Adaptive Kalman filtering for multi-step ahead traffic flow prediction
Given the importance of continuous traffic flow forecasting in most of Intelligent Transportation Systems (ITS) applications, where every new traffic data become available in every few minutes or seconds, the main objective of this study is to perform a multi-step ahead traffic flow forecasting that...
Saved in:
Published in | 2013 American Control Conference pp. 4724 - 4729 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2013
|
Subjects | |
Online Access | Get full text |
ISBN | 1479901776 9781479901777 |
ISSN | 0743-1619 |
DOI | 10.1109/ACC.2013.6580568 |
Cover
Loading…
Abstract | Given the importance of continuous traffic flow forecasting in most of Intelligent Transportation Systems (ITS) applications, where every new traffic data become available in every few minutes or seconds, the main objective of this study is to perform a multi-step ahead traffic flow forecasting that can meet a trade-off between accuracy, low computational load, and limited memory capacity. To this aim, based on adaptive Kalman filtering theory, two forecasting approaches are proposed. We suggest solving a multi-step ahead prediction problem as a filtering one by considering pseudo-observations coming from the averaged historical flow or the output of other predictors in the literature. For taking into account the stochastic modeling of the process and the current measurements we resort to an adaptive scheme. The proposed forecasting methods are evaluated by using measurements of the Grenoble south ring. |
---|---|
AbstractList | Given the importance of continuous traffic flow forecasting in most of Intelligent Transportation Systems (ITS) applications, where every new traffic data become available in every few minutes or seconds, the main objective of this study is to perform a multi-step ahead traffic flow forecasting that can meet a trade-off between accuracy, low computational load, and limited memory capacity. To this aim, based on adaptive Kalman filtering theory, two forecasting approaches are proposed. We suggest solving a multi-step ahead prediction problem as a filtering one by considering pseudo-observations coming from the averaged historical flow or the output of other predictors in the literature. For taking into account the stochastic modeling of the process and the current measurements we resort to an adaptive scheme. The proposed forecasting methods are evaluated by using measurements of the Grenoble south ring. |
Author | Ojeda, Luis Leon de Wit, Carlos Canudas Kibangou, Alain Y. |
Author_xml | – sequence: 1 givenname: Luis Leon surname: Ojeda fullname: Ojeda, Luis Leon email: luis.leon@inria.fr organization: NeCS Team, INRIA Rhone-Alpes, Grenoble, France – sequence: 2 givenname: Alain Y. surname: Kibangou fullname: Kibangou, Alain Y. email: alain.kibangou@ujf-grenoble.fr organization: Gipsa-Lab., Univ. Joseph Fourier, Grenoble, France – sequence: 3 givenname: Carlos Canudas surname: de Wit fullname: de Wit, Carlos Canudas email: carlos.canudas-de-wit@gipsa-lab.fr organization: Gipsa-Lab., NeCS Team, Grenoble, France |
BookMark | eNo1kD1PwzAUAI0oEk3pjsTiP5DwHDv-GKuIFkQlFpirF-eZGqVJlBgQ_56BMp1uueEytuiHnhi7FVAIAe5-U9dFCUIWurJQaXvB1s5YoYxzIEwlL1n2L0Yv2BKMkrnQwl2zbJ4_AIRzGpZsu2lxTPGL-DN2J-x5iF2iKfbvPAwTP312KeZzopHjkbDlacIQouehG775OFEbfYpDf8OuAnYzrc9csbftw2v9mO9fdk_1Zp8fy0qk3GBTEjReK1LBa2tsE0pVogdtvNXKlaCkE05CcJVsEZVvrZGBqqClQyNX7O6vG4noME7xhNPP4fxA_gL6409F |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ACC.2013.6580568 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9781479901753 147990175X 1479901784 9781479901784 |
