Remote Monitoring of Positive Airway Pressure Data: Challenges, Pitfalls, and Strategies to Consider for Optimal Data Science Applications

Over recent years, positive airway pressure (PAP) remote monitoring has transformed the management of OSA and produced a large amount of data. Accumulated PAP data provide valuable and objective information regarding patient treatment adherence and efficiency. However, the majority of studies that h...

Full description

Saved in:
Bibliographic Details
Published inChest Vol. 163; no. 5; pp. 1279 - 1291
Main Authors Bottaz-Bosson, Guillaume, Midelet, Alphanie, Mendelson, Monique, Borel, Jean-Christian, Martinot, Jean-Benoît, Le Hy, Ronan, Schaeffer, Marie-Caroline, Samson, Adeline, Hamon, Agnès, Tamisier, Renaud, Malhotra, Atul, Pépin, Jean-Louis, Bailly, Sébastien
Format Journal Article
LanguageEnglish
Published United States American College of Chest Physicians 01.05.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Over recent years, positive airway pressure (PAP) remote monitoring has transformed the management of OSA and produced a large amount of data. Accumulated PAP data provide valuable and objective information regarding patient treatment adherence and efficiency. However, the majority of studies that have analyzed longitudinal PAP remote monitoring have summarized data trajectories in static and simplistic metrics for PAP adherence and the residual apnea-hypopnea index by the use of mean or median values. The aims of this article are to suggest directions for improving data cleaning and processing and to address major concerns for the following data science applications: (1) conditions for residual apnea-hypopnea index reliability, (2) lack of standardization of indicators provided by different PAP models, (3) missing values, and (4) consideration of treatment interruptions. To allow fair comparison among studies and to avoid biases in computation, PAP data processing and management should be conducted rigorously with these points in mind. PAP remote monitoring data contain a wealth of information that currently is underused in the field of sleep research. Improving the quality and standardizing data handling could facilitate data sharing among specialists worldwide and enable artificial intelligence strategies to be applied in the field of sleep apnea.
AbstractList Over recent years positive airway pressure (PAP) remote monitoring has transformed the management of obstructive sleep apnea and produced a large amount of data. Accumulated PAP data provide valuable and objective information regarding patient treatment adherence and efficiency. However, the majority of studies analyzing longitudinal PAP remote monitoring summarize data trajectories in static and simplistic metrics for PAP adherence and the residual apnea-hypopnea index (AHI) by using mean or median values. The aims of this article are to suggest directions for improving data cleaning and processing and to address major concerns for data science applications including: 1) conditions for rAHI reliability, 2) lack of standardization of indicators provided by different PAP models, 3) missing values and 4) consideration of treatment interruptions. To allow fair comparison between studies and to avoid biases in computation, PAP data processing and management should be conducted rigorously with these points in mind. PAP remote monitoring data contain a wealth of information that is currently underused in the field of sleep research. Improving the quality and standardizing data handling could facilitate data sharing among specialists worldwide and enable artificial intelligence strategies to be applied in the field of sleep apnea.
Over recent years, positive airway pressure (PAP) remote monitoring has transformed the management of OSA and produced a large amount of data. Accumulated PAP data provide valuable and objective information regarding patient treatment adherence and efficiency. However, the majority of studies that have analyzed longitudinal PAP remote monitoring have summarized data trajectories in static and simplistic metrics for PAP adherence and the residual apnea-hypopnea index by the use of mean or median values. The aims of this article are to suggest directions for improving data cleaning and processing and to address major concerns for the following data science applications: (1) conditions for residual apnea-hypopnea index reliability, (2) lack of standardization of indicators provided by different PAP models, (3) missing values, and (4) consideration of treatment interruptions. To allow fair comparison among studies and to avoid biases in computation, PAP data processing and management should be conducted rigorously with these points in mind. PAP remote monitoring data contain a wealth of information that currently is underused in the field of sleep research. Improving the quality and standardizing data handling could facilitate data sharing among specialists worldwide and enable artificial intelligence strategies to be applied in the field of sleep apnea.
