Learning Convolutional Transforms for Lossy Point Cloud Geometry Compression
Efficient point cloud compression is fundamental to enable the deployment of virtual and mixed reality applications, since the number of points to code can range in the order of millions. In this paper, we present a novel data-driven geometry compression method for static point clouds based on learn...
Saved in:
Published in | Proceedings - International Conference on Image Processing pp. 4320 - 4324 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.09.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 2381-8549 |
DOI | 10.1109/ICIP.2019.8803413 |
Cover
Abstract | Efficient point cloud compression is fundamental to enable the deployment of virtual and mixed reality applications, since the number of points to code can range in the order of millions. In this paper, we present a novel data-driven geometry compression method for static point clouds based on learned convolutional transforms and uniform quantization. We perform joint optimization of both rate and distortion using a trade-off parameter. In addition, we cast the decoding process as a binary classification of the point cloud occupancy map. Our method outperforms the MPEG reference solution in terms of rate-distortion on the Microsoft Voxelized Upper Bodies dataset with 51.5% BDBR savings on average. Moreover, while octree-based methods face exponential diminution of the number of points at low bitrates, our method still produces high resolution outputs even at low bitrates. Code and supplementary material are available at https://github.com/mauriceqch/pcc_geo_cnn. |
---|---|
AbstractList | Efficient point cloud compression is fundamental to enable the deployment of virtual and mixed reality applications, since the number of points to code can range in the order of millions. In this paper, we present a novel data-driven geometry compression method for static point clouds based on learned convolutional transforms and uniform quantization. We perform joint optimization of both rate and distortion using a trade-off parameter. In addition, we cast the decoding process as a binary classification of the point cloud occupancy map. Our method outperforms the MPEG reference solution in terms of rate-distortion on the Microsoft Voxelized Upper Bodies dataset with 51.5% BDBR savings on average. Moreover, while octree-based methods face exponential diminution of the number of points at low bitrates, our method still produces high resolution outputs even at low bitrates. Code and supplementary material are available at https://github.com/mauriceqch/pcc_geo_cnn. |
Author | Valenzise, Giuseppe Quach, Maurice Dufaux, Frederic |
Author_xml | – sequence: 1 givenname: Maurice surname: Quach fullname: Quach, Maurice organization: L2S, CNRS, CentraleSupélec, Université Paris-Saclay – sequence: 2 givenname: Giuseppe surname: Valenzise fullname: Valenzise, Giuseppe organization: L2S, CNRS, CentraleSupélec, Université Paris-Saclay – sequence: 3 givenname: Frederic surname: Dufaux fullname: Dufaux, Frederic organization: L2S, CNRS, CentraleSupélec, Université Paris-Saclay |
