BrightFlow: Brightness-Change-Aware Unsupervised Learning of Optical Flow

Unsupervised optical flow estimation relies on the assumption that pixels characterizing the same observed object should exhibit a stable appearance across video frames. With this assumption, the long-standing principle behind flow estimation consists in optimizing a photometric loss that maximizes...

Full description

Saved in:
Bibliographic Details
Published inProceedings / IEEE Workshop on Applications of Computer Vision pp. 2060 - 2069
Main Authors MARSAL, Remi, CHABOT, Florian, LOESCH, Angelique, SAHBI, Hichem
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.01.2023
Subjects
Online AccessGet full text
ISSN2642-9381
DOI10.1109/WACV56688.2023.00210

Cover

Loading…
Abstract Unsupervised optical flow estimation relies on the assumption that pixels characterizing the same observed object should exhibit a stable appearance across video frames. With this assumption, the long-standing principle behind flow estimation consists in optimizing a photometric loss that maximizes the similarity between paired pixels in successive frames. However, these frames could be subject to strong brightness changes due to the radiometric properties of scenes as well as their viewing conditions.In this paper, we present BrightFlow, a new method to train any optical flow estimation network in an unsupervised manner. It consists in training two networks that jointly estimate optical flow and brightness changes. These changes are then compensated in the photometric loss so that reconstruction errors due to shadows or reflections will not affect negatively the training. As this compensation mechanism is only used at training stage, our method does not impact the number of parameters or the complexity at inference. Extensive experiments conducted on standard datasets and optical flow architectures show a consistent gain of our method. Source code is available at https://github.com/CEA-LIST/BrightFlow.
AbstractList Unsupervised optical flow estimation relies on the assumption that pixels characterizing the same observed object should exhibit a stable appearance across video frames. With this assumption, the long-standing principle behind flow estimation consists in optimizing a photometric loss that maximizes the similarity between paired pixels in successive frames. However, these frames could be subject to strong brightness changes due to the radiometric properties of scenes as well as their viewing conditions.In this paper, we present BrightFlow, a new method to train any optical flow estimation network in an unsupervised manner. It consists in training two networks that jointly estimate optical flow and brightness changes. These changes are then compensated in the photometric loss so that reconstruction errors due to shadows or reflections will not affect negatively the training. As this compensation mechanism is only used at training stage, our method does not impact the number of parameters or the complexity at inference. Extensive experiments conducted on standard datasets and optical flow architectures show a consistent gain of our method. Source code is available at https://github.com/CEA-LIST/BrightFlow.
Author MARSAL, Remi
CHABOT, Florian
SAHBI, Hichem
LOESCH, Angelique
Author_xml – sequence: 1
  givenname: Remi
  surname: MARSAL
  fullname: MARSAL, Remi
  organization: Université Paris-Saclay, CEA, LIST,Palaiseau,France,F-91120
– sequence: 2
  givenname: Florian
  surname: CHABOT
  fullname: CHABOT, Florian
  organization: Université Paris-Saclay, CEA, LIST,Palaiseau,France,F-91120
– sequence: 3
  givenname: Angelique
  surname: LOESCH
  fullname: LOESCH, Angelique
