Adaptive Kalman filtering for multi-step ahead traffic flow prediction

Given the importance of continuous traffic flow forecasting in most of Intelligent Transportation Systems (ITS) applications, where every new traffic data become available in every few minutes or seconds, the main objective of this study is to perform a multi-step ahead traffic flow forecasting that...

Full description

Saved in:
Bibliographic Details
Published in2013 American Control Conference pp. 4724 - 4729
Main Authors Ojeda, Luis Leon, Kibangou, Alain Y., de Wit, Carlos Canudas
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2013
Subjects
Online AccessGet full text
ISBN1479901776
9781479901777
ISSN0743-1619
DOI10.1109/ACC.2013.6580568

Cover

Loading…
Abstract Given the importance of continuous traffic flow forecasting in most of Intelligent Transportation Systems (ITS) applications, where every new traffic data become available in every few minutes or seconds, the main objective of this study is to perform a multi-step ahead traffic flow forecasting that can meet a trade-off between accuracy, low computational load, and limited memory capacity. To this aim, based on adaptive Kalman filtering theory, two forecasting approaches are proposed. We suggest solving a multi-step ahead prediction problem as a filtering one by considering pseudo-observations coming from the averaged historical flow or the output of other predictors in the literature. For taking into account the stochastic modeling of the process and the current measurements we resort to an adaptive scheme. The proposed forecasting methods are evaluated by using measurements of the Grenoble south ring.
AbstractList Given the importance of continuous traffic flow forecasting in most of Intelligent Transportation Systems (ITS) applications, where every new traffic data become available in every few minutes or seconds, the main objective of this study is to perform a multi-step ahead traffic flow forecasting that can meet a trade-off between accuracy, low computational load, and limited memory capacity. To this aim, based on adaptive Kalman filtering theory, two forecasting approaches are proposed. We suggest solving a multi-step ahead prediction problem as a filtering one by considering pseudo-observations coming from the averaged historical flow or the output of other predictors in the literature. For taking into account the stochastic modeling of the process and the current measurements we resort to an adaptive scheme. The proposed forecasting methods are evaluated by using measurements of the Grenoble south ring.
Author Ojeda, Luis Leon
de Wit, Carlos Canudas
Kibangou, Alain Y.
Author_xml – sequence: 1
  givenname: Luis Leon
  surname: Ojeda
  fullname: Ojeda, Luis Leon
  email: luis.leon@inria.fr
  organization: NeCS Team, INRIA Rhone-Alpes, Grenoble, France
– sequence: 2
  givenname: Alain Y.
  surname: Kibangou
  fullname: Kibangou, Alain Y.
  email: alain.kibangou@ujf-grenoble.fr
  organization: Gipsa-Lab., Univ. Joseph Fourier, Grenoble, France
– sequence: 3
  givenname: Carlos Canudas
  surname: de Wit
  fullname: de Wit, Carlos Canudas
  email: carlos.canudas-de-wit@gipsa-lab.fr
  organization: Gipsa-Lab., NeCS Team, Grenoble, France
BookMark eNo1kD1PwzAUAI0oEk3pjsTiP5DwHDv-GKuIFkQlFpirF-eZGqVJlBgQ_56BMp1uueEytuiHnhi7FVAIAe5-U9dFCUIWurJQaXvB1s5YoYxzIEwlL1n2L0Yv2BKMkrnQwl2zbJ4_AIRzGpZsu2lxTPGL-DN2J-x5iF2iKfbvPAwTP312KeZzopHjkbDlacIQouehG775OFEbfYpDf8OuAnYzrc9csbftw2v9mO9fdk_1Zp8fy0qk3GBTEjReK1LBa2tsE0pVogdtvNXKlaCkE05CcJVsEZVvrZGBqqClQyNX7O6vG4noME7xhNPP4fxA_gL6409F
