Remote Monitoring of Positive Airway Pressure Data: Challenges, Pitfalls, and Strategies to Consider for Optimal Data Science Applications
Over recent years, positive airway pressure (PAP) remote monitoring has transformed the management of OSA and produced a large amount of data. Accumulated PAP data provide valuable and objective information regarding patient treatment adherence and efficiency. However, the majority of studies that h...
Saved in:
Published in | Chest Vol. 163; no. 5; pp. 1279 - 1291 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American College of Chest Physicians
01.05.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Over recent years, positive airway pressure (PAP) remote monitoring has transformed the management of OSA and produced a large amount of data. Accumulated PAP data provide valuable and objective information regarding patient treatment adherence and efficiency. However, the majority of studies that have analyzed longitudinal PAP remote monitoring have summarized data trajectories in static and simplistic metrics for PAP adherence and the residual apnea-hypopnea index by the use of mean or median values. The aims of this article are to suggest directions for improving data cleaning and processing and to address major concerns for the following data science applications: (1) conditions for residual apnea-hypopnea index reliability, (2) lack of standardization of indicators provided by different PAP models, (3) missing values, and (4) consideration of treatment interruptions. To allow fair comparison among studies and to avoid biases in computation, PAP data processing and management should be conducted rigorously with these points in mind. PAP remote monitoring data contain a wealth of information that currently is underused in the field of sleep research. Improving the quality and standardizing data handling could facilitate data sharing among specialists worldwide and enable artificial intelligence strategies to be applied in the field of sleep apnea. |
---|---|
AbstractList | Over recent years positive airway pressure (PAP) remote monitoring has transformed the management of obstructive sleep apnea and produced a large amount of data. Accumulated PAP data provide valuable and objective information regarding patient treatment adherence and efficiency. However, the majority of studies analyzing longitudinal PAP remote monitoring summarize data trajectories in static and simplistic metrics for PAP adherence and the residual apnea-hypopnea index (AHI) by using mean or median values. The aims of this article are to suggest directions for improving data cleaning and processing and to address major concerns for data science applications including: 1) conditions for rAHI reliability, 2) lack of standardization of indicators provided by different PAP models, 3) missing values and 4) consideration of treatment interruptions. To allow fair comparison between studies and to avoid biases in computation, PAP data processing and management should be conducted rigorously with these points in mind. PAP remote monitoring data contain a wealth of information that is currently underused in the field of sleep research. Improving the quality and standardizing data handling could facilitate data sharing among specialists worldwide and enable artificial intelligence strategies to be applied in the field of sleep apnea. Over recent years, positive airway pressure (PAP) remote monitoring has transformed the management of OSA and produced a large amount of data. Accumulated