BrightFlow: Brightness-Change-Aware Unsupervised Learning of Optical Flow
Unsupervised optical flow estimation relies on the assumption that pixels characterizing the same observed object should exhibit a stable appearance across video frames. With this assumption, the long-standing principle behind flow estimation consists in optimizing a photometric loss that maximizes...
Saved in:
Published in | Proceedings / IEEE Workshop on Applications of Computer Vision pp. 2060 - 2069 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.01.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2642-9381 |
DOI | 10.1109/WACV56688.2023.00210 |
Cover
Loading…
Abstract | Unsupervised optical flow estimation relies on the assumption that pixels characterizing the same observed object should exhibit a stable appearance across video frames. With this assumption, the long-standing principle behind flow estimation consists in optimizing a photometric loss that maximizes the similarity between paired pixels in successive frames. However, these frames could be subject to strong brightness changes due to the radiometric properties of scenes as well as their viewing conditions.In this paper, we present BrightFlow, a new method to train any optical flow estimation network in an unsupervised manner. It consists in training two networks that jointly estimate optical flow and brightness changes. These changes are then compensated in the photometric loss so that reconstruction errors due to shadows or reflections will not affect negatively the training. As this compensation mechanism is only used at training stage, our method does not impact the number of parameters or the complexity at inference. Extensive experiments conducted on standard datasets and optical flow architectures show a consistent gain of our method. Source code is available at https://github.com/CEA-LIST/BrightFlow. |
---|---|
AbstractList | Unsupervised optical flow estimation relies on the assumption that pixels characterizing the same observed object should exhibit a stable appearance across video frames. With this assumption, the long-standing principle behind flow estimation consists in optimizing a photometric loss that maximizes the similarity between paired pixels in successive frames. However, these frames could be subject to strong brightness changes due to the radiometric properties of scenes as well as their viewing conditions.In this paper, we present BrightFlow, a new method to train any optical flow estimation network in an unsupervised manner. It consists in training two networks that jointly estimate optical flow and brightness changes. These changes are then compensated in the photometric loss so that reconstruction errors due to shadows or reflections will not affect negatively the training. As this compensation mechanism is only used at training stage, our method does not impact the number of parameters or the complexity at inference. Extensive experiments conducted on standard datasets and optical flow architectures show a consistent gain of our method. Source code is available at https://github.com/CEA-LIST/BrightFlow. |
Author | MARSAL, Remi CHABOT, Florian SAHBI, Hichem LOESCH, Angelique |
Author_xml | – sequence: 1 givenname: Remi surname: MARSAL fullname: MARSAL, Remi organization: Université Paris-Saclay, CEA, LIST,Palaiseau,France,F-91120 – sequence: 2 givenname: Florian surname: CHABOT fullname: CHABOT, Florian organization: Université Paris-Saclay, CEA, LIST,Palaiseau,France,F-91120 – sequence: 3 givenname: Angelique surname: LOESCH fullname: LOESCH, Angelique organization: Université Paris-Saclay, CEA, LIST,Palaiseau,France,F-91120 – sequence: 4 givenname: Hichem surname: SAHBI fullname: SAHBI, Hichem organization: Sorbonne University, CNRS,Paris,France,LIP6 F-75005 |