Author Pépin, Jean-Louis
Bailly, Sébastien
Borel, Jean-Christian
Le Hy, Ronan
Malhotra, Atul
Hamon, Agnès
Samson, Adeline
Tamisier, Renaud
Mendelson, Monique
Bottaz-Bosson, Guillaume
Martinot, Jean-Benoît
Schaeffer, Marie-Caroline
Midelet, Alphanie
Author_xml – sequence: 1
  givenname: Guillaume
  surname: Bottaz-Bosson
  fullname: Bottaz-Bosson, Guillaume
  organization: Laboratoire HP2, U1300 Inserm, University Grenoble Alpes, Grenoble, France; Jean Kuntzmann Laboratory, University Grenoble Alpes, Grenoble, France
– sequence: 2
  givenname: Alphanie
  surname: Midelet
  fullname: Midelet, Alphanie
  organization: Laboratoire HP2, U1300 Inserm, University Grenoble Alpes, Grenoble, France; Probayes, Montbonnot-Saint-Martin, France
– sequence: 3
  givenname: Monique
  surname: Mendelson
  fullname: Mendelson, Monique
  organization: Laboratoire HP2, U1300 Inserm, University Grenoble Alpes, Grenoble, France
– sequence: 4
  givenname: Jean-Christian
  surname: Borel
  fullname: Borel, Jean-Christian
  organization: Laboratoire HP2, U1300 Inserm, University Grenoble Alpes, Grenoble, France; AGIR à dom HomeCare Charity, Meylan, France
– sequence: 5
  givenname: Jean-Benoît
  surname: Martinot
  fullname: Martinot, Jean-Benoît
  organization: Sleep Laboratory, CHU UCL Namur Site Sainte-Elisabeth, Namur, Belgium; Institute of Experimental and Clinical Research, UCL, Bruxelles Woluwe, Belgium
– sequence: 6
  givenname: Ronan
  surname: Le Hy
  fullname: Le Hy, Ronan
  organization: Probayes, Montbonnot-Saint-Martin, France
– sequence: 7
  givenname: Marie-Caroline
  surname: Schaeffer
  fullname: Schaeffer, Marie-Caroline
  organization: Probayes, Montbonnot-Saint-Martin, France
– sequence: 8
  givenname: Adeline
  surname: Samson
  fullname: Samson, Adeline
  organization: Jean Kuntzmann Laboratory, University Grenoble Alpes, Grenoble, France
– sequence: 9
  givenname: Agnès
  surname: Hamon
  fullname: Hamon, Agnès
  organization: Jean Kuntzmann Laboratory, University Grenoble Alpes, Grenoble, France
– sequence: 10
  givenname: Renaud
  surname: Tamisier
  fullname: Tamisier, Renaud
  organization: Laboratoire HP2, U1300 Inserm, University Grenoble Alpes, Grenoble, France
– sequence: 11
  givenname: Atul
  surname: Malhotra
  fullname: Malhotra, Atul
  organization: Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego, La Jolla, CA
– sequence: 12
  givenname: Jean-Louis
  surname: Pépin
  fullname: Pépin, Jean-Louis
  organization: Laboratoire HP2, U1300 Inserm, University Grenoble Alpes, Grenoble, France
– sequence: 13
  givenname: Sébastien
  surname: Bailly
  fullname: Bailly, Sébastien
  email: sbailly@chu-grenoble.fr
  organization: Laboratoire HP2, U1300 Inserm, University Grenoble Alpes, Grenoble, France. Electronic address: sbailly@chu-grenoble.fr
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36470417$$D View this record in MEDLINE/PubMed
https://inserm.hal.science/inserm-03941644$$DView record in HAL
BookMark eNpdkctu1DAUhi3Uik4LT4CEvGTRBN8a12zQaLgUaaqOKKwtJz6ZuErsYHsG9RV4alxaUOnq3L__l84xOvDBA0KvKKkpoc3bm7obIOWaEcZqSmvCxTO0oIrTip8JfoAWhFBW8UaxI3Sc0g0pNVXNc3TEGyGJoHKBfn2FKWTAl8G7HKLzWxx6vAnJZbcHvHTxp7nFmwgp7SLgDyabd3g1mHEEv4V0ijcu96UqmfEWX-doMmwdJJwDXgWfnIWI-xDx1ZzdZMY_CHzdOfBd4c_z6DqTXdl8gQ4LKcHLh3iCvn_6-G11Ua2vPn9ZLdfVwInIlSSt5Va1zELTKmsoJUJyY3rV21ZJ1krGqFRccipFY5kQd01D2Jm0kivKT9D7e-68ayewHfhietRzLPbirQ7G6f8n3g16G_aaFsa54KoQTu8Jw5O7i-VaO58gTppwJWgjxP5O8M2DYAw_duVlenKpg3E0HsIuaSaFZPKcclJWXz_29g_-92H8N5SonHo
ContentType Journal Article
Copyright Copyright © 2022 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License
2022 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved. 2022 American College of Chest Physicians
Copyright_xml – notice: Copyright © 2022 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: 2022 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved. 2022 American College of Chest Physicians
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
5PM
DOI 10.1016/j.chest.2022.11.034
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1931-3543
EndPage 1291
ExternalDocumentID oai_HAL_inserm_03941644v1
36470417
Genre Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: T32 HL134632
– fundername: NHLBI NIH HHS
  grantid: R01 HL157985
GroupedDBID ---
.1-
.55
.FO
.GJ
.XZ
08P
0R~
18M
1P~
29B
2WC
354
36B
3O-
3V.
