Optimized lifting schemes based on ENO stencils for image approximation
In this paper, we propose to improve the classical lifting-based wavelet transforms by defining three classes of pixels which will be predicted differently. More specifically, the proposed idea is inspired by the Essentially Non-Oscillatory (ENO) transform and consists in shifting the stencil used f...
Saved in:
Published in | 2015 IEEE International Conference on Image Processing (ICIP) pp. 4308 - 4312 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.09.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we propose to improve the classical lifting-based wavelet transforms by defining three classes of pixels which will be predicted differently. More specifically, the proposed idea is inspired by the Essentially Non-Oscillatory (ENO) transform and consists in shifting the stencil used for prediction in order to reduce the error near image singularities. Moreover, the different filters associated with these classes will be optimized in order to design a multiresolution representation well adapted to image characteristics. Our simulations show that the resulting multiscale representation leads to much lower amplitudes of the detail coefficients and improves the linear approximation properties. |
---|---|
AbstractList | In this paper, we propose to improve the classical lifting-based wavelet transforms by defining three classes of pixels which will be predicted differently. More specifically, the proposed idea is inspired by the Essentially Non-Oscillatory (ENO) transform and consists in shifting the stencil used for prediction in order to reduce the error near image singularities. Moreover, the different filters associated with these classes will be optimized in order to design a multiresolution representation well adapted to image characteristics. Our simulations show that the resulting multiscale representation leads to much lower amplitudes of the detail coefficients and improves the linear approximation properties. |
Author | Kaaniche, Mounir Matei, Basarab Meignen, Sylvain |
Author_xml | – sequence: 1 givenname: Mounir surname: Kaaniche fullname: Kaaniche, Mounir organization: Inst. Galilee, Univ. Paris 13, Villetaneuse, France – sequence: 2 givenname: Basarab surname: Matei fullname: Matei, Basarab organization: Inst. Galilee, Univ. Paris 13, Villetaneuse, France – sequence: 3 givenname: Sylvain surname: Meignen fullname: Meignen, Sylvain organization: LJK, Univ. of Grenoble, Grenoble, France |
BookMark | eNotj7FOwzAURY0EAy18AGLxDyTEfrZjjygqJVJFOhSJrbLT59ZS4kRxBuDriUSne3WGe3RX5DYOEQl5YkXOWGFe6qre57xgMi9BMsXMDVkxURqjAczXPdk24xz68Isn2gU_h3imqb1gj4k6mxY6RLr5aGiaMbahS9QPEw29PSO14zgN30ufwxAfyJ23XcLHa67J59vmUL1nu2ZbV6-77MK1nLPStpJxUFI4b61zJYhWK6FEawonvAZ-MpoDs6idKZmRoAwq7xV47gsvYE2e_3cDIh7HadFPP8frN_gDtPpIeg |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ICIP.2015.7351619 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 147998339X 9781479983391 |
EndPage | 4312 |
ExternalDocumentID | 7351619 |
Genre | orig-research |
GroupedDBID | 6IE 6IH CBEJK RIE RIO |
ID | FETCH-LOGICAL-h285t-7ac5123654bfaabb734c86464c90b4f832d98231ae8b97195369e6ff63f2f0f43 |
IEDL.DBID | RIE |
IngestDate | Thu Jun 29 18:37:26 EDT 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-h285t-7ac5123654bfaabb734c86464c90b4f832d98231ae8b97195369e6ff63f2f0f43 |
OpenAccessLink | https://hal.science/hal-01912892/document |
PageCount | 5 |
ParticipantIDs | ieee_primary_7351619 |
PublicationCentury | 2000 |
PublicationDate | 20150901 |
PublicationDateYYYYMMDD | 2015-09-01 |
PublicationDate_xml | – month: 09 year: 2015 text: 20150901 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | 2015 IEEE International Conference on Image Processing (ICIP) |
PublicationTitleAbbrev | ICIP |
PublicationYear | 2015 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.9745743 |
Snippet | In this paper, we propose to improve the classical lifting-based wavelet transforms by defining three classes of pixels which will be predicted differently.... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 4308 |
SubjectTerms | Adaptive wavelets ENO prediction filter optimization image approximation Image resolution Lifting scheme Linear approximation Optimization Polynomials Wavelet transforms |
Title | Optimized lifting schemes based on ENO stencils for image approximation |
URI | https://ieeexplore.ieee.org/document/7351619 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LTgIxFL0BVq7UgPGdLlzaYR5th64JCCYCC0nYkT7jRBiMDInh621nRozGhbumadJ372nPubcAd0zQMNaRwiSRIfZMExYOmGAtuEMPboXISm0xYaM5eVzQRQPuD74wxphSfGYCnyy5fL1RO_9U1k0T6gAKb0Iz5bzy1aqJyijk3XF_PPNaLRrU5X58mFLai-ExPH3VVMlEXoNdIQO1_xWE8b9NOYHOt2cemh1szik0TN6Gh6nb9-tsbzRaZdbrmJG7s5q12SJvpDTa5GgwmaKtx8fZaoscUEXZ2p0kqAwp_pFV_osdmA8Hz_0Rrj9IwC9xjxY4FYr66CmUSCuElGlCVI8RRhQPJbFus2ruaT5hepKnnjBj3DBrWWJjG1qSnEEr3-TmHBCLJYmIYZKkitBIcyW0sixVmrkriJYX0PaDsHyrYmAs6_5f_p19BUd-Iiot1jW0iveduXHGu5C35ax9AqULm4Q |
link.rule.ids | 310,311,783,787,792,793,799,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JTwIxGG0QD3pSA8bdHjzaYZa2Mz0TEJTtAAk30jVOhMHIkBh-ve3MqNF48NY0Tbr3e-1731cA7ignfqgCiXAkfOSYJsQtMEGKM4se7AoRpdpiRHsz_Dgn8xq4__KF0VoX4jPtuWTB5au13LqnslYcEQtQ2B7Yt7g6oaW3VkVVBj5r9dv9iVNrEa8q-ePLlMJidI_A8LOuUijy4m1z4cndrzCM_23MMWh---bByZfVOQE1nTXAw9ju_FW60wouU-OUzNDeWvVKb6AzUwquM9gZjeHGIeR0uYEWqsJ0Zc8SWAQVf09LD8YmmHU703YPVV8koOcwITmKuSQufgrBwnAuRBxhmVBMsWS-wMZuV8Uc0cd1IljsKDPKNDWGRiY0vsHRKahn60yfAUhDgQOsqcCxxCRQTHIlDY2lovYSosQ5aLhBWLyWUTAWVf8v_s6-BQe96XCwGPRHT5fg0E1Kqcy6AvX8bauvrSnPxU0xgx_1YJ7P |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+IEEE+International+Conference+on+Image+Processing+%28ICIP%29&rft.atitle=Optimized+lifting+schemes+based+on+ENO+stencils+for+image+approximation&rft.au=Kaaniche%2C+Mounir&rft.au=Matei%2C+Basarab&rft.au=Meignen%2C+Sylvain&rft.date=2015-09-01&rft.pub=IEEE&rft.spage=4308&rft.epage=4312&rft_id=info:doi/10.1109%2FICIP.2015.7351619&rft.externalDocID=7351619 |