Concurrency Theorems for Non-linear Rewriting Theories

Sesqui-pushout (SqPO) rewriting along non-linear rules and for monic matches is well-known to permit the modeling of fusing and cloning of vertices and edges, yet to date, no construction of a suitable concurrency theorem was available. The lack of such a theorem, in turn, rendered compositional rea...

Full description

Saved in:
Bibliographic Details
Published inGraph Transformation Vol. 12741; pp. 3 - 21
Main Authors Behr, Nicolas, Harmer, Russ, Krivine, Jean
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2021
Springer International Publishing
SeriesLecture Notes in Computer Science
Online AccessGet full text
ISBN9783030789459
3030789454
ISSN0302-9743
1611-3349
DOI10.1007/978-3-030-78946-6_1

Cover

Abstract Sesqui-pushout (SqPO) rewriting along non-linear rules and for monic matches is well-known to permit the modeling of fusing and cloning of vertices and edges, yet to date, no construction of a suitable concurrency theorem was available. The lack of such a theorem, in turn, rendered compositional reasoning for such rewriting systems largely infeasible. We develop in this paper a suitable concurrency theorem for non-linear SqPO-rewriting in categories that are quasi-topoi (subsuming the example of adhesive categories) and with matches required to be regular monomorphisms of the given category. Our construction reveals an interesting “backpropagation effect” in computing rule compositions. We derive in addition a concurrency theorem for non-linear double pushout (DPO) rewriting in rm-adhesive categories. Our results open non-linear SqPO and DPO semantics to the rich static analysis techniques available from concurrency, rule algebra and tracelet theory.
AbstractList Sesqui-pushout (SqPO) rewriting along non-linear rules and for monic matches is well-known to permit the modeling of fusing and cloning of vertices and edges, yet to date, no construction of a suitable concurrency theorem was available. The lack of such a theorem, in turn, rendered compositional reasoning for such rewriting systems largely infeasible. We develop in this paper a suitable concurrency theorem for non-linear SqPO-rewriting in categories that are quasi-topoi (subsuming the example of adhesive categories) and with matches required to be regular monomorphisms of the given category. Our construction reveals an interesting “backpropagation effect” in computing rule compositions. We derive in addition a concurrency theorem for non-linear double pushout (DPO) rewriting in rm-adhesive categories. Our results open non-linear SqPO and DPO semantics to the rich static analysis techniques available from concurrency, rule algebra and tracelet theory.
Author Krivine, Jean
Harmer, Russ
Behr, Nicolas
Author_xml – sequence: 1
  givenname: Nicolas
  orcidid: 0000-0002-8738-5040
  surname: Behr
  fullname: Behr, Nicolas
  email: nicolas.behr@irif.fr
– sequence: 2
  givenname: Russ
  orcidid: 0000-0002-0817-1029
  surname: Harmer
  fullname: Harmer, Russ
– sequence: 3
  givenname: Jean
  orcidid: 0000-0001-7261-7462
  surname: Krivine
  fullname: Krivine, Jean
BookMark eNpVUMtOAzEMDFAQbekXcOkPBJxkN48jqnhJFUionKM066ULJSnJIsTfk7ZIiJOt8YztmREZhBiQkHMGFwxAXRqlqaAggCptKkmlZQdkUlBRsB0kD8mQScaoEJU5-jerzYAMS8-pUZU4ISPGa1XXHDSckknOrwDAFS9kNiRyFoP_TAmD_54uVhgTvudpG9P0IQa67gK6NH3Cr9T1XXjZMzrMZ-S4deuMk986Js8314vZHZ0_3t7PruZ0xZXoqa-FM9wrj4gKwDupjF-6FtsGPGrdGO2qSmpsncTaK2hkVX7TjRa-bY0XY8L2e_MmlfuY7DLGt2wZ2G1Qtti2whazdpeKLUH9aTYpfnxi7i1uRR5Dn9zar9ymx5StlJVmXFplWS1-AE7daEQ
ContentType Book Chapter
Copyright Springer Nature Switzerland AG 2021
Copyright_xml – notice: Springer Nature Switzerland AG 2021
DBID FFUUA
DEWEY 511.5
DOI 10.1007/978-3-030-78946-6_1
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Computer Science
EISBN 9783030789466
3030789462
EISSN 1611-3349
Editor Gadducci, Fabio
Kehrer, Timo
Editor_xml – sequence: 1
  fullname: Gadducci, Fabio
– sequence: 2
  fullname: Kehrer, Timo
EndPage 21
