Optimized lifting schemes based on ENO stencils for image approximation

In this paper, we propose to improve the classical lifting-based wavelet transforms by defining three classes of pixels which will be predicted differently. More specifically, the proposed idea is inspired by the Essentially Non-Oscillatory (ENO) transform and consists in shifting the stencil used f...

Full description

Saved in:
Bibliographic Details
Published in2015 IEEE International Conference on Image Processing (ICIP) pp. 4308 - 4312
Main Authors Kaaniche, Mounir, Matei, Basarab, Meignen, Sylvain
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.09.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we propose to improve the classical lifting-based wavelet transforms by defining three classes of pixels which will be predicted differently. More specifically, the proposed idea is inspired by the Essentially Non-Oscillatory (ENO) transform and consists in shifting the stencil used for prediction in order to reduce the error near image singularities. Moreover, the different filters associated with these classes will be optimized in order to design a multiresolution representation well adapted to image characteristics. Our simulations show that the resulting multiscale representation leads to much lower amplitudes of the detail coefficients and improves the linear approximation properties.
AbstractList In this paper, we propose to improve the classical lifting-based wavelet transforms by defining three classes of pixels which will be predicted differently. More specifically, the proposed idea is inspired by the Essentially Non-Oscillatory (ENO) transform and consists in shifting the stencil used for prediction in order to reduce the error near image singularities. Moreover, the different filters associated with these classes will be optimized in order to design a multiresolution representation well adapted to image characteristics. Our simulations show that the resulting multiscale representation leads to much lower amplitudes of the detail coefficients and improves the linear approximation properties.
Author Kaaniche, Mounir
Matei, Basarab
Meignen, Sylvain
Author_xml – sequence: 1
  givenname: Mounir
  surname: Kaaniche
  fullname: Kaaniche, Mounir
  organization: Inst. Galilee, Univ. Paris 13, Villetaneuse, France
– sequence: 2
  givenname: Basarab
  surname: Matei
  fullname: Matei, Basarab
  organization: Inst. Galilee, Univ. Paris 13, Villetaneuse, France
– sequence: 3
  givenname: Sylvain
  surname: Meignen
  fullname: Meignen, Sylvain
  organization: LJK, Univ. of Grenoble, Grenoble, France
BookMark eNotj7FOwzAURY0EAy18AGLxDyTEfrZjjygqJVJFOhSJrbLT59ZS4kRxBuDriUSne3WGe3RX5DYOEQl5YkXOWGFe6qre57xgMi9BMsXMDVkxURqjAczXPdk24xz68Isn2gU_h3imqb1gj4k6mxY6RLr5aGiaMbahS9QPEw29PSO14zgN30ufwxAfyJ23XcLHa67J59vmUL1nu2ZbV6-77MK1nLPStpJxUFI4b61zJYhWK6FEawonvAZ-MpoDs6idKZmRoAwq7xV47gsvYE2e_3cDIh7HadFPP8frN_gDtPpIeg
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICIP.2015.7351619
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 147998339X
9781479983391
EndPage 4312
ExternalDocumentID 7351619
Genre orig-research
GroupedDBID 6IE
6IH
CBEJK
RIE
RIO
ID FETCH-LOGICAL-h285t-7ac5123654bfaabb734c86464c90b4f832d98231ae8b97195369e6ff63f2f0f43
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:26 EDT 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-h285t-7ac5123654bfaabb734c86464c90b4f832d98231ae8b97195369e6ff63f2f0f43
OpenAccessLink https://hal.science/hal-01912892/document
PageCount 5
ParticipantIDs ieee_primary_7351619
PublicationCentury 2000
PublicationDate 20150901
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: 20150901
  day: 01
PublicationDecade 2010
PublicationTitle 2015 IEEE International Conference on Image Processing (ICIP)
PublicationTitleAbbrev ICIP
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.9745743
Snippet In this paper, we propose to improve the classical lifting-based wavelet transforms by defining three classes of pixels which will be predicted differently....
SourceID ieee
SourceType Publisher
StartPage 4308
SubjectTerms Adaptive wavelets
ENO prediction
filter optimization
image approximation
Image resolution
Lifting scheme
Linear approximation
Optimization
Polynomials
Wavelet transforms
Title Optimized lifting schemes based on ENO stencils for image approximation
URI https://ieeexplore.ieee.org/document/7351619
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LTgIxFL0BVq7UgPGdLlzaYR5th64JCCYCC0nYkT7jRBiMDInh621nRozGhbumadJ372nPubcAd0zQMNaRwiSRIfZMExYOmGAtuEMPboXISm0xYaM5eVzQRQPuD74wxphSfGYCnyy5fL1RO_9U1k0T6gAKb0Iz5bzy1aqJyijk3XF_PPNaLRrU5X58mFLai-ExPH3VVMlEXoNdIQO1_xWE8b9NOYHOt2cemh1szik0TN6Gh6nb9-tsbzRaZdbrmJG7s5q12SJvpDTa5GgwmaKtx8fZaoscUEXZ2p0kqAwp_pFV_osdmA8Hz_0Rrj9IwC9xjxY4FYr66CmUSCuElGlCVI8RRhQPJbFus2ruaT5hepKnnjBj3DBrWWJjG1qSnEEr3-TmHBCLJYmIYZKkitBIcyW0sixVmrkriJYX0PaDsHyrYmAs6_5f_p19BUd-Iiot1jW0iveduXHGu5C35ax9AqULm4Q
link.rule.ids 310,311,783,787,792,793,799,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JTwIxGG0QD3pSA8bdHjzaYZa2Mz0TEJTtAAk30jVOhMHIkBh-ve3MqNF48NY0Tbr3e-1731cA7ignfqgCiXAkfOSYJsQtMEGKM4se7AoRpdpiRHsz_Dgn8xq4__KF0VoX4jPtuWTB5au13LqnslYcEQtQ2B7Yt7g6oaW3VkVVBj5r9dv9iVNrEa8q-ePLlMJidI_A8LOuUijy4m1z4cndrzCM_23MMWh---bByZfVOQE1nTXAw9ju_FW60wouU-OUzNDeWvVKb6AzUwquM9gZjeHGIeR0uYEWqsJ0Zc8SWAQVf09LD8YmmHU703YPVV8koOcwITmKuSQufgrBwnAuRBxhmVBMsWS-wMZuV8Uc0cd1IljsKDPKNDWGRiY0vsHRKahn60yfAUhDgQOsqcCxxCRQTHIlDY2lovYSosQ5aLhBWLyWUTAWVf8v_s6-BQe96XCwGPRHT5fg0E1Kqcy6AvX8bauvrSnPxU0xgx_1YJ7P
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+IEEE+International+Conference+on+Image+Processing+%28ICIP%29&rft.atitle=Optimized+lifting+schemes+based+on+ENO+stencils+for+image+approximation&rft.au=Kaaniche%2C+Mounir&rft.au=Matei%2C+Basarab&rft.au=Meignen%2C+Sylvain&rft.date=2015-09-01&rft.pub=IEEE&rft.spage=4308&rft.epage=4312&rft_id=info:doi/10.1109%2FICIP.2015.7351619&rft.externalDocID=7351619