Algorithms for Manipulating Quaternions in Floating-Point Arithmetic
Quaternions form a set of four global but not unique parameters, which can represent three-dimensional rotations in a non-singular way. They are frequently used in computer graphics, drone and aerospace vehicle control. Floating-point quaternion operations (addition, multiplication, reciprocal, norm...
Saved in:
Published in | Proceedings - Symposium on Computer Arithmetic pp. 48 - 55 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Quaternions form a set of four global but not unique parameters, which can represent three-dimensional rotations in a non-singular way. They are frequently used in computer graphics, drone and aerospace vehicle control. Floating-point quaternion operations (addition, multiplication, reciprocal, norm) are often implemented "by the book". Although all usual implementations are algebraically equivalent, their numerical behavior can be quite different. For instance, the arithmetic operations on quaternions as well as conversion algorithms to/from rotation matrices are subject to spurious under/overflow (an intermediate calculation underflows or overflows, making the computed final result irrelevant, although the exact result is in the domain of the representable numbers). The goal of this paper is to analyze and then propose workarounds and better accuracy alternatives for such algorithms. |
---|---|
AbstractList | Quaternions form a set of four global but not unique parameters, which can represent three-dimensional rotations in a non-singular way. They are frequently used in computer graphics, drone and aerospace vehicle control. Floating-point quaternion operations (addition, multiplication, reciprocal, norm) are often implemented "by the book". Although all usual implementations are algebraically equivalent, their numerical behavior can be quite different. For instance, the arithmetic operations on quaternions as well as conversion algorithms to/from rotation matrices are subject to spurious under/overflow (an intermediate calculation underflows or overflows, making the computed final result irrelevant, although the exact result is in the domain of the representable numbers). The goal of this paper is to analyze and then propose workarounds and better accuracy alternatives for such algorithms. |
Author | Muller, Jean-Michel Joldes, Mioara |
Author_xml | – sequence: 1 givenname: Mioara surname: Joldes fullname: Joldes, Mioara organization: CNRS, LAAS,Toulouse,France – sequence: 2 givenname: Jean-Michel surname: Muller fullname: Muller, Jean-Michel organization: Université de Lyon,CNRS, LIP,Lyon,France |
BookMark | eNotjF1LwzAYRqMouE5_gQj5A63Jm6_mskznBhM_mNcjXd9skS4ZbXfhv7dMrx44POdk5CqmiIQ8cFZwzuxj9blcL2RZWlMAA1Ywxri-IBk3UHLDR3ZJJqCMzgG0uiFZ33-PF2u1mZCnqt2lLgz7Q0996uiri-F4at0Q4o5-nNyAXQwp9jREOm_TmefvKcSBVmcNh7C9JdfetT3e_e-UfM2f17NFvnp7Wc6qVb6HUg650yi4t8bImtlSMMRG1OC8cgrAo5PCIZN1jeB5A2Lr6obXArzUCFKpRkzJ_V83IOLm2IWD6342lispx94v6jZORA |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ARITH48897.2020.00016 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 1728171202 9781728171203 |
EISSN | 2576-2265 |
EndPage | 55 |
ExternalDocumentID | 9154498 |
Genre | orig-research |
GroupedDBID | 23M 29F 29P 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO |
ID | FETCH-LOGICAL-h284t-a6e31f9774b09830eed3b2af5a522fea43ae04bbe2f1d23cabd1b32f46e2455d3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:30:36 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-h284t-a6e31f9774b09830eed3b2af5a522fea43ae04bbe2f1d23cabd1b32f46e2455d3 |
OpenAccessLink | https://hal.science/hal-02470766 |
PageCount | 8 |
ParticipantIDs | ieee_primary_9154498 |
PublicationCentury | 2000 |
PublicationDate | 2020-June |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-June |
PublicationDecade | 2020 |
PublicationTitle | Proceedings - Symposium on Computer Arithmetic |
PublicationTitleAbbrev | ARITH |
PublicationYear | 2020 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0019967 |
Score | 2.1958218 |
Snippet | Quaternions form a set of four global but not unique parameters, which can represent three-dimensional rotations in a non-singular way. They are frequently... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 48 |
SubjectTerms | Aerospace control Algebra Computer graphics Drones Error analysis Floating-point arithmetic Quaternions rounding error analysis |
Title | Algorithms for Manipulating Quaternions in Floating-Point Arithmetic |
URI | https://ieeexplore.ieee.org/document/9154498 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGG6QkydUMH6nB48OtvVj9EhUgiYYNJBwI_2ERdwMbhd_vW030BgP3pYmy5q-7d6n7fO8DwDXVMeYGKIDJCQJMKVhwESfBghhxCmVBCtPkH2ioxl-nJN5A9zstDBaa08-01336O_yVS5Ld1TWY650DOvvgT27cau0WrsbA4vbk1qhE4WsN3h5mI7s5GSJ3QPGjr4VOkvzHw4qPoEMW2C8_XTFG3ntloXoys9fVRn_27cD0PmW6sHJLgkdgobOjkBr69UA66XbBneD9TLfpMXq7QNanArHPEsr665sCZ9L7s4F3QyEaQaH69y3B5M8zQo48K85sWMHzIb309tRUDsoBCubdoqAU40i4yCeCFkfhbYvSMTcEG5hl9HcxkOHWAgdm0jFSHKhIoFig30IiULHoJnlmT4BkHKTSCNwrJjBieozRRJj4Y8U0v4uuTkFbTcoi_eqSMaiHo-zv5vPwb4LS8W5ugDNYlPqS5vdC3Hlw_oFrZemjw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwGG0QD3pCBeNve_DoYFt_bDsSlQwFggYSbqTdWljEzeB28a-37QYa48Hb0mRZ06_r99q-9z0AbqhwMZFEWIhHxMKU2lbAfWohhBGjNCI4NgTZEQ2n-HFGZjVwu9XCCCEM-Uy09aO5y4-zqNBHZZ1Al44J_B2wq_I-cUq11vbOQCF3r9LoOHbQ6b70J6GanoGndoGuJnDZ2tT8h4eKSSG9BhhuPl4yR17bRc7b0eevuoz_7d0BaH2L9eB4m4YOQU2kR6CxcWuA1c_bBPfd1SJbJ_ny7QMqpAqHLE1K8650AZ8Lpk8G9RyESQp7q8y0W-MsSXPYNa9puWMLTHsPk7vQqjwUrKVKPLnFqECO1CCP24GPbNUXxF0mCVPASwqmIiJszLlwpRO7KGI8djhyJTZBJDE6BvU0S8UJgJRJL5Icu3EgsRf7QUw8qQBQxCO1YDJ5Cpp6UObvZZmMeTUeZ383X4O9cDIczAf90dM52NchKhlYF6CerwtxqXJ9zq9MiL8AjCWp2A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+-+Symposium+on+Computer+Arithmetic&rft.atitle=Algorithms+for+Manipulating+Quaternions+in+Floating-Point+Arithmetic&rft.au=Joldes%2C+Mioara&rft.au=Muller%2C+Jean-Michel&rft.date=2020-06-01&rft.pub=IEEE&rft.eissn=2576-2265&rft.spage=48&rft.epage=55&rft_id=info:doi/10.1109%2FARITH48897.2020.00016&rft.externalDocID=9154498 |