BookMark | eNotj8FOAjEURavRRED_gMX8wIzvtZ3SusOJKAkJG9EleTN9HcZgIVOU-PdicHXvWdyT3KG4irvIQowRCkRw9-_T6q00xtpCglQFgES4EEM0ptROaYOXYiCNlrlTFm_EMKUPAOXQqYGYP_ZduznMtrvjQ3bukVPKqw3FlvPpkXrOVjF97bn_7hL7bMHUxy622S5ky_2ha2ib_c1vxXWgbeK7_xyJ1ezptXrJF8vneTVd5Btp9SFHMhA0cBOaCVkPZIOxNSoM6kS61s40E-VNTc774CSVHj0BB6iDJ1OqkRifvR0zr_d990n9zxpPjwA1qF9VL0-r |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/WACV56688.2023.00210 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISBN | 1665493461 9781665493468 |
EISSN | 2642-9381 |
EndPage | 2069 |
ExternalDocumentID | 10030140 |
Genre | orig-research |
GroupedDBID | 29G 29O 6IE 6IF 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL RNS |
ID | FETCH-LOGICAL-h284t-1a60f40ecfc7a8d0a8f68b131f38d04b496c73d6ba9ddf92a5d1da0ef0bfda653 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:49:04 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-h284t-1a60f40ecfc7a8d0a8f68b131f38d04b496c73d6ba9ddf92a5d1da0ef0bfda653 |
OpenAccessLink | https://hal.science/hal-04042615 |
PageCount | 10 |
ParticipantIDs | ieee_primary_10030140 |
PublicationCentury | 2000 |
PublicationDate | 2023-Jan. |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-Jan. |
PublicationDecade | 2020 |
PublicationTitle | Proceedings / IEEE Workshop on Applications of Computer Vision |
PublicationTitleAbbrev | WACV |
PublicationYear | 2023 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0039193 |
Score | 2.2632303 |
Snippet | Unsupervised optical flow estimation relies on the assumption that pixels characterizing the same observed object should exhibit a stable appearance across... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 2060 |
SubjectTerms | action recognition Algorithms: Video recognition and understanding (tracking and algorithms (including transfer and un-supervised learning Brightness Estimation etc. formulations low-shot Machine learning architectures Optical losses Radiometry Reflection self semi Source coding Training |
Title | BrightFlow: Brightness-Change-Aware Unsupervised Learning of Optical Flow |
URI | https://ieeexplore.ieee.org/document/10030140 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8MgGCZuJ0_zY0adGg5emVAotN7m4jJNnB6c7rZAAU007bK1WeKvF2inxsTEC3lpQttAeL94nwcAzj0hjFaMokhnMWKMKSQJ1khaH4pJwiXz2OG7CR9P2e0snjVg9YCFMcaE4jPT92I4y9dFVvlUmdvhdUTQAi0XudVgrY3apalzRRpsHMHpxfNg-ORclcSXb0WexTTyINkfN6gEAzLqgMnm03XdyFu_KlU_-_jFyvjvf9sB3W-sHnz4skK7YMvke6DTOJew2bqrfXBzFeLw0XuxvoS17LUcquEFaLCWSwOn-apaeO2xcmMb6tUXWFh4vwg5b-iHd8F0dP04HKPmHgX06oxPiYjk2DJsMpsJmWgsE8sTRSix1PWYYinPBNVcyVRrm0Yy1kRLbCxWVkse0wPQzovcHAKYCiMSTN0LdcJUpFzDhKVcCxFbzsgR6PqpmS9qqoz5ZlaO_3jeA9t-eeqcxglol8vKnDorX6qzsLqfdaGnUw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA46D3qaPyb-NgevmUmTpq23ORybbtPDpruNpEkmKO3YWgb-9SZtpyIIXkpaSFsS8r73Xt73BYArJwijJKPIU7GPGGMSCYIVEsaFYoJwwRx3eDDk3TG7n_iTiqxecGG01kXxmW66ZrGXr9I4d6kyu8LLiGATbFng90lJ11obXhpZZ6RixxEcXb-02s_WWQldAZfndEw9R5P9cYZKASGdOhiuP15Wjrw180w2449fuoz__rtd0Phm68GnLxzaAxs62Qf1yr2E1eJdHoDebRGJd97T1Q0s287OoZJggForsdBwnCzzubMfS9u3El-dwdTAx3mR9YauewOMO3ejdhdVJymgVws_GSKCY8Owjk0ciFBhERoeSkKJofaOSRbxOKCKSxEpZSJP-IoogbXB0ijBfXoIakma6CMAo0AHIab2hSpk0pP2wgJDuQoC33BGjkHDDc10XoplTNejcvLH80uw3R0N-tN-b_hwCnbcVJUZjjNQyxa5PreYn8mLYqY_AWEQqpw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+%2F+IEEE+Workshop+on+Applications+of+Computer+Vision&rft.atitle=BrightFlow%3A+Brightness-Change-Aware+Unsupervised+Learning+of+Optical+Flow&rft.au=MARSAL%2C+Remi&rft.au=CHABOT%2C+Florian&rft.au=LOESCH%2C+Angelique&rft.au=SAHBI%2C+Hichem&rft.date=2023-01-01&rft.pub=IEEE&rft.eissn=2642-9381&rft.spage=2060&rft.epage=2069&rft_id=info:doi/10.1109%2FWACV56688.2023.00210&rft.externalDocID=10030140 |