Learning to Find Good Correspondences
We develop a deep architecture to learn to find good correspondences for wide-baseline stereo. Given a set of putative sparse matches and the camera intrinsics, we train our network in an end-to-end fashion to label the correspondences as inliers or outliers, while simultaneously using them to recov...
Saved in:
Published in | 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition pp. 2666 - 2674 |
---|---|
Main Authors | , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We develop a deep architecture to learn to find good correspondences for wide-baseline stereo. Given a set of putative sparse matches and the camera intrinsics, we train our network in an end-to-end fashion to label the correspondences as inliers or outliers, while simultaneously using them to recover the relative pose, as encoded by the essential matrix. Our architecture is based on a multi-layer perceptron operating on pixel coordinates rather than directly on the image, and is thus simple and small. We introduce a novel normalization technique, called Context Normalization, which allows us to process each data point separately while embedding global information in it, and also makes the network invariant to the order of the correspondences. Our experiments on multiple challenging datasets demonstrate that our method is able to drastically improve the state of the art with little training data. |
---|---|
AbstractList | We develop a deep architecture to learn to find good correspondences for wide-baseline stereo. Given a set of putative sparse matches and the camera intrinsics, we train our network in an end-to-end fashion to label the correspondences as inliers or outliers, while simultaneously using them to recover the relative pose, as encoded by the essential matrix. Our architecture is based on a multi-layer perceptron operating on pixel coordinates rather than directly on the image, and is thus simple and small. We introduce a novel normalization technique, called Context Normalization, which allows us to process each data point separately while embedding global information in it, and also makes the network invariant to the order of the correspondences. Our experiments on multiple challenging datasets demonstrate that our method is able to drastically improve the state of the art with little training data. |
Author | Trulls, Eduard Lepetit, Vincent Fua, Pascal Yi, Kwang Moo Ono, Yuki Salzmann, Mathieu |
Author_xml | – sequence: 1 givenname: Kwang Moo surname: Yi fullname: Yi, Kwang Moo – sequence: 2 givenname: Eduard surname: Trulls fullname: Trulls, Eduard – sequence: 3 givenname: Yuki surname: Ono fullname: Ono, Yuki – sequence: 4 givenname: Vincent surname: Lepetit fullname: Lepetit, Vincent – sequence: 5 givenname: Mathieu surname: Salzmann fullname: Salzmann, Mathieu – sequence: 6 givenname: Pascal surname: Fua fullname: Fua, Pascal |
BookMark | eNotjk1Lw0AUAFdRsNacPXjJxWPi2-_3jiXYKgQUUa9lk33RiO6WpJf-ewt6msswzKU4SzmxENcSaimB7pr355dagcQaQKE6EQV5lFajc0YBnYqFBKcrR5IuRDHPX3D0HGo0diFuWw5TGtNHuc_lekyx3OQcyyZPE8-7nCKnnucrcT6E75mLfy7F2_r-tXmo2qfNY7Nqq09lYV8RogVjlI1-IDKDHpyJFHQffCfNoCR7VJGUN9F6CMFF1XUGo9Y9MbpOL8XNX3dk5u1uGn_CdNii9cdb0L_OYkDp |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR.2018.00282 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISBN | 9781538664209 1538664208 |
EISSN | 1063-6919 |
EndPage | 2674 |
ExternalDocumentID | 8578380 |
Genre | orig-research |
GroupedDBID | 6IE 6IH 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP OCL RIE RIL RIO |
ID | FETCH-LOGICAL-h250t-988504425d7f994f3f64d9a3ca7b14f21e782d9274d570aa6d2bb48d33c9e86b3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:52:16 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-h250t-988504425d7f994f3f64d9a3ca7b14f21e782d9274d570aa6d2bb48d33c9e86b3 |
OpenAccessLink | http://infoscience.epfl.ch/record/266872 |
PageCount | 9 |
ParticipantIDs | ieee_primary_8578380 |
PublicationCentury | 2000 |
PublicationDate | 2018-Jun |
PublicationDateYYYYMMDD | 2018-06-01 |
PublicationDate_xml | – month: 06 year: 2018 text: 2018-Jun |
PublicationDecade | 2010 |
PublicationTitle | 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2018 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0002683845 ssj0003211698 |
Score | 2.5840397 |
Snippet | We develop a deep architecture to learn to find good correspondences for wide-baseline stereo. Given a set of putative sparse matches and the camera... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 2666 |
SubjectTerms | Cameras Feature extraction Geometry Pipelines Sparse matrices Three-dimensional displays Training |
Title | Learning to Find Good Correspondences |
URI | https://ieeexplore.ieee.org/document/8578380 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8MgFH6ZO3mauhl_h4PeZGsLpXBenIvJzGKc2W2BApqYtMZ1F_96geKMxoO30nKAAnnv433vewCXyiaK5kRjr4KNqWthZYsU50JqWTKZ8aBbMLtn0wW9W-bLDlxvc2GMMYF8Zob-McTydV1u_FXZiLvtRbgD6DsOuLW5Wtv7lIy5TzFC5tvEIRsmeFTzSRMxGj_NHzyXK5Inf5RTCdZk0oPZ1zhaEsnrcNOoYfnxS6LxvwPdg8F33h6aby3SPnRMdQC96GiieIzXfbiKqqrPqKnRxKFydFvXGo1DpY63ugp1RtcDWExuHsdTHOsl4BfnyDRYcJ4n1B1CXVghqCWWUS0kKWWhUmqz1Dh3QAuHQ3VeJFIynSlFuSakFIYzRQ6hW9WVOQIk_SIJH6YrS6qE68asKXJJdKJSmalj6PtZr95aSYxVnPDJ369PYdf_95ZhdQbd5n1jzp0tb9RFWMRPfFScHA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5VMMBUoEW88QAbaZPYcey5ohRoqwq1qFvlV0BCSiqaLvx67MQUgRjY_Bpsna278333HcCVzEJJEqwDx4IdENsLZJZGQcKFFoqKmFW8BaMxHczIwzyZN-BmkwtjjKnAZ6bjmlUsXxdq7b7KusxeL8ysg75t9X4S1dlamx-VmNpJHyNzfWx9G8qZ5_OJQt7tPU-eHJrLwyd_FFSp9Em_CaOvndQwkrfOupQd9fGLpPG_W92D9nfmHppsdNI-NEx-AE1vaiL_kFctuPa8qi-oLFDf-uXorig06lW1OpZFXlUaXbVh1r-d9gaBr5gQvFpTpgw4Y0lI7DPUacY5yXBGieYCK5HKiGRxZKxBoLn1RHWShkJQHUtJmMZYccOoxIewlRe5OQIknJi4C9QpRSS3y2hm0kRgHcpIxPIYWu7Ui2VNirHwBz75e_gSdgbT0XAxvB8_nsKuk0GNtzqDrfJ9bc6tZi_lRSXQT9e1n2U |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE%2FCVF+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Learning+to+Find+Good+Correspondences&rft.au=Yi%2C+Kwang+Moo&rft.au=Trulls%2C+Eduard&rft.au=Ono%2C+Yuki&rft.au=Lepetit%2C+Vincent&rft.date=2018-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=2666&rft.epage=2674&rft_id=info:doi/10.1109%2FCVPR.2018.00282&rft.externalDocID=8578380 |