Algorithms for Manipulating Quaternions in Floating-Point Arithmetic

Quaternions form a set of four global but not unique parameters, which can represent three-dimensional rotations in a non-singular way. They are frequently used in computer graphics, drone and aerospace vehicle control. Floating-point quaternion operations (addition, multiplication, reciprocal, norm...

Full description

Saved in:
Bibliographic Details
Published inProceedings - Symposium on Computer Arithmetic pp. 48 - 55
Main Authors Joldes, Mioara, Muller, Jean-Michel
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Quaternions form a set of four global but not unique parameters, which can represent three-dimensional rotations in a non-singular way. They are frequently used in computer graphics, drone and aerospace vehicle control. Floating-point quaternion operations (addition, multiplication, reciprocal, norm) are often implemented "by the book". Although all usual implementations are algebraically equivalent, their numerical behavior can be quite different. For instance, the arithmetic operations on quaternions as well as conversion algorithms to/from rotation matrices are subject to spurious under/overflow (an intermediate calculation underflows or overflows, making the computed final result irrelevant, although the exact result is in the domain of the representable numbers). The goal of this paper is to analyze and then propose workarounds and better accuracy alternatives for such algorithms.
AbstractList Quaternions form a set of four global but not unique parameters, which can represent three-dimensional rotations in a non-singular way. They are frequently used in computer graphics, drone and aerospace vehicle control. Floating-point quaternion operations (addition, multiplication, reciprocal, norm) are often implemented "by the book". Although all usual implementations are algebraically equivalent, their numerical behavior can be quite different. For instance, the arithmetic operations on quaternions as well as conversion algorithms to/from rotation matrices are subject to spurious under/overflow (an intermediate calculation underflows or overflows, making the computed final result irrelevant, although the exact result is in the domain of the representable numbers). The goal of this paper is to analyze and then propose workarounds and better accuracy alternatives for such algorithms.
Author Muller, Jean-Michel
Joldes, Mioara
Author_xml – sequence: 1
  givenname: Mioara
  surname: Joldes
  fullname: Joldes, Mioara
  organization: CNRS, LAAS,Toulouse,France
– sequence: 2
  givenname: Jean-Michel
  surname: Muller
  fullname: Muller, Jean-Michel
  organization: Université de Lyon,CNRS, LIP,Lyon,France
BookMark eNotjF1LwzAYRqMouE5_gQj5A63Jm6_mskznBhM_mNcjXd9skS4ZbXfhv7dMrx44POdk5CqmiIQ8cFZwzuxj9blcL2RZWlMAA1Ywxri-IBk3UHLDR3ZJJqCMzgG0uiFZ33-PF2u1mZCnqt2lLgz7Q0996uiri-F4at0Q4o5-nNyAXQwp9jREOm_TmefvKcSBVmcNh7C9JdfetT3e_e-UfM2f17NFvnp7Wc6qVb6HUg650yi4t8bImtlSMMRG1OC8cgrAo5PCIZN1jeB5A2Lr6obXArzUCFKpRkzJ_V83IOLm2IWD6342lispx94v6jZORA
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ARITH48897.2020.00016
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 1728171202
9781728171203
EISSN 2576-2265
EndPage 55
ExternalDocumentID 9154498
Genre orig-research
GroupedDBID 23M
29F
29P
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-h284t-a6e31f9774b09830eed3b2af5a522fea43ae04bbe2f1d23cabd1b32f46e2455d3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:30:36 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-h284t-a6e31f9774b09830eed3b2af5a522fea43ae04bbe2f1d23cabd1b32f46e2455d3
OpenAccessLink https://hal.science/hal-02470766
PageCount 8
ParticipantIDs ieee_primary_9154498
PublicationCentury 2000
PublicationDate 2020-June
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-June
PublicationDecade 2020
PublicationTitle Proceedings - Symposium on Computer Arithmetic
PublicationTitleAbbrev ARITH
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0019967
Score 2.1958218
Snippet Quaternions form a set of four global but not unique parameters, which can represent three-dimensional rotations in a non-singular way. They are frequently...
SourceID ieee
SourceType Publisher
StartPage 48
SubjectTerms Aerospace control
Algebra
Computer graphics
Drones
Error analysis
Floating-point arithmetic
Quaternions
rounding error analysis
Title Algorithms for Manipulating Quaternions in Floating-Point Arithmetic
URI https://ieeexplore.ieee.org/document/9154498
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGG6QkydUMH6nB48OtvVj9EhUgiYYNJBwI_2ERdwMbhd_vW030BgP3pYmy5q-7d6n7fO8DwDXVMeYGKIDJCQJMKVhwESfBghhxCmVBCtPkH2ioxl-nJN5A9zstDBaa08-01336O_yVS5Ld1TWY650DOvvgT27cau0WrsbA4vbk1qhE4WsN3h5mI7s5GSJ3QPGjr4VOkvzHw4qPoEMW2C8_XTFG3ntloXoys9fVRn_27cD0PmW6sHJLgkdgobOjkBr69UA66XbBneD9TLfpMXq7QNanArHPEsr665sCZ9L7s4F3QyEaQaH69y3B5M8zQo48K85sWMHzIb309tRUDsoBCubdoqAU40i4yCeCFkfhbYvSMTcEG5hl9HcxkOHWAgdm0jFSHKhIoFig30IiULHoJnlmT4BkHKTSCNwrJjBieozRRJj4Y8U0v4uuTkFbTcoi_eqSMaiHo-zv5vPwb4LS8W5ugDNYlPqS5vdC3Hlw_oFrZemjw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwGG0QD3pCBeNve_DoYFt_bDsSlQwFggYSbqTdWljEzeB28a-37QYa48Hb0mRZ06_r99q-9z0AbqhwMZFEWIhHxMKU2lbAfWohhBGjNCI4NgTZEQ2n-HFGZjVwu9XCCCEM-Uy09aO5y4-zqNBHZZ1Al44J_B2wq_I-cUq11vbOQCF3r9LoOHbQ6b70J6GanoGndoGuJnDZ2tT8h4eKSSG9BhhuPl4yR17bRc7b0eevuoz_7d0BaH2L9eB4m4YOQU2kR6CxcWuA1c_bBPfd1SJbJ_ny7QMqpAqHLE1K8650AZ8Lpk8G9RyESQp7q8y0W-MsSXPYNa9puWMLTHsPk7vQqjwUrKVKPLnFqECO1CCP24GPbNUXxF0mCVPASwqmIiJszLlwpRO7KGI8djhyJTZBJDE6BvU0S8UJgJRJL5Icu3EgsRf7QUw8qQBQxCO1YDJ5Cpp6UObvZZmMeTUeZ383X4O9cDIczAf90dM52NchKhlYF6CerwtxqXJ9zq9MiL8AjCWp2A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+-+Symposium+on+Computer+Arithmetic&rft.atitle=Algorithms+for+Manipulating+Quaternions+in+Floating-Point+Arithmetic&rft.au=Joldes%2C+Mioara&rft.au=Muller%2C+Jean-Michel&rft.date=2020-06-01&rft.pub=IEEE&rft.eissn=2576-2265&rft.spage=48&rft.epage=55&rft_id=info:doi/10.1109%2FARITH48897.2020.00016&rft.externalDocID=9154498