c74979bdf491680ffbae42812a1f34447e4892c95f7665a83 |
IEDL.DBID | RIE |
ISBN | 0769523722 9780769523729 |
ISSN | 1063-6919 |
IngestDate | Wed Aug 27 02:18:29 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-h316t-995af99f08689407c74979bdf491680ffbae42812a1f34447e4892c95f7665a83 |
OpenAccessLink | https://inria.hal.science/inria-00548512v1/file/hog_cvpr2005.pdf |
ParticipantIDs | ieee_primary_1467360 |
PublicationCentury | 2000 |
PublicationDate | 20050000 |
PublicationDateYYYYMMDD | 2005-01-01 |
PublicationDate_xml | – year: 2005 text: 20050000 |
PublicationDecade | 2000 |
PublicationTitle | 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2005 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000393842 ssj0023720 ssj0003211698 |
Score | 2.2862964 |
Snippet | We study the question of feature sets for robust visual object recognition; adopting linear SVM based human detection as a test case. After reviewing existing... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 886 |
SubjectTerms | High performance computing Histograms Humans Image databases Image edge detection Object detection Object recognition Robustness Support vector machines Testing |
Title | Histograms of oriented gradients for human detection |
URI | https://ieeexplore.ieee.org/document/1467360 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKJ6YCLeItD4ykTeL3XFFVSEUVoqhb5Ti2kJASRNOlv56z86hADGy5y5I4se77znffIXTPuIGoTVxEqdERJbGLAIWQiMVOSjC1Jb5RePHM5yv6tGbrHnroemGstaH4zI79ZTjLz0uz86myid_VhANBPwLiVvdqdfkU32MqG5rnbQLMhqvuRCH101jCyScnEVeJqim8Yv5G2ijxtLY6iHFOpm_Llzr1koifI1hCBJoN0KJ99rrw5GO8q7Kx2f-Sdfzvy52g0aHXDy-7KHaKerY4Q4MGnOJm62_B1c5_aH1DRIPGiC_v2uLS4dJLJgOAxeDxdWTVFgMixmEKIM5tFYq-ihFazR5fp_OomcIQvZOEV_DpmHZKOeA-UgH9M4IqobLcUUCWMnYu0xY4TJLqxBFKqbBUqtQo5gTnTEtyjvpFWdgLhAEeqJjHVhorKJdS28RwqonIFM8zl1-ioV-XzWcttLFpluTqb_c1Og46qiEfcoP61dfO3gJCqLK78Gt8Axo1r-8 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3JTsMwEB2xHODE0iJ2fIBj2iR2HPvAqVC10FYVAtRbyWILCalFJBWCb-FX-DfGTtIKxBWJW2YiJYonid9sbwBOA57grk21w1gSOYy62kEUQp3A1UKgGClqGoX7A965Y1ejYLQEH_NeGKWULT5TDXNoc_npNJmZUFnTfNWUu2UJ5bV6e0UHLTvvXqA1z3y_fXnb6jjlDAHnkXo8xxsHkZZSI3IXEp2XJGQylHGqGeIi4WodRwoRuOdHnqaMsVAxIf1EBjrkPIgExesuwyrijMAvusPmERzT1SpKx9LIFH0pLuc5DN_Mf7G5Vk4dLj1ZBA1kYE74JfdPJcsF_WezdT-8KYI9Xvh96Ivd89ob8FmtVlHq8tSY5XEjef9BJPlfl3MT6otuRjKc79NbsKQm27BRwm9S_twyVFUTLipdDZhlUTEFbBmZajI1pNAI0QlqTKVcnhHE_MTOOSSpym1Z26QOd3_yUDuwMplO1C4QBEDS5a4SiQoZFyJSXsJZRMNY8jTW6R7UjB3GzwWVyLg0wf7v6hNY69z2e-Ned3B9AOuWNdZGfw5hJX-ZqSPEQ3l8bF9LAg9_bbgvTJwKlQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2005+IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%2705%29&rft.atitle=Histograms+of+oriented+gradients+for+human+detection&rft.au=Dalal%2C+N.&rft.au=Triggs%2C+B.&rft.date=2005-01-01&rft.pub=IEEE&rft.isbn=9780769523729&rft.issn=1063-6919&rft.eissn=1063-6919&rft.volume=1&rft.spage=886&rft.epage=893+vol.+1&rft_id=info:doi/10.1109%2FCVPR.2005.177&rft.externalDocID=1467360 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon |