Learning Convolutional Transforms for Lossy Point Cloud Geometry Compression

Efficient point cloud compression is fundamental to enable the deployment of virtual and mixed reality applications, since the number of points to code can range in the order of millions. In this paper, we present a novel data-driven geometry compression method for static point clouds based on learn...

Full description

Saved in:
Bibliographic Details
Published inProceedings - International Conference on Image Processing pp. 4320 - 4324
Main Authors Quach, Maurice, Valenzise, Giuseppe, Dufaux, Frederic
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.09.2019
Subjects
Online AccessGet full text
ISSN2381-8549
DOI10.1109/ICIP.2019.8803413

Cover

Abstract Efficient point cloud compression is fundamental to enable the deployment of virtual and mixed reality applications, since the number of points to code can range in the order of millions. In this paper, we present a novel data-driven geometry compression method for static point clouds based on learned convolutional transforms and uniform quantization. We perform joint optimization of both rate and distortion using a trade-off parameter. In addition, we cast the decoding process as a binary classification of the point cloud occupancy map. Our method outperforms the MPEG reference solution in terms of rate-distortion on the Microsoft Voxelized Upper Bodies dataset with 51.5% BDBR savings on average. Moreover, while octree-based methods face exponential diminution of the number of points at low bitrates, our method still produces high resolution outputs even at low bitrates. Code and supplementary material are available at https://github.com/mauriceqch/pcc_geo_cnn.
AbstractList Efficient point cloud compression is fundamental to enable the deployment of virtual and mixed reality applications, since the number of points to code can range in the order of millions. In this paper, we present a novel data-driven geometry compression method for static point clouds based on learned convolutional transforms and uniform quantization. We perform joint optimization of both rate and distortion using a trade-off parameter. In addition, we cast the decoding process as a binary classification of the point cloud occupancy map. Our method outperforms the MPEG reference solution in terms of rate-distortion on the Microsoft Voxelized Upper Bodies dataset with 51.5% BDBR savings on average. Moreover, while octree-based methods face exponential diminution of the number of points at low bitrates, our method still produces high resolution outputs even at low bitrates. Code and supplementary material are available at https://github.com/mauriceqch/pcc_geo_cnn.
Author Valenzise, Giuseppe
Quach, Maurice
Dufaux, Frederic
Author_xml – sequence: 1
  givenname: Maurice
  surname: Quach
  fullname: Quach, Maurice
  organization: L2S, CNRS, CentraleSupélec, Université Paris-Saclay
– sequence: 2
  givenname: Giuseppe
  surname: Valenzise
  fullname: Valenzise, Giuseppe
  organization: L2S, CNRS, CentraleSupélec, Université Paris-Saclay
– sequence: 3
  givenname: Frederic
  surname: Dufaux
  fullname: Dufaux, Frederic
  organization: L2S, CNRS, CentraleSupélec, Université Paris-Saclay