PAP data provide valuable and objective information regarding patient treatment adherence and efficiency. However, the majority of studies that have analyzed longitudinal PAP remote monitoring have summarized data trajectories in static and simplistic metrics for PAP adherence and the residual apnea-hypopnea index by the use of mean or median values. The aims of this article are to suggest directions for improving data cleaning and processing and to address major concerns for the following data science applications: (1) conditions for residual apnea-hypopnea index reliability, (2) lack of standardization of indicators provided by different PAP models, (3) missing values, and (4) consideration of treatment interruptions. To allow fair comparison among studies and to avoid biases in computation, PAP data processing and management should be conducted rigorously with these points in mind. PAP remote monitoring data contain a wealth of information that currently is underused in the field of sleep research. Improving the quality and standardizing data handling could facilitate data sharing among specialists worldwide and enable artificial intelligence strategies to be applied in the field of sleep apnea. |
Author | Pépin, Jean-Louis Bailly, Sébastien Borel, Jean-Christian Le Hy, Ronan Malhotra, Atul Hamon, Agnès Samson, Adeline Tamisier, Renaud Mendelson, Monique Bottaz-Bosson, Guillaume Martinot, Jean-Benoît Schaeffer, Marie-Caroline Midelet, Alphanie |
Author_xml | – sequence: 1 givenname: Guillaume surname: Bottaz-Bosson fullname: Bottaz-Bosson, Guillaume organization: Laboratoire HP2, U1300 Inserm, University Grenoble Alpes, Grenoble, France; Jean Kuntzmann Laboratory, University Grenoble Alpes, Grenoble, France – sequence: 2 givenname: Alphanie surname: Midelet fullname: Midelet, Alphanie organization: Laboratoire HP2, U1300 Inserm, University Grenoble Alpes, Grenoble, France; Probayes, Montbonnot-Saint-Martin, France – sequence: 3 givenname: Monique surname: Mendelson fullname: Mendelson, Monique organization: Laboratoire HP2, U1300 Inserm, University Grenoble Alpes, Grenoble, France – sequence: 4 givenname: Jean-Christian surname: Borel fullname: Borel, Jean-Christian organization: Laboratoire HP2, U1300 Inserm, University Grenoble Alpes, Grenoble, France; AGIR à dom HomeCare Charity, Meylan, France – sequence: 5 givenname: Jean-Benoît surname: Martinot fullname: Martinot, Jean-Benoît organization: Sleep Laboratory, CHU UCL Namur Site Sainte-Elisabeth, Namur, Belgium; Institute of Experimental and Clinical Research, UCL, Bruxelles Woluwe, Belgium – sequence: 6 givenname: Ronan surname: Le Hy fullname: Le Hy, Ronan organization: Probayes, Montbonnot-Saint-Martin, France – sequence: 7 givenname: Marie-Caroline surname: Schaeffer fullname: Schaeffer, Marie-Caroline organization: Probayes, Montbonnot-Saint-Martin, France – sequence: 8 givenname: Adeline surname: Samson fullname: Samson, Adeline organization: Jean Kuntzmann Laboratory, University Grenoble Alpes, Grenoble, France – sequence: 9 givenname: Agnès surname: Hamon fullname: Hamon, Agnès organization: Jean Kuntzmann Laboratory, University Grenoble Alpes, Grenoble, France – sequence: 10 givenname: Renaud surname: Tamisier fullname: Tamisier, Renaud organization: Laboratoire HP2, U1300 Inserm, University Grenoble Alpes, Grenoble, France – sequence: 11 givenname: Atul surname: Malhotra fullname: Malhotra, Atul organization: Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego, La Jolla, CA – sequence: 12 givenname: Jean-Louis surname: