Interpretable Feature Construction for Time Series Extrinsic Regression

Supervised learning of time series data has been extensively studied for the case of a categorical target variable. In some application domains, e.g., energy, environment and health monitoring, it occurs that the target variable is numerical and the problem is known as time series extrinsic regressi...

Full description

Saved in:
Bibliographic Details
Published inAdvances in Knowledge Discovery and Data Mining Vol. 12712; pp. 804 - 816
Main Authors Gay, Dominique, Bondu, Alexis, Lemaire, Vincent, Boullé, Marc
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2021
Springer International Publishing
SeriesLecture Notes in Computer Science
Online AccessGet full text

Cover

Loading…
Abstract Supervised learning of time series data has been extensively studied for the case of a categorical target variable. In some application domains, e.g., energy, environment and health monitoring, it occurs that the target variable is numerical and the problem is known as time series extrinsic regression (TSER). In the literature, some well-known time series classifiers have been extended for TSER problems. As first benchmarking studies have focused on predictive performance, very little attention has been given to interpretability. To fill this gap, in this paper, we suggest an extension of a Bayesian method for robust and interpretable feature construction and selection in the context of TSER. Our approach exploits a relational way to tackle with TSER: (i), we build various and simple representations of the time series which are stored in a relational data scheme, then, (ii), a propositionalisation technique (based on classical aggregation/selection functions from the relational data field) is applied to build interpretable features from secondary tables to “flatten” the data; and (iii), the constructed features are filtered out through a Bayesian Maximum A Posteriori approach. The resulting transformed data can be processed with various existing regressors. Experimental validation on various benchmark data sets demonstrates the benefits of the suggested approach.
AbstractList Supervised learning of time series data has been extensively studied for the case of a categorical target variable. In some application domains, e.g., energy, environment and health monitoring, it occurs that the target variable is numerical and the problem is known as time series extrinsic regression (TSER). In the literature, some well-known time series classifiers have been extended for TSER problems. As first benchmarking studies have focused on predictive performance, very little attention has been given to interpretability. To fill this gap, in this paper, we suggest an extension of a Bayesian method for robust and interpretable feature construction and selection in the context of TSER. Our approach exploits a relational way to tackle with TSER: (i), we build various and simple representations of the time series which are stored in a relational data scheme, then, (ii), a propositionalisation technique (based on classical aggregation/selection functions from the relational data field) is applied to build interpretable features from secondary tables to “flatten” the data; and (iii), the constructed features are filtered out through a Bayesian Maximum A Posteriori approach. The resulting transformed data can be processed with various existing regressors. Experimental validation on various benchmark data sets demonstrates the benefits of the suggested approach.