BookMark | eNotj8FKxDAURaMoODPOB4ib_EBrkte0yVKKjoWCs-h-SNsXrbTJkHSE_r0FZ3PP5p4Ld0vunHdIyBNnKedMv1RldUwF4zpVikHG4YbsdaG4BJXnItP5LdkIUDxRMtMPZBvjD2NrH_iG1DWa4Ab3RUvvfv14mQfvzEibYFy0PkyRrklrH-NCj35wMy1Hf-npAf2Ec1hWbzoHjHH1Hsm9NWPE_ZU70ry_NeVHUn8eqvK1Tr6BwZz0qJjssDWdsJkoVK_RGtQ24y0WwG2XC8j7FluUIuNWd1zJApg11krZI-zI8__sgIincxgmE5bT9Tv8AXcjUWY |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ICIP.2019.8803413 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISBN | 9781538662496 1538662493 |
EISSN | 2381-8549 |
EndPage | 4324 |
ExternalDocumentID | 8803413 |
Genre | orig-research |
GroupedDBID | 29O 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI M43 OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-h303t-de805cebac2f4278d9efae9f41be731fc6236dbebe5241f9c185730faff55de3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:43:48 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-h303t-de805cebac2f4278d9efae9f41be731fc6236dbebe5241f9c185730faff55de3 |
OpenAccessLink | https://hal.science/hal-02116891 |
PageCount | 5 |
ParticipantIDs | ieee_primary_8803413 |
PublicationCentury | 2000 |
PublicationDate | 2019-09-01 |
PublicationDateYYYYMMDD | 2019-09-01 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Proceedings - International Conference on Image Processing |
PublicationTitleAbbrev | ICIP |
PublicationYear | 2019 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0020131 |
Score | 2.534226 |
Snippet | Efficient point cloud compression is fundamental to enable the deployment of virtual and mixed reality applications, since the number of points to code can... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 4320 |
SubjectTerms | Bit rate Convolutional codes convolutional neural network Geometry point cloud geometry compression rate-distortion optimization Three-dimensional displays Training Transform coding Transforms |
Title | Learning Convolutional Transforms for Lossy Point Cloud Geometry Compression |
URI | https://ieeexplore.ieee.org/document/8803413 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4AJ0_4wPjOHjxaoPQBPRMRDBgOmHAj-5hVI7YGWhP89c60BaPx4KXZbDLZzc7sftPdb2YArkOltfZpf1tfWcfvysiR1nUdJhz2IqvJBed458lDOHz07-fBvAI3u1gYRMzJZ9jkZv6WbxKd8VVZi2yND90qVMnMilit3c8V540pXy3ddtQa9UdTJm6xJeRCP6qn5OAxqMNkO2zBGXltZqlq6s9fGRn_O699aHyH6YnpDoAOoILxIdRLv1KUu3Z9BOMyieqTIMGP0tbkUsy2Tuta0FeMCS83Ypq8xKnoL5PMiDtM3jBdbQSfGgVhNm7AbHA76w-dsoqC80zwlDoGe-1Ao5K6Y7muhonQSoys7yrseq7V5ACFRpEyA0JzG2nODuW1rbQ2CAx6x1CLkxhPQHgBakn-g1F8DdnxpOpRT2is52oS6Z7CEa_N4r3Ik7Eol-Xs7-5z2GP9FHytC6ilqwwvCeBTdZVr9gutrKl6 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4gHvSECsa3e_BogdIH9ExE0EI41IQb2cesGrE10Jrgr3e2rRiNBy_NZpPJbnZm95vufjMDcOULKaVL-1u7QltulwcW17ZtGcJhL9CSXHAT7zye-MMH927mzSpwvYmFQcScfIZN08zf8lUiM3NV1iJbM4fuFmwT7rteEa21-b0ymWPKd0u7HbRG_dHUULeMLeRiP-qn5PAxqMH4a-CCNfLSzFLRlB-_cjL-d2Z70PgO1GPTDQTtQwXjA6iVniUr9-2qDmGZRvWRkeB7aW18waIvt3XF6MtCQsw1mybPccr6iyRT7BaTV0yXa2bOjYIyGzcgGtxE_aFV1lGwngigUkthr-1JFFx2tKmsoQLUHAPt2gK7jq0luUC-EqROj_BcB9Lkh3LammvteQqdQ6jGSYxHwBwPJScPQglzEdlxuOhRj6-0Y0sS6R5D3azN_K3IlDEvl-Xk7-5L2BlG43Aejib3p7BrdFWwt86gmi4zPCe4T8VFruVPukisxw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+-+International+Conference+on+Image+Processing&rft.atitle=Learning+Convolutional+Transforms+for+Lossy+Point+Cloud+Geometry+Compression&rft.au=Quach%2C+Maurice&rft.au=Valenzise%2C+Giuseppe&rft.au=Dufaux%2C+Frederic&rft.date=2019-09-01&rft.pub=IEEE&rft.eissn=2381-8549&rft.spage=4320&rft.epage=4324&rft_id=info:doi/10.1109%2FICIP.2019.8803413&rft.externalDocID=8803413 |