Learning to Find Good Correspondences

We develop a deep architecture to learn to find good correspondences for wide-baseline stereo. Given a set of putative sparse matches and the camera intrinsics, we train our network in an end-to-end fashion to label the correspondences as inliers or outliers, while simultaneously using them to recov...

Full description

Saved in:
Bibliographic Details
Published in2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition pp. 2666 - 2674
Main Authors Yi, Kwang Moo, Trulls, Eduard, Ono, Yuki, Lepetit, Vincent, Salzmann, Mathieu, Fua, Pascal
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We develop a deep architecture to learn to find good correspondences for wide-baseline stereo. Given a set of putative sparse matches and the camera intrinsics, we train our network in an end-to-end fashion to label the correspondences as inliers or outliers, while simultaneously using them to recover the relative pose, as encoded by the essential matrix. Our architecture is based on a multi-layer perceptron operating on pixel coordinates rather than directly on the image, and is thus simple and small. We introduce a novel normalization technique, called Context Normalization, which allows us to process each data point separately while embedding global information in it, and also makes the network invariant to the order of the correspondences. Our experiments on multiple challenging datasets demonstrate that our method is able to drastically improve the state of the art with little training data.
AbstractList We develop a deep architecture to learn to find good correspondences for wide-baseline stereo. Given a set of putative sparse matches and the camera intrinsics, we train our network in an end-to-end fashion to label the correspondences as inliers or outliers, while simultaneously using them to recover the relative pose, as encoded by the essential matrix. Our architecture is based on a multi-layer perceptron operating on pixel coordinates rather than directly on the image, and is thus simple and small. We introduce a novel normalization technique, called Context Normalization, which allows us to process each data point separately while embedding global information in it, and also makes the network invariant to the order of the correspondences. Our experiments on multiple challenging datasets demonstrate that our method is able to drastically improve the state of the art with little training data.
Author Trulls, Eduard
Lepetit, Vincent
Fua, Pascal
Yi, Kwang Moo
Ono, Yuki
Salzmann, Mathieu
Author_xml – sequence: 1
  givenname: Kwang Moo
  surname: Yi
  fullname: Yi, Kwang Moo
– sequence: 2
  givenname: Eduard
  surname: Trulls
  fullname: Trulls, Eduard
– sequence: 3
  givenname: Yuki
  surname: Ono
  fullname: Ono, Yuki
– sequence: 4
  givenname: Vincent
  surname: Lepetit
  fullname: Lepetit, Vincent
– sequence: 5
  givenname: Mathieu
  surname: Salzmann
  fullname: Salzmann, Mathieu
– sequence: 6
  givenname: Pascal
  surname: Fua
  fullname: Fua, Pascal
BookMark eNotjk1Lw0AUAFdRsNacPXjJxWPi2-_3jiXYKgQUUa9lk33RiO6WpJf-ewt6msswzKU4SzmxENcSaimB7pr355dagcQaQKE6EQV5lFajc0YBnYqFBKcrR5IuRDHPX3D0HGo0diFuWw5TGtNHuc_lekyx3OQcyyZPE8-7nCKnnucrcT6E75mLfy7F2_r-tXmo2qfNY7Nqq09lYV8RogVjlI1-IDKDHpyJFHQffCfNoCR7VJGUN9F6CMFF1XUGo9Y9MbpOL8XNX3dk5u1uGn_CdNii9cdb0L_OYkDp
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2018.00282
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781538664209
1538664208
EISSN 1063-6919
EndPage 2674
ExternalDocumentID 8578380
Genre orig-research
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-h250t-988504425d7f994f3f64d9a3ca7b14f21e782d9274d570aa6d2bb48d33c9e86b3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:52:16 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-h250t-988504425d7f994f3f64d9a3ca7b14f21e782d9274d570aa6d2bb48d33c9e86b3
OpenAccessLink http://infoscience.epfl.ch/record/266872
PageCount 9
ParticipantIDs ieee_primary_8578380
PublicationCentury 2000
PublicationDate 2018-Jun
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-Jun
PublicationDecade 2010
PublicationTitle 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
PublicationTitleAbbrev CVPR
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002683845
ssj0003211698
Score 2.5840397
Snippet We develop a deep architecture to learn to find good correspondences for wide-baseline stereo. Given a set of putative sparse matches and the camera...
SourceID ieee
SourceType Publisher
StartPage 2666
SubjectTerms Cameras
Feature extraction
Geometry
Pipelines
Sparse matrices
Three-dimensional displays
Training
Title Learning to Find Good Correspondences
URI https://ieeexplore.ieee.org/document/8578380
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8MgFH6ZO3mauhl_h4PeZGsLpXBenIvJzGKc2W2BApqYtMZ1F_96geKMxoO30nKAAnnv433vewCXyiaK5kRjr4KNqWthZYsU50JqWTKZ8aBbMLtn0wW9W-bLDlxvc2GMMYF8Zob-McTydV1u_FXZiLvtRbgD6DsOuLW5Wtv7lIy5TzFC5tvEIRsmeFTzSRMxGj_NHzyXK5Inf5RTCdZk0oPZ1zhaEsnrcNOoYfnxS6LxvwPdg8F33h6aby3SPnRMdQC96GiieIzXfbiKqqrPqKnRxKFydFvXGo1DpY63ugp1RtcDWExuHsdTHOsl4BfnyDRYcJ4n1B1CXVghqCWWUS0kKWWhUmqz1Dh3QAuHQ3VeJFIynSlFuSakFIYzRQ6hW9WVOQIk_SIJH6YrS6qE68asKXJJdKJSmalj6PtZr95aSYxVnPDJ369PYdf_95ZhdQbd5n1jzp0tb9RFWMRPfFScHA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5VMMBUoEW88QAbaZPYcey5ohRoqwq1qFvlV0BCSiqaLvx67MQUgRjY_Bpsna278333HcCVzEJJEqwDx4IdENsLZJZGQcKFFoqKmFW8BaMxHczIwzyZN-BmkwtjjKnAZ6bjmlUsXxdq7b7KusxeL8ysg75t9X4S1dlamx-VmNpJHyNzfWx9G8qZ5_OJQt7tPU-eHJrLwyd_FFSp9Em_CaOvndQwkrfOupQd9fGLpPG_W92D9nfmHppsdNI-NEx-AE1vaiL_kFctuPa8qi-oLFDf-uXorig06lW1OpZFXlUaXbVh1r-d9gaBr5gQvFpTpgw4Y0lI7DPUacY5yXBGieYCK5HKiGRxZKxBoLn1RHWShkJQHUtJmMZYccOoxIewlRe5OQIknJi4C9QpRSS3y2hm0kRgHcpIxPIYWu7Ui2VNirHwBz75e_gSdgbT0XAxvB8_nsKuk0GNtzqDrfJ9bc6tZi_lRSXQT9e1n2U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE%2FCVF+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Learning+to+Find+Good+Correspondences&rft.au=Yi%2C+Kwang+Moo&rft.au=Trulls%2C+Eduard&rft.au=Ono%2C+Yuki&rft.au=Lepetit%2C+Vincent&rft.date=2018-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=2666&rft.epage=2674&rft_id=info:doi/10.1109%2FCVPR.2018.00282&rft.externalDocID=8578380