End-to-End Deep Multi-Score Model for No-Reference Stereoscopic Image Quality Assessment

Deep learning-based quality metrics have recently given significant improvement in Image Quality Assessment (IQA). In the field of stereoscopic vision, information is evenly distributed with slight disparity to the left and right eyes. However, due to asymmetric distortion, the objective quality rat...

Full description

Saved in:
Bibliographic Details
Published in2022 IEEE International Conference on Image Processing (ICIP) pp. 2721 - 2725
Main Authors Messai, Oussama, Chetouani, Aladine
Format Conference Proceeding
LanguageEnglish
Published IEEE 16.10.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Deep learning-based quality metrics have recently given significant improvement in Image Quality Assessment (IQA). In the field of stereoscopic vision, information is evenly distributed with slight disparity to the left and right eyes. However, due to asymmetric distortion, the objective quality ratings for the left and right images would differ, necessitating the learning of unique quality indicators for each view. Unlike existing stereoscopic IQA measures which focus mainly on estimating a global human score, we suggest incorporating left, right, and stereoscopic objective scores to extract the corresponding properties of each view, and so forth estimating stereoscopic image quality without reference. Therefore, we use a deep multi-score Convolutional Neural Network (CNN). Our model has been trained to perform four tasks: First, predict the left view's quality. Second, predict the quality of the left view. Third and fourth, predict the quality of the stereo view and global quality, respectively, with the global score serving as the ultimate quality. Experiments are conducted on Waterloo IVC 3D Phase 1 and Phase 2 databases. The results obtained show the superiority of our method when comparing with those of the state-of-the-art. The implementation code can be found at: https://github.com/o-messai/multi-score-SIQA
AbstractList Deep learning-based quality metrics have recently given significant improvement in Image Quality Assessment (IQA). In the field of stereoscopic vision, information is evenly distributed with slight disparity to the left and right eyes. However, due to asymmetric distortion, the objective quality ratings for the left and right images would differ, necessitating the learning of unique quality indicators for each view. Unlike existing stereoscopic IQA measures which focus mainly on estimating a global human score, we suggest incorporating left, right, and stereoscopic objective scores to extract the corresponding properties of each view, and so forth estimating stereoscopic image quality without reference. Therefore, we use a deep multi-score Convolutional Neural Network (CNN). Our model has been trained to perform four tasks: First, predict the left view's quality. Second, predict the quality of the left view. Third and fourth, predict the quality of the stereo view and global quality, respectively, with the global score serving as the ultimate quality. Experiments are conducted on Waterloo IVC 3D Phase 1 and Phase 2 databases. The results obtained show the superiority of our method when comparing with those of the state-of-the-art. The implementation code can be found at: https://github.com/o-messai/multi-score-SIQA
Author Chetouani, Aladine
Messai, Oussama
Author_xml – sequence: 1
  givenname: Oussama
  surname: Messai
  fullname: Messai, Oussama
  organization: Univ Lyon,Univ Lyon 2, CNRS, INSA Lyon, UCBL, LIRIS, UMR5205,Bron,France,F-69676
– sequence: 2
  givenname: Aladine
  surname: Chetouani