BookMark eNotj8FKxDAURaMoODPOB4ib_EBrkte0yVKKjoWCs-h-SNsXrbTJkHSE_r0FZ3PP5p4Ld0vunHdIyBNnKedMv1RldUwF4zpVikHG4YbsdaG4BJXnItP5LdkIUDxRMtMPZBvjD2NrH_iG1DWa4Ab3RUvvfv14mQfvzEibYFy0PkyRrklrH-NCj35wMy1Hf-npAf2Ec1hWbzoHjHH1Hsm9NWPE_ZU70ry_NeVHUn8eqvK1Tr6BwZz0qJjssDWdsJkoVK_RGtQ24y0WwG2XC8j7FluUIuNWd1zJApg11krZI-zI8__sgIincxgmE5bT9Tv8AXcjUWY
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICIP.2019.8803413
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781538662496
1538662493
EISSN 2381-8549
EndPage 4324
ExternalDocumentID 8803413
Genre orig-research
GroupedDBID 29O
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-h303t-de805cebac2f4278d9efae9f41be731fc6236dbebe5241f9c185730faff55de3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:43:48 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-h303t-de805cebac2f4278d9efae9f41be731fc6236dbebe5241f9c185730faff55de3
OpenAccessLink https://hal.science/hal-02116891
PageCount 5
ParticipantIDs ieee_primary_8803413
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationTitle Proceedings - International Conference on Image Processing
PublicationTitleAbbrev ICIP
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020131
Score 2.534226
Snippet Efficient point cloud compression is fundamental to enable the deployment of virtual and mixed reality applications, since the number of points to code can...
SourceID ieee
SourceType Publisher
StartPage 4320
SubjectTerms Bit rate
Convolutional codes
convolutional neural network
Geometry
point cloud geometry compression
rate-distortion optimization
Three-dimensional displays
Training
Transform coding
Transforms
Title Learning Convolutional Transforms for Lossy Point Cloud Geometry Compression
URI https://ieeexplore.ieee.org/document/8803413
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4AJ0_4wPjOHjxaoPQBPRMRDBgOmHAj-5hVI7YGWhP89c60BaPx4KXZbDLZzc7sftPdb2YArkOltfZpf1tfWcfvysiR1nUdJhz2IqvJBed458lDOHz07-fBvAI3u1gYRMzJZ9jkZv6WbxKd8VVZi2yND90qVMnMilit3c8V540pXy3ddtQa9UdTJm6xJeRCP6qn5OAxqMNkO2zBGXltZqlq6s9fGRn_O699aHyH6YnpDoAOoILxIdRLv1KUu3Z9BOMyieqTIMGP0tbkUsy2Tuta0FeMCS83Ypq8xKnoL5PMiDtM3jBdbQSfGgVhNm7AbHA76w-dsoqC80zwlDoGe-1Ao5K6Y7muhonQSoys7yrseq7V5ACFRpEyA0JzG2nODuW1rbQ2CAx6x1CLkxhPQHgBakn-g1F8DdnxpOpRT2is52oS6Z7CEa_N4r3Ik7Eol-Xs7-5z2GP9FHytC6ilqwwvCeBTdZVr9gutrKl6
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4gHvSECsa3e_BogdIH9ExE0EI41IQb2cesGrE10Jrgr3e2rRiNBy_NZpPJbnZm95vufjMDcOULKaVL-1u7QltulwcW17ZtGcJhL9CSXHAT7zye-MMH927mzSpwvYmFQcScfIZN08zf8lUiM3NV1iJbM4fuFmwT7rteEa21-b0ymWPKd0u7HbRG_dHUULeMLeRiP-qn5PAxqMH4a-CCNfLSzFLRlB-_cjL-d2Z70PgO1GPTDQTtQwXjA6iVniUr9-2qDmGZRvWRkeB7aW18waIvt3XF6MtCQsw1mybPccr6iyRT7BaTV0yXa2bOjYIyGzcgGtxE_aFV1lGwngigUkthr-1JFFx2tKmsoQLUHAPt2gK7jq0luUC-EqROj_BcB9Lkh3LammvteQqdQ6jGSYxHwBwPJScPQglzEdlxuOhRj6-0Y0sS6R5D3azN_K3IlDEvl-Xk7-5L2BlG43Aejib3p7BrdFWwt86gmi4zPCe4T8VFruVPukisxw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+-+International+Conference+on+Image+Processing&rft.atitle=Learning+Convolutional+Transforms+for+Lossy+Point+Cloud+Geometry+Compression&rft.au=Quach%2C+Maurice&rft.au=Valenzise%2C+Giuseppe&rft.au=Dufaux%2C+Frederic&rft.date=2019-09-01&rft.pub=IEEE&rft.eissn=2381-8549&rft.spage=4320&rft.epage=4324&rft_id=info:doi/10.1109%2FICIP.2019.8803413&rft.externalDocID=8803413