Pépin fullname: Pépin, Jean-Louis organization: Laboratoire HP2, U1300 Inserm, University Grenoble Alpes, Grenoble, France – sequence: 13 givenname: Sébastien surname: Bailly fullname: Bailly, Sébastien email: sbailly@chu-grenoble.fr organization: Laboratoire HP2, U1300 Inserm, University Grenoble Alpes, Grenoble, France. Electronic address: sbailly@chu-grenoble.fr |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36470417$$D View this record in MEDLINE/PubMed https://inserm.hal.science/inserm-03941644$$DView record in HAL |
BookMark | eNpdkctu1DAUhi3Uik4LT4CEvGTRBN8a12zQaLgUaaqOKKwtJz6ZuErsYHsG9RV4alxaUOnq3L__l84xOvDBA0KvKKkpoc3bm7obIOWaEcZqSmvCxTO0oIrTip8JfoAWhFBW8UaxI3Sc0g0pNVXNc3TEGyGJoHKBfn2FKWTAl8G7HKLzWxx6vAnJZbcHvHTxp7nFmwgp7SLgDyabd3g1mHEEv4V0ijcu96UqmfEWX-doMmwdJJwDXgWfnIWI-xDx1ZzdZMY_CHzdOfBd4c_z6DqTXdl8gQ4LKcHLh3iCvn_6-G11Ua2vPn9ZLdfVwInIlSSt5Va1zELTKmsoJUJyY3rV21ZJ1krGqFRccipFY5kQd01D2Jm0kivKT9D7e-68ayewHfhietRzLPbirQ7G6f8n3g16G_aaFsa54KoQTu8Jw5O7i-VaO58gTppwJWgjxP5O8M2DYAw_duVlenKpg3E0HsIuaSaFZPKcclJWXz_29g_-92H8N5SonHo |
ContentType | Journal Article |
Copyright | Copyright © 2022 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License 2022 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved. 2022 American College of Chest Physicians |
Copyright_xml | – notice: Copyright © 2022 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved. – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: 2022 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved. 2022 American College of Chest Physicians |
DBID | CGR CUY CVF ECM EIF NPM 7X8 1XC 5PM |
DOI | 10.1016/j.chest.2022.11.034 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1931-3543 |
EndPage | 1291 |
ExternalDocumentID | oai_HAL_inserm_03941644v1 36470417 |
Genre | Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: T32 HL134632 – fundername: NHLBI NIH HHS grantid: R01 HL157985 |
GroupedDBID | --- .1- .55 .FO .GJ .XZ 08P 0R~ 18M 1P~ 29B 2WC 354 36B 3O- 3V. 457 53G 5GY 5RE 5RS 6J9 6PF 7RV 7X7 88E 8AO 8C1 8F7 8FI 8FJ AAEDT AAEDW AAKAS AAKUH AALRI AAWTL AAXUO AAYOK ABDBF ABDQB ABJNI ABLJU ABMAC ABOCM ABUWG ACBMB ACGFO ACGFS ACGUR ADBBV ADVLN ADZCM AENEX AEVXI AFCTW AFETI AFFNX AFJKZ AFKRA AFRHN AFTJW AGHFR AHMBA AI. AITUG AJUYK AKRWK ALIPV ALMA_UNASSIGNED_HOLDINGS AMRAJ AZQEC B0M BCGUY BENPR BKEYQ BKNYI BPHCQ BR6 BVXVI C1A C45 CCPQU CGR CS3 CUY CVF DU5 EAP EAS EBC EBD EBS ECM EHN EIF EJD EMK ENC EPT ESX EX3 F5P FDB FYUFA GD~ H13 HMCUK HX~ HZ~ IAO IEA IH2 IHR IMI INH INR IOF IPO J5H K9- L7B LXL LXN M0R M1P M5~ MJL MV1 N4W N9A NAPCQ NEJ NPM O6. O9- OB3 OBH ODZKP OFXIZ OGROG OHH OI- OK1 OU. OVD OVIDX P2P PCD PQQKQ PROAC PSQYO Q~Q RIG ROL SJN SSZ TCP TEORI TR2 TUS TWZ UKHRP VH1 W8F WH7 WOQ WOW X7M XOL YFH YHG YOC YQJ Z5R ZGI ZRQ ZXP ZY1 ~8M 7X8 1XC 5PM |
ID | FETCH-LOGICAL-h304t-70bd3d9b2de6b9da110473aaf9fdb972b7221793731746d244972ba0257d73913 |
ISSN | 0012-3692 |
IngestDate | Tue Sep 17 21:28:03 EDT 2024 Tue Oct 15 15:40:19 EDT 2024 Sat Oct 26 05:29:14 EDT 2024 Sat Nov 02 11:54:04 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | time series remote monitoring data management OSA positive airway pressure Positive Airway Pressure Data management Obstructive sleep apnea Remote monitoring Time series |
Language | English |
License | Copyright © 2022 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-h304t-70bd3d9b2de6b9da110473aaf9fdb972b7221793731746d244972ba0257d73913 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-2 |
ORCID | 0000-0001-8774-8510 0000-0003-4140-6210 0000-0003-3233-995X 0000-0002-2179-4650 0000-0001-6346-3510 0000-0003-1128-6529 |