  organization: Université Paris-Saclay, CEA, LIST,Palaiseau,France,F-91120
– sequence: 4
  givenname: Hichem
  surname: SAHBI
  fullname: SAHBI, Hichem
  organization: Sorbonne University, CNRS,Paris,France,LIP6 F-75005
BookMark eNotj8FOAjEURavRRED_gMX8wIzvtZ3SusOJKAkJG9EleTN9HcZgIVOU-PdicHXvWdyT3KG4irvIQowRCkRw9-_T6q00xtpCglQFgES4EEM0ptROaYOXYiCNlrlTFm_EMKUPAOXQqYGYP_ZduznMtrvjQ3bukVPKqw3FlvPpkXrOVjF97bn_7hL7bMHUxy622S5ky_2ha2ib_c1vxXWgbeK7_xyJ1ezptXrJF8vneTVd5Btp9SFHMhA0cBOaCVkPZIOxNSoM6kS61s40E-VNTc774CSVHj0BB6iDJ1OqkRifvR0zr_d990n9zxpPjwA1qF9VL0-r
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/WACV56688.2023.00210
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 1665493461
9781665493468
EISSN 2642-9381
EndPage 2069
ExternalDocumentID 10030140
Genre orig-research
GroupedDBID 29G
29O
6IE
6IF
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-h284t-1a60f40ecfc7a8d0a8f68b131f38d04b496c73d6ba9ddf92a5d1da0ef0bfda653
IEDL.DBID RIE
IngestDate Wed Aug 27 02:49:04 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-h284t-1a60f40ecfc7a8d0a8f68b131f38d04b496c73d6ba9ddf92a5d1da0ef0bfda653
OpenAccessLink https://hal.science/hal-04042615
PageCount 10
ParticipantIDs ieee_primary_10030140
PublicationCentury 2000
PublicationDate 2023-Jan.
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-Jan.
PublicationDecade 2020
PublicationTitle Proceedings / IEEE Workshop on Applications of Computer Vision
PublicationTitleAbbrev WACV
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0039193
Score 2.2632303
Snippet Unsupervised optical flow estimation relies on the assumption that pixels characterizing the same observed object should exhibit a stable appearance across...
SourceID ieee
SourceType Publisher
StartPage 2060
SubjectTerms action recognition
Algorithms: Video recognition and understanding (tracking
and algorithms (including transfer
and un-supervised learning
Brightness
Estimation
etc.
formulations
low-shot
Machine learning architectures
Optical losses
Radiometry
Reflection
self
semi
Source coding
Training
Title BrightFlow: Brightness-Change-Aware Unsupervised Learning of Optical Flow
URI https://ieeexplore.ieee.org/document/10030140
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8MgGCZuJ0_zY0adGg5emVAotN7m4jJNnB6c7rZAAU007bK1WeKvF2inxsTEC3lpQttAeL94nwcAzj0hjFaMokhnMWKMKSQJ1khaH4pJwiXz2OG7CR9P2e0snjVg9YCFMcaE4jPT92I4y9dFVvlUmdvhdUTQAi0XudVgrY3apalzRRpsHMHpxfNg-ORclcSXb0WexTTyINkfN6gEAzLqgMnm03XdyFu_KlU_-_jFyvjvf9sB3W-sHnz4skK7YMvke6DTOJew2bqrfXBzFeLw0XuxvoS17LUcquEFaLCWSwOn-apaeO2xcmMb6tUXWFh4vwg5b-iHd8F0dP04HKPmHgX06oxPiYjk2DJsMpsJmWgsE8sTRSix1PWYYinPBNVcyVRrm0Yy1kRLbCxWVkse0wPQzovcHAKYCiMSTN0LdcJUpFzDhKVcCxFbzsgR6PqpmS9qqoz5ZlaO_3jeA9t-eeqcxglol8vKnDorX6qzsLqfdaGnUw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA46D3qaPyb-NgevmUmTpq23ORybbtPDpruNpEkmKO3YWgb-9SZtpyIIXkpaSFsS8r73Xt73BYArJwijJKPIU7GPGGMSCYIVEsaFYoJwwRx3eDDk3TG7n_iTiqxecGG01kXxmW66ZrGXr9I4d6kyu8LLiGATbFng90lJ11obXhpZZ6RixxEcXb-02s_WWQldAZfndEw9R5P9cYZKASGdOhiuP15Wjrw180w2449fuoz__rtd0Phm68GnLxzaAxs62Qf1yr2E1eJdHoDebRGJd97T1Q0s287OoZJggForsdBwnCzzubMfS9u3El-dwdTAx3mR9YauewOMO3ejdhdVJymgVws_GSKCY8Owjk0ciFBhERoeSkKJofaOSRbxOKCKSxEpZSJP-IoogbXB0ijBfXoIakma6CMAo0AHIab2hSpk0pP2wgJDuQoC33BGjkHDDc10XoplTNejcvLH80uw3R0N-tN-b_hwCnbcVJUZjjNQyxa5PreYn8mLYqY_AWEQqpw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+%2F+IEEE+Workshop+on+Applications+of+Computer+Vision&rft.atitle=BrightFlow%3A+Brightness-Change-Aware+Unsupervised+Learning+of+Optical+Flow&rft.au=MARSAL%2C+Remi&rft.au=CHABOT%2C+Florian&rft.au=LOESCH%2C+Angelique&rft.au=SAHBI%2C+Hichem&rft.date=2023-01-01&rft.pub=IEEE&rft.eissn=2642-9381&rft.spage=2060&rft.epage=2069&rft_id=info:doi/10.1109%2FWACV56688.2023.00210&rft.externalDocID=10030140