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ACC.2013.6580568
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781479901753
147990175X
1479901784
9781479901784
EndPage 4729
ExternalDocumentID 6580568
Genre orig-research
GroupedDBID -~X
23M
29O
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
AFFNX
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-h251t-7ab2e0bc64e4fc6878bf242ac067c8649204391930f953daa4cd873fe5f639a73
IEDL.DBID RIE
ISBN 1479901776
9781479901777
ISSN 0743-1619
IngestDate Wed Aug 27 04:22:24 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-h251t-7ab2e0bc64e4fc6878bf242ac067c8649204391930f953daa4cd873fe5f639a73
OpenAccessLink https://inria.hal.science/hal-00842684v1/file/ACC_2013_2.pdf
PageCount 6
ParticipantIDs ieee_primary_6580568
PublicationCentury 2000
PublicationDate 2013-June
PublicationDateYYYYMMDD 2013-06-01
PublicationDate_xml – month: 06
  year: 2013
  text: 2013-June
PublicationDecade 2010
PublicationTitle 2013 American Control Conference
PublicationTitleAbbrev ACC
PublicationYear 2013
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0019960
ssj0001124340
Score 1.8002676
Snippet Given the importance of continuous traffic flow forecasting in most of Intelligent Transportation Systems (ITS) applications, where every new traffic data...
SourceID ieee
SourceType Publisher
StartPage 4724
SubjectTerms Accuracy
Adaptation models
Computational modeling
Forecasting
Kalman filters
Noise
Predictive models
Title Adaptive Kalman filtering for multi-step ahead traffic flow prediction
URI https://ieeexplore.ieee.org/document/6580568
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGG6Ak178AON3evBox1i7tjsSIiEajAdJuJF-RiPCQkZM_PW-3Qao8eBtWw_b-jZ93vZ5n6cI3WQ-uEs6TYykmrBEaSKlkURZaiDeXFoehMLjRz6asPtpOm2g260WxjlXFp-5KFyWXL5dmnXYKusCWgJeyyZqwsKt0mrt9lMAqGjwLakZhOA6srXghFVCKeoSgQUSgm-8nup7seEv46zbHwxCwReN6pf9OHWlBJ3hARpvPreqNXmL1oWOzOcvJ8f__s8h6uzkffhpC1xHqOEWx2j_mzNhGw37VuVhJsQPav6uFti_Blod2jBkubgsQyQwQHKsYDa3uFip4EWB_Xz5gfNVYH9CxDtoMrx7HoxIfeQCeYFEpyBC6cTF2nDmmDdcCqk9gLgyAGpGcpaVUlpI-mKfpdQqxYyVgnqXekh1lKAnqLVYLtwpwo7xRCQKwsIV67FUWlOajVGhlTKpOEPt0COzvHLVmNWdcf734wu0l1QHUZC4d4laxWrtriAdKPR1OQ6-AC2IrJ0
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV27TsMwFLVKGYCFR4t444ERp23s2M5YVVSFPsTQSt0q23EEoqRRlQqJr-c6SVtADGx5DEl8LZ8bn3vORegujJ27pNXESKoJ85UmUhpJVEQNxJvLiDuh8HDEexP2NA2mFXS_0cJYa_PiM-u5w5zLjxZm5bbKGoCWgNdyB-0C7rOwUGttd1QAqqhzLik5BOc7sjHhhP-EXNYlHA8kBF-7PZXnYs1gNsNGu9NxJV_UKx_3o-9KDjvdQzRcv3BRbfLmrTLtmc9fXo7__aIjVN8K_PDzBrqOUcUmJ-jgmzdhDXXbkUrdWoj7av6uEhy_OmId7mHIc3FeiEhgiqRYwXoe4WypnBsFjueLD5wuHf_jYl5Hk-7DuNMjZdMF8gKpTkaE0r5tasOZZbHhUkgdA4wrA7BmJGdhLqaFtK8ZhwGNlGImkoLGNogh2VGCnqJqskjsGcKWcV_4CsLCFWuxQEYmtxujQitlAnGOam5EZmnhqzErB-Pi78u3aK83Hg5mg8dR_xLt-0VbCtJsXaFqtlzZa0gOMn2Tz4kvdx2v7Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+American+Control+Conference&rft.atitle=Adaptive+Kalman+filtering+for+multi-step+ahead+traffic+flow+prediction&rft.au=Ojeda%2C+Luis+Leon&rft.au=Kibangou%2C+Alain+Y.&rft.au=de+Wit%2C+Carlos+Canudas&rft.date=2013-06-01&rft.pub=IEEE&rft.isbn=9781479901777&rft.issn=0743-1619&rft.spage=4724&rft.epage=4729&rft_id=info:doi/10.1109%2FACC.2013.6580568&rft.externalDocID=6580568
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-1619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-1619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-1619&client=summon