457
53G
5GY
5RE
5RS
6J9
6PF
7RV
7X7
88E
8AO
8C1
8F7
8FI
8FJ
AAEDT
AAEDW
AAKAS
AAKUH
AALRI
AAWTL
AAXUO
AAYOK
ABDBF
ABDQB
ABJNI
ABLJU
ABMAC
ABOCM
ABUWG
ACBMB
ACGFO
ACGFS
ACGUR
ADBBV
ADVLN
ADZCM
AENEX
AEVXI
AFCTW
AFETI
AFFNX
AFJKZ
AFKRA
AFRHN
AFTJW
AGHFR
AHMBA
AI.
AITUG
AJUYK
AKRWK
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AZQEC
B0M
BCGUY
BENPR
BKEYQ
BKNYI
BPHCQ
BR6
BVXVI
C1A
C45
CCPQU
CGR
CS3
CUY
CVF
DU5
EAP
EAS
EBC
EBD
EBS
ECM
EHN
EIF
EJD
EMK
ENC
EPT
ESX
EX3
F5P
FDB
FYUFA
GD~
H13
HMCUK
HX~
HZ~
IAO
IEA
IH2
IHR
IMI
INH
INR
IOF
IPO
J5H
K9-
L7B
LXL
LXN
M0R
M1P
M5~
MJL
MV1
N4W
N9A
NAPCQ
NEJ
NPM
O6.
O9-
OB3
OBH
ODZKP
OFXIZ
OGROG
OHH
OI-
OK1
OU.
OVD
OVIDX
P2P
PCD
PQQKQ
PROAC
PSQYO
Q~Q
RIG
ROL
SJN
SSZ
TCP
TEORI
TR2
TUS
TWZ
UKHRP
VH1
W8F
WH7
WOQ
WOW
X7M
XOL
YFH
YHG
YOC
YQJ
Z5R
ZGI
ZRQ
ZXP
ZY1
~8M
7X8
1XC
5PM
ID FETCH-LOGICAL-h304t-70bd3d9b2de6b9da110473aaf9fdb972b7221793731746d244972ba0257d73913
ISSN 0012-3692
IngestDate Tue Sep 17 21:28:03 EDT 2024
Tue Oct 15 15:40:19 EDT 2024
Sat Oct 26 05:29:14 EDT 2024
Sat Nov 02 11:54:04 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords time series
remote monitoring
data management
OSA
positive airway pressure
Positive Airway Pressure
Data management
Obstructive sleep apnea
Remote monitoring
Time series
Language English
License Copyright © 2022 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-h304t-70bd3d9b2de6b9da110473aaf9fdb972b7221793731746d244972ba0257d73913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-2
ORCID 0000-0001-8774-8510
0000-0003-4140-6210
0000-0003-3233-995X
0000-0002-2179-4650
0000-0001-6346-3510
0000-0003-1128-6529
PMID 36470417
PQID 2747278130
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10258439
hal_primary_oai_HAL_inserm_03941644v1
proquest_miscellaneous_2747278130
pubmed_primary_36470417
PublicationCentury 2000
PublicationDate 2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Chest
PublicationTitleAlternate Chest
PublicationYear 2023
Publisher American College of Chest Physicians
Publisher_xml – name: American College of Chest Physicians
SSID ssj0001196
Score 2.4914422
SecondaryResourceType review_article
Snippet Over recent years, positive airway pressure (PAP) remote monitoring has transformed the management of OSA and produced a large amount of data. Accumulated PAP...