EndPage | 4729 |
ExternalDocumentID | 6580568 |
Genre | orig-research |
GroupedDBID | -~X 23M 29O 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ AFFNX ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-h251t-7ab2e0bc64e4fc6878bf242ac067c8649204391930f953daa4cd873fe5f639a73 |
IEDL.DBID | RIE |
ISBN | 1479901776 9781479901777 |
ISSN | 0743-1619 |
IngestDate | Wed Aug 27 04:22:24 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-h251t-7ab2e0bc64e4fc6878bf242ac067c8649204391930f953daa4cd873fe5f639a73 |
OpenAccessLink | https://inria.hal.science/hal-00842684v1/file/ACC_2013_2.pdf |
PageCount | 6 |
ParticipantIDs | ieee_primary_6580568 |
PublicationCentury | 2000 |
PublicationDate | 2013-June |
PublicationDateYYYYMMDD | 2013-06-01 |
PublicationDate_xml | – month: 06 year: 2013 text: 2013-June |
PublicationDecade | 2010 |
PublicationTitle | 2013 American Control Conference |
PublicationTitleAbbrev | ACC |
PublicationYear | 2013 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0019960 ssj0001124340 |
Score | 1.8002676 |
Snippet | Given the importance of continuous traffic flow forecasting in most of Intelligent Transportation Systems (ITS) applications, where every new traffic data... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 4724 |
SubjectTerms | Accuracy Adaptation models Computational modeling Forecasting Kalman filters Noise Predictive models |
Title | Adaptive Kalman filtering for multi-step ahead traffic flow prediction |
URI | https://ieeexplore.ieee.org/document/6580568 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGG6Ak178AON3evBox1i7tjsSIiEajAdJuJF-RiPCQkZM_PW-3Qao8eBtWw_b-jZ93vZ5n6cI3WQ-uEs6TYykmrBEaSKlkURZaiDeXFoehMLjRz6asPtpOm2g260WxjlXFp-5KFyWXL5dmnXYKusCWgJeyyZqwsKt0mrt9lMAqGjwLakZhOA6srXghFVCKeoSgQUSgm-8nup7seEv46zbHwxCwReN6pf9OHWlBJ3hARpvPreqNXmL1oWOzOcvJ8f__s8h6uzkffhpC1xHqOEWx2j_mzNhGw37VuVhJsQPav6uFti_Blod2jBkubgsQyQwQHKsYDa3uFip4EWB_Xz5gfNVYH9CxDtoMrx7HoxIfeQCeYFEpyBC6cTF2nDmmDdcCqk9gLgyAGpGcpaVUlpI-mKfpdQqxYyVgnqXekh1lKAnqLVYLtwpwo7xRCQKwsIV67FUWlOajVGhlTKpOEPt0COzvHLVmNWdcf734wu0l1QHUZC4d4laxWrtriAdKPR1OQ6-AC2IrJ0 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV27TsMwFLVKGYCFR4t444ERp23s2M5YVVSFPsTQSt0q23EEoqRRlQqJr-c6SVtADGx5DEl8LZ8bn3vORegujJ27pNXESKoJ85UmUhpJVEQNxJvLiDuh8HDEexP2NA2mFXS_0cJYa_PiM-u5w5zLjxZm5bbKGoCWgNdyB-0C7rOwUGttd1QAqqhzLik5BOc7sjHhhP-EXNYlHA8kBF-7PZXnYs1gNsNGu9NxJV_UKx_3o-9KDjvdQzRcv3BRbfLmrTLtmc9fXo7__aIjVN8K_PDzBrqOUcUmJ-jgmzdhDXXbkUrdWoj7av6uEhy_OmId7mHIc3FeiEhgiqRYwXoe4WypnBsFjueLD5wuHf_jYl5Hk-7DuNMjZdMF8gKpTkaE0r5tasOZZbHhUkgdA4wrA7BmJGdhLqaFtK8ZhwGNlGImkoLGNogh2VGCnqJqskjsGcKWcV_4CsLCFWuxQEYmtxujQitlAnGOam5EZmnhqzErB-Pi78u3aK83Hg5mg8dR_xLt-0VbCtJsXaFqtlzZa0gOMn2Tz4kvdx2v7Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+American+Control+Conference&rft.atitle=Adaptive+Kalman+filtering+for+multi-step+ahead+traffic+flow+prediction&rft.au=Ojeda%2C+Luis+Leon&rft.au=Kibangou%2C+Alain+Y.&rft.au=de+Wit%2C+Carlos+Canudas&rft.date=2013-06-01&rft.pub=IEEE&rft.isbn=9781479901777&rft.issn=0743-1619&rft.spage=4724&rft.epage=4729&rft_id=info:doi/10.1109%2FACC.2013.6580568&rft.externalDocID=6580568 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-1619&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-1619&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-1619&client=summon |