Author Gay, Dominique
Lemaire, Vincent
Boullé, Marc
Bondu, Alexis
Author_xml – sequence: 1
  givenname: Dominique
  surname: Gay
  fullname: Gay, Dominique
  email: dominique.gay@univ-reunion.fr
– sequence: 2
  givenname: Alexis
  surname: Bondu
  fullname: Bondu, Alexis
– sequence: 3
  givenname: Vincent
  surname: Lemaire
  fullname: Lemaire, Vincent
– sequence: 4
  givenname: Marc
  surname: Boullé
  fullname: Boullé, Marc
BookMark eNpFkN1OAjEQhauiEZA38GJfoNqfbWd7aQggCYmJ4nWz252FVdzFtiQ-vgVMvJrJmTmTM9-IDLq-Q0LuOXvgjMGjgYJKyiSjoEALqqyWF2Qkk3IS1CUZcs05lTI3V_8DDgMyTL2gBnJ5Q0ZcKCZAKV3ckkkIH4yxpHDJ9ZAsll1Ev_cYy2qH2RzLePCYTfsuRH9wse27rOl9tm6_MHtD32LIZj_Rt11oXfaKG48hpKU7ct2Uu4CTvzom7_PZevpMVy-L5fRpRbcCINK8clVec17IumpyJ1jKjgWCqhVDA6auCwDIRVOjNmWjwWFTGOcaXmksVSXHRJzvhn3KsEFvq77_DJYze4RmEzQrbfrenhjZI7Rkys-mve-_DxiixaPLYRd9uXPbcp8YBKs1A220NcldSCV_AWnSbjg
ContentType Book Chapter
Copyright Springer Nature Switzerland AG 2021
Copyright_xml – notice: Springer Nature Switzerland AG 2021
DBID FFUUA
DEWEY 006.3
DOI 10.1007/978-3-030-75762-5_63
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 3030757625
9783030757625
EISSN 1611-3349
Editor Karlapalem, Kamal
Agrawal, R. K
Cheng, Hong
Srivastava, Jaideep
Chakraborty, Tanmoy
Reddy, P. Krishna
Ramakrishnan, Naren
Editor_xml – sequence: 1
  fullname: Karlapalem, Kamal
– sequence: 1
  givenname: Kamal
  orcidid: 0000-0003-2528-7979
  surname: Karlapalem
  fullname: Karlapalem, Kamal
  email: kamal@iiit.ac.in
– sequence: 2
  fullname: Cheng, Hong
– sequence: 2
  givenname: Hong
  surname: Cheng
  fullname: Cheng, Hong
  email: hcheng@se.cuhk.edu.hk
– sequence: 3
  fullname: Srivastava, Jaideep
– sequence: 3
  givenname: Naren
  surname: Ramakrishnan
  fullname: Ramakrishnan, Naren
  email: naren@cs.vt.edu
– sequence: 4
  fullname: Chakraborty, Tanmoy
– sequence: 4
  givenname: R. K.
  surname: Agrawal
  fullname: Agrawal, R. K.
  email: rka@mail.jnu.ac.in
– sequence: 5
  fullname: Agrawal, R. K
– sequence: 5
  givenname: P. Krishna
  orcidid: 0000-0003-1238-5174
  surname: Reddy
  fullname: Reddy, P. Krishna
  email: pkreddy@iiit.ac.in
– sequence: 6
  fullname: Reddy, P. Krishna
– sequence: 6
  givenname: Jaideep
  surname: Srivastava
  fullname: Srivastava, Jaideep
  email: srivasta@umn.edu
– sequence: 7
  fullname: Ramakrishnan, Naren
– sequence: 7
  givenname: Tanmoy
  orcidid: 0000-0002-0210-0369
  surname: Chakraborty
  fullname: Chakraborty, Tanmoy
  email: tanmoy@iiitd.ac.in
EndPage 816
ExternalDocumentID EBC6607696_930_835
GroupedDBID 38.
AABBV
AABLV
ABNDO
ACNBG
ACWLQ
AEDXK
AEJLV
AEKFX
AELOD
AIYYB
ALMA_UNASSIGNED_HOLDINGS
BAHJK
BBABE
CZZ
DBWEY
FFUUA
I4C
IEZ
OCUHQ
ORHYB
SBO
TGIZN
TPJZQ
TSXQS
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z84
Z87
Z88
-DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RIG
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-h277t-4bcb4d1183dbf4c20334e8e75d50e979dd877742fde69af67cef89ccf1b6ea5b3
ISBN 3030757617
9783030757618
ISSN 0302-9743
IngestDate Wed Nov 06 06:41:21 EST 2024