ExternalDocumentID EBC6648126_7_15
GroupedDBID 38.
AABBV
AABLV
ABNDO
ACWLQ
AEDXK
AEJLV
AEKFX
AELOD
AIYYB
ALMA_UNASSIGNED_HOLDINGS
BAHJK
BBABE
CZZ
DBWEY
FFUUA
I4C
IEZ
OCUHQ
ORHYB
SBO
TPJZQ
TSXQS
Z83
Z88
-DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RIG
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-h273t-c53a92c7ceee700ca679cbafefd0ce88d98a4468efa6e5c70d640278d83cff9c3
ISBN 9783030789459
3030789454
ISSN 0302-9743
IngestDate Tue Jul 29 20:29:44 EDT 2025
Thu Jan 02 03:01:22 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
LCCallNum QA76.9.M35
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-h273t-c53a92c7ceee700ca679cbafefd0ce88d98a4468efa6e5c70d640278d83cff9c3
Notes An extended version of this paper containing additional technical appendices is available online [7].
OCLC 1257552080
ORCID 0000-0001-7261-7462
0000-0002-8738-5040
0000-0002-0817-1029
OpenAccessLink https://hal.science/hal-03358036
PQID EBC6648126_7_15
PageCount 19
ParticipantIDs springer_books_10_1007_978_3_030_78946_6_1
proquest_ebookcentralchapters_6648126_7_15
PublicationCentury 2000
PublicationDate 2021
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesSubtitle Theoretical Computer Science and General Issues
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle 14th International Conference, ICGT 2021, Held As Part of STAF 2021, Virtual Event, June 24-25, 2021, Proceedings
PublicationTitle Graph Transformation
PublicationYear 2021
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Hartmanis, Juris
Gao, Wen
Bertino, Elisa
Woeginger, Gerhard
Goos, Gerhard
Steffen, Bernhard
Yung, Moti
RelatedPersons_xml – sequence: 1
  givenname: Gerhard
  surname: Goos
  fullname: Goos, Gerhard
– sequence: 2
  givenname: Juris
  surname: Hartmanis
  fullname: Hartmanis, Juris
– sequence: 3
  givenname: Elisa
  surname: Bertino
  fullname: Bertino, Elisa
– sequence: 4
  givenname: Wen
  surname: Gao
  fullname: Gao, Wen
– sequence: 5
  givenname: Bernhard
  orcidid: 0000-0001-9619-1558
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 6
  givenname: Gerhard
  orcidid: 0000-0001-8816-2693
  surname: Woeginger
  fullname: Woeginger, Gerhard
– sequence: 7
  givenname: Moti
  surname: Yung
  fullname: Yung, Moti
SSID ssj0002723071
ssj0002792
Score 2.0941672
Snippet Sesqui-pushout (SqPO) rewriting along non-linear rules and for monic matches is well-known to permit the modeling of fusing and cloning of vertices and edges,...
SourceID springer
proquest
SourceType Publisher
StartPage 3
Title Concurrency Theorems for Non-linear Rewriting Theories
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6648126&ppg=15
http://link.springer.com/10.1007/978-3-030-78946-6_1
Volume 12741
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELbockE90Aeo9KUceioyysaOH4ceqooKregeKqi4WY7jFC5ZKQmg8us7ju0kG3qhl2jXsvKYzxrPjP19RugTTBmZ1DzHlguGYcaXWGQ8w1qQKl8SK2npEsUfa3Z2SVdX-dWEce3YJV1xYh7-ySv5H1ShDXB1LNknIDvcFBrgN-ALV0AYrrPgd7vM6tX6ndS0FycfGIhDcm2vmwFn3Y5upgmHpfy8bcdVnObm7sYXNlc2DpagXbCpTS_gZP54Fr_1-g3H602NXYCqGwDo3gkj1b99j7gp0RnAtl_OwxrFetP1W7-O4zES0atMyw7ZclZ2iGXHWeFyrJ1t5anEuRIhaRD_Dnwt8MWQzXj3Zr37ZU5UkXgR0-BSyWRu9mTqR15_utEDbovdoxhmCrLiZ1zQBdr9ero6_zXU3mAwkj4M3ov_ZVht8m_kOEDxjb145OQLBukqr048e-JWojJbW-9DlosX6LmjsSSOXwKme4l2bP0K7YekIwnGb6EpAhLbXiM2gT2JsCcAezLCngywJxH2A3T5_fTi2xkO52vgawhaO2xyomVmOMRJlqep0YxLU-jKVmVqrBClFJpSJmylmc0NT0tG3UJ1KYipKmnIIVrUm9q-QUlZFMYCeLqSFYWcXKdZaaWRS1IUKUQ8R-hzNIvqdwGErcfGG6FVjFEINZniaplD52g45fq2Kmprg8EVUWBw1RtcgcHfPqXzO7Q3juX3aNE1t_YDBJVd8TGMkb-wY2_h
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Graph+Transformation&rft.au=Behr%2C+Nicolas&rft.au=Harmer%2C+Russ&rft.au=Krivine%2C+Jean&rft.atitle=Concurrency+Theorems+for+Non-linear+Rewriting+Theories&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2021-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783030789459&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=3&rft.epage=21&rft_id=info:doi/10.1007%2F978-3-030-78946-6_1
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6648126-l.jpg