Over recent years positive airway pressure (PAP) remote monitoring has transformed the management of obstructive sleep apnea and produced a large amount of...
SourceID pubmedcentral
hal
proquest
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 1279
SubjectTerms Artificial Intelligence
Continuous Positive Airway Pressure
Data Science
Humans
Life Sciences
Patient Compliance
Polysomnography
Reproducibility of Results
Sleep Apnea, Obstructive - therapy
Treatment Outcome
Title Remote Monitoring of Positive Airway Pressure Data: Challenges, Pitfalls, and Strategies to Consider for Optimal Data Science Applications
URI https://www.ncbi.nlm.nih.gov/pubmed/36470417
https://search.proquest.com/docview/2747278130
https://inserm.hal.science/inserm-03941644
https://pubmed.ncbi.nlm.nih.gov/PMC10258439
Volume 163
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6VVqp6QbwJpWiR4BQc2V47trmFQAmkrVBpRW_W2l4rRopTpU4R_Qf8a2b2YW9okQoXK1lLm43n8-zsPL4h5JU75HmM1TiwfftOAAauAzrQd7wk9_MwB_UoK-QOj4aT0-DzWXi2cWfPylpaNdkgv7qxruR_pApjIFeskv0HybaTwgB8BvnCFSQM11vJ-FjAgxb9uXwvlyZ_WaZhXYo-r5Y_-M--zHTFMAEmg6IDYGz6pyiO_qop4buiajZctYr3IdfNPGUq4gJ0yxwjOjBL3xQD2eFv28wdz0zUSmYiNg2_ct7BdqxC_B9X2OpoNe_SbpFrS0VFRlj7W1fdLXTRG0ZJVEAqSVxPvBQ6RYfXjqJJMGjXjgzfShu0agd4bXtM5GplFyDp47Hdly6SLQ5VH72BUMo7YZ7DQkX71Gp3rT8rO4AudTW2EkqsjR8sH-_GTUX5N74PZAezASzdHyDxq3LCWjA7n0ucISO_G6iK1HWC78noa_rl_X568Oloun63ZfqejA7SqgaMzlOXJWAtB8ElHO63YKkMFPjWaHr8bdqaGp4nG9C1D8PQaskExmvL3SHbZm1gSc0w8ff6qerP5GDL2jq5R-7qYxIdKczfJxuifkC2D3UiyEPyS0GfdtCni5Ia6FMFfWqgTxG0b2kH_DfUwJ4C7GkHe9osqIE9BdhTDXs5A9WwpzbsH5HT_Q8n44mju4o4M-YGjRO5WcGKJPMLMcySgntIVsI4L5OyyJLIzyLfx10rAss6GBZg_uIgh7NBVEQs8dhjslkvavGUUBbGES_DUMQFC-Iwi5mXeQVsgRHPS88XPfIa_lh6rnhj0r_Kt0deGjmkoN0xZMdrsVhdpOgz8qMYDM0eeaLk0k5nZNkj8ZrE1n5v_U5dzSSDPJwq4ODBkme3XOAu2ene2Odks1muxB4Y4032QkPyN0Uv5Mw
link.rule.ids 230,315,783,787,888,27936,27937
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Remote+monitoring+of+positive+airway+pressure+data%3A+Challenges%2C+Pitfalls+and+Strategies+to+consider+for+optimal+data+science+applications&rft.jtitle=Chest&rft.au=Bottaz-Bosson%2C+Guillaume&rft.au=Midelet%2C+Alphanie&rft.au=Mendelson%2C+Monique&rft.au=Borel%2C+Jean-Christian&rft.date=2023-05-01&rft.pub=American+College+of+Chest+Physicians&rft.issn=0012-3692&rft.eissn=1931-3543&rft.volume=163&rft.issue=5&rft.spage=P1279&rft.epage=1291&rft_id=info:doi/10.1016%2Fj.chest.2022.11.034&rft_id=info%3Apmid%2F36470417&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_inserm_03941644v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-3692&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-3692&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-3692&client=summon