Fri Jul 26 00:34:57 EDT 2024
IsPeerReviewed true
IsScholarly true
LCCallNum Q334-342
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-h277t-4bcb4d1183dbf4c20334e8e75d50e979dd877742fde69af67cef89ccf1b6ea5b3
OCLC 1250275568
PQID EBC6607696_930_835
PageCount 13
ParticipantIDs springer_books_10_1007_978_3_030_75762_5_63
proquest_ebookcentralchapters_6607696_930_835
PublicationCentury 2000
PublicationDate 2021
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesSubtitle Lecture Notes in Artificial Intelligence
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle 25th Pacific-Asia Conference, PAKDD 2021, Virtual Event, May 11-14, 2021, Proceedings, Part I
PublicationTitle Advances in Knowledge Discovery and Data Mining
PublicationYear 2021
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Hartmanis, Juris
Gao, Wen
Bertino, Elisa
Woeginger, Gerhard
Goos, Gerhard
Steffen, Bernhard
Yung, Moti
RelatedPersons_xml – sequence: 1
  givenname: Gerhard
  surname: Goos
  fullname: Goos, Gerhard
– sequence: 2
  givenname: Juris
  surname: Hartmanis
  fullname: Hartmanis, Juris
– sequence: 3
  givenname: Elisa
  surname: Bertino
  fullname: Bertino, Elisa
– sequence: 4
  givenname: Wen
  surname: Gao
  fullname: Gao, Wen
– sequence: 5
  givenname: Bernhard
  orcidid: 0000-0001-9619-1558
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 6
  givenname: Gerhard
  orcidid: 0000-0001-8816-2693
  surname: Woeginger
  fullname: Woeginger, Gerhard
– sequence: 7
  givenname: Moti
  surname: Yung
  fullname: Yung, Moti
SSID ssj0002501316
ssj0002792
Score 2.2013845
Snippet Supervised learning of time series data has been extensively studied for the case of a categorical target variable. In some application domains, e.g., energy,...
SourceID springer
proquest
SourceType Publisher
StartPage 804
Title Interpretable Feature Construction for Time Series Extrinsic Regression
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6607696&ppg=835
http://link.springer.com/10.1007/978-3-030-75762-5_63
Volume 12712
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9UwELZouSAO7KJs8oHbU1ASb_GxlEerQjm1qDcr3oBLkHg5IH49M078stBLuURRlETWfNZoZvx9M4S8RTVmgMyiCFXUBa-9L2zZ6MKVvBVBWGXTLIKLL_Lsip9fi-tpZF1Sl_T2nftzo67kf1CFZ4ArqmRvgez-p_AA7gFfuALCcF0Fv8sy60AvHk7vE5_1U66MYTdNh6zMoa3Sh7ZvNxdpBsR8b0xMQ9RNYRSIxwg4uzN3k03sQ5SHoDOBZHqz_d3_-tHtEu3-28Cd7eYVg7paVQxyxXBVc5yVvY5PF1kmQ0cAecnoKLPbrNVAgP7HCc95F_Bpgd9CxmtGT7boed0MzUpWPa-370-kLJXU0mhWGnjpgBwoDR7s7vH2_PPXfRUNAriKVRJFO3mRamirNC16Jpi8aU2L1GJ1Gp6CjMuH5D4KTygqQmCVj8id0D0mD_LYDTp64SfkdAEfHeGjc_gowEcRPjrAR_fw0Qm-p-Tq4_by5KwY52EU32ul-oJbZ7mHjJB5G7mrS8Z4aIISXpRBK-09NnfkdfRB6jZK5UJstHOxsjK0wrJn5LD72YXnhErhmY8NeG-reRStVdLLphFl9JVvrT4iRTaKSaf2I1XYDSbYmRU8R2STLWfw9Z3J7bDB5IYZMLlJJjdo8he3_PtLcm_ax6_IIRgzvIZYsLdvxg3xFys3XRw
link.rule.ids 782,783,787,796,27937
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Advances+in+Knowledge+Discovery+and+Data+Mining&rft.atitle=Interpretable+Feature+Construction+for+Time+Series+Extrinsic+Regression&rft.date=2021-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783030757618&rft.volume=12712&rft_id=info:doi/10.1007%2F978-3-030-75762-5_63&rft.externalDBID=835&rft.externalDocID=EBC6607696_930_835
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6607696-l.jpg