PMID | 36470417 |
PQID | 2747278130 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10258439 hal_primary_oai_HAL_inserm_03941644v1 proquest_miscellaneous_2747278130 pubmed_primary_36470417 |
PublicationCentury | 2000 |
PublicationDate | 2023-05-01 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Chest |
PublicationTitleAlternate | Chest |
PublicationYear | 2023 |
Publisher | American College of Chest Physicians |
Publisher_xml | – name: American College of Chest Physicians |
SSID | ssj0001196 |
Score | 2.4914422 |
SecondaryResourceType | review_article |
Snippet | Over recent years, positive airway pressure (PAP) remote monitoring has transformed the management of OSA and produced a large amount of data. Accumulated PAP... Over recent years positive airway pressure (PAP) remote monitoring has transformed the management of obstructive sleep apnea and produced a large amount of... |
SourceID | pubmedcentral hal proquest pubmed |
SourceType | Open Access Repository Aggregation Database Index Database |
StartPage | 1279 |
SubjectTerms | Artificial Intelligence Continuous Positive Airway Pressure Data Science Humans Life Sciences Patient Compliance Polysomnography Reproducibility of Results Sleep Apnea, Obstructive - therapy Treatment Outcome |
Title | Remote Monitoring of Positive Airway Pressure Data: Challenges, Pitfalls, and Strategies to Consider for Optimal Data Science Applications |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36470417 https://search.proquest.com/docview/2747278130 https://inserm.hal.science/inserm-03941644 https://pubmed.ncbi.nlm.nih.gov/PMC10258439 |
Volume | 163 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6VVqp6QbwJpWiR4BQc2V47trmFQAmkrVBpRW_W2l4rRopTpU4R_Qf8a2b2YW9okQoXK1lLm43n8-zsPL4h5JU75HmM1TiwfftOAAauAzrQd7wk9_MwB_UoK-QOj4aT0-DzWXi2cWfPylpaNdkgv7qxruR_pApjIFeskv0HybaTwgB8BvnCFSQM11vJ-FjAgxb9uXwvlyZ_WaZhXYo-r5Y_-M--zHTFMAEmg6IDYGz6pyiO_qop4buiajZctYr3IdfNPGUq4gJ0yxwjOjBL3xQD2eFv28wdz0zUSmYiNg2_ct7BdqxC_B9X2OpoNe_SbpFrS0VFRlj7W1fdLXTRG0ZJVEAqSVxPvBQ6RYfXjqJJMGjXjgzfShu0agd4bXtM5GplFyDp47Hdly6SLQ5VH72BUMo7YZ7DQkX71Gp3rT8rO4AudTW2EkqsjR8sH-_GTUX5N74PZAezASzdHyDxq3LCWjA7n0ucISO_G6iK1HWC78noa_rl_X568Oloun63ZfqejA7SqgaMzlOXJWAtB8ElHO63YKkMFPjWaHr8bdqaGp4nG9C1D8PQaskExmvL3SHbZm1gSc0w8ff6qerP5GDL2jq5R-7qYxIdKczfJxuifkC2D3UiyEPyS0GfdtCni5Ia6FMFfWqgTxG0b2kH_DfUwJ4C7GkHe9osqIE9BdhTDXs5A9WwpzbsH5HT_Q8n44mju4o4M-YGjRO5WcGKJPMLMcySgntIVsI4L5OyyJLIzyLfx10rAss6GBZg_uIgh7NBVEQs8dhjslkvavGUUBbGES_DUMQFC-Iwi5mXeQVsgRHPS88XPfIa_lh6rnhj0r_Kt0deGjmkoN0xZMdrsVhdpOgz8qMYDM0eeaLk0k5nZNkj8ZrE1n5v_U5dzSSDPJwq4ODBkme3XOAu2ene2Odks1muxB4Y4032QkPyN0Uv5Mw |
link.rule.ids | 230,315,783,787,888,27936,27937 |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Remote+monitoring+of+positive+airway+pressure+data%3A+Challenges%2C+Pitfalls+and+Strategies+to+consider+for+optimal+data+science+applications&rft.jtitle=Chest&rft.au=Bottaz-Bosson%2C+Guillaume&rft.au=Midelet%2C+Alphanie&rft.au=Mendelson%2C+Monique&rft.au=Borel%2C+Jean-Christian&rft.date=2023-05-01&rft.pub=American+College+of+Chest+Physicians&rft.issn=0012-3692&rft.eissn=1931-3543&rft.volume=163&rft.issue=5&rft.spage=P1279&rft.epage=1291&rft_id=info:doi/10.1016%2Fj.chest.2022.11.034&rft_id=info%3Apmid%2F36470417&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_inserm_03941644v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-3692&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-3692&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-3692&client=summon |