  fullname: Chetouani, Aladine
  organization: University of Orleans,PRISME Laboratory,France
BookMark eNotkMtKw0AYhUdRsKk-gSDzAhPnlrksS6waaL1VwV2ZZP5oJMmETLro21uxq-8c-DiLk6CzPvSA0A2jKWPU3hZ58SJVplXKKeepNVYrpk5QwpTKpFWc6lM048IwYg79AiUx_lDKKRNshj6XvSdTIAfgO4ABr3ft1JBNFUbA6-ChxXUY8VMgb1DDCH0FeDMdQohVGJoKF537Avy6c20z7fEiRoixg366ROe1ayNcHTlHH_fL9_yRrJ4finyxIt_cZBPRBkB7WWtw3AgrWOVLZjMuLHPegwTJnRZ_SqkrTkvqtTO0LqXNRCkFiDm6_t9tAGA7jE3nxv32-IL4BTkFU_8
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICIP46576.2022.9897616
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 1665496207
9781665496209
EISSN 2381-8549
EndPage 2725
ExternalDocumentID 9897616
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
JC5
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-h285t-78ee7d4f7ea283931cdb1952391adde4e42a73e7d4b7c20b0d7a80fb4953b43e3
IEDL.DBID RIE
IngestDate Wed Jun 26 19:25:04 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-h285t-78ee7d4f7ea283931cdb1952391adde4e42a73e7d4b7c20b0d7a80fb4953b43e3
OpenAccessLink https://hal.science/hal-03871704/document
PageCount 5
ParticipantIDs ieee_primary_9897616
PublicationCentury 2000
PublicationDate 2022-Oct.-16
PublicationDateYYYYMMDD 2022-10-16
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-Oct.-16
  day: 16
PublicationDecade 2020
PublicationTitle 2022 IEEE International Conference on Image Processing (ICIP)
PublicationTitleAbbrev ICIP
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020131
Score 2.2825947
Snippet Deep learning-based quality metrics have recently given significant improvement in Image Quality Assessment (IQA). In the field of stereoscopic vision,...
SourceID ieee
SourceType Publisher
StartPage 2721
SubjectTerms Convolutional Neural Network (CNN)
Distortion
Image quality
Multi-score deep learning
No-reference stereoscopic image quality assessment
Observers
Predictive models
Stereo image processing
Three-dimensional displays
Title End-to-End Deep Multi-Score Model for No-Reference Stereoscopic Image Quality Assessment
URI https://ieeexplore.ieee.org/document/9897616
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA7bTp6mbuJvcvBouiZNm-Yoc2MTHIM52G00ySuK2o7ZHfSvN2lrRfHgqaEkpLxH8t7re9_3ELpiEFEKLq2eJppwG-rYM5cYO4rBaM6Mn5Rsn7NosuR3q3DVQtcNFgYAyuIz8NywzOWbXO_cr7KBjK3xpFEbtYWUFVarCa4cb0yNAKa-HEyH0zmPrDNtQ0DGvHrljxYqpQUZd9H9195V4ciztyuUpz9-0TL-9-P2Uf8bq4fnjRU6QC3IDlG3di5xfXTfemg1ygwpcmIf-BZgg0voLVk4GkvsOqK9YOu_4llOGu5ZvLBCh9wBV540nr7aqwdXnBvv-KZh9Oyj5Xj0MJyQuq0CeWRxWBARAwjDUwGJ9S1kQLVRVFotSeouOw6cJSJwU5TQzFe-EUnsp8pVoioeQHCEOlmewTHCPjNUBGnIVcp4mGjHdCMDE6UufReb9AT1nKDWm4o5Y13L6PTv12dozynLWQYanaNOsd3BhTX5hbosdf0JtdOrug
link.rule.ids 310,311,783,787,792,793,799,23942,23943,25152,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKGWAq0CK-8cCI09hxvkZUWjXQVpXaSt2q2L4IBCQVpAP8euwkBIEYmGJFjhLdyb53uXvPCF0x8CgFU1ZPYkm4TnX0mouVHgWgJGfKjgu1z4k3XPC7pbtsoOuaCwMARfMZWGZY1PJVJjfmV1k3DHTwpN4W2ta4OvBKtladXhnlmIoDTO2wG_WiKfc0nNZJIGNW9eyPQ1SKGDJoofHX28vWkSdrkwtLfvwSZvzv5-2hzjdbD0_rOLSPGpAeoFYFL3G1eN_aaNlPFckzoi_4FmCNC_ItmRkhS2zORHvGGsHiSUZq9Vk802aHzFBXHiWOXvTmg0vVjXd8U2t6dtBi0J_3hqQ6WIE8sMDNiR8A-IonPsQaXYQOlUrQUPsppGa748BZ7DtmivAls4Wt_DiwE2F6UQV3wDlEzTRL4QhhmynqO4nLRcK4G0ujdRM6yktMAS9QyTFqG0Ot1qV2xqqy0cnfty_RznA-Hq1G0eT-FO0ax5k4Qb0z1MxfN3CuAUAuLgq_fwLe_68F
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2022+IEEE+International+Conference+on+Image+Processing+%28ICIP%29&rft.atitle=End-to-End+Deep+Multi-Score+Model+for+No-Reference+Stereoscopic+Image+Quality+Assessment&rft.au=Messai%2C+Oussama&rft.au=Chetouani%2C+Aladine&rft.date=2022-10-16&rft.pub=IEEE&rft.eissn=2381-8549&rft.spage=2721&rft.epage=2725&rft_id=info:doi/10.1109%2FICIP46576.2022.9897616&rft.externalDocID=9897616