Volumetric 3D Tracking by Detection
In this paper, we propose a new framework for 3D tracking by detection based on fully volumetric representations. On one hand, 3D tracking by detection has shown robust use in the context of interaction (Kinect) and surface tracking. On the other hand, volumetric representations have recently been p...
Saved in:
Published in | 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 3862 - 3870 |
---|---|
Main Authors | , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we propose a new framework for 3D tracking by detection based on fully volumetric representations. On one hand, 3D tracking by detection has shown robust use in the context of interaction (Kinect) and surface tracking. On the other hand, volumetric representations have recently been proven efficient both for building 3D features and for addressing the 3D tracking problem. We leverage these benefits by unifying both families of approaches into a single, fully volumetric tracking-by-detection framework. We use a centroidal Voronoi tessellation (CVT) representation to compactly tessellate shapes with optimal discretization, construct a feature space, and perform the tracking according to the correspondences provided by trained random forests. Our results show improved tracking and training computational efficiency and improved memory performance. This in turn enables the use of larger training databases than state of the art approaches, which we leverage by proposing a cross-tracking subject training scheme to benefit from all subject sequences for all tracking situations, thus yielding better detection and less overfitting. |
---|---|
AbstractList | In this paper, we propose a new framework for 3D tracking by detection based on fully volumetric representations. On one hand, 3D tracking by detection has shown robust use in the context of interaction (Kinect) and surface tracking. On the other hand, volumetric representations have recently been proven efficient both for building 3D features and for addressing the 3D tracking problem. We leverage these benefits by unifying both families of approaches into a single, fully volumetric tracking-by-detection framework. We use a centroidal Voronoi tessellation (CVT) representation to compactly tessellate shapes with optimal discretization, construct a feature space, and perform the tracking according to the correspondences provided by trained random forests. Our results show improved tracking and training computational efficiency and improved memory performance. This in turn enables the use of larger training databases than state of the art approaches, which we leverage by proposing a cross-tracking subject training scheme to benefit from all subject sequences for all tracking situations, thus yielding better detection and less overfitting. |
Author | Franco, Jean-Sebastien Allain, Benjamin Navab, Nassir Ilic, Slobodan Boyer, Edmond Chun-Hao Huang |
Author_xml | – sequence: 1 surname: Chun-Hao Huang fullname: Chun-Hao Huang email: huangc@in.tum.de – sequence: 2 givenname: Benjamin surname: Allain fullname: Allain, Benjamin email: Benjamin.Allain@inria.fr – sequence: 3 givenname: Jean-Sebastien surname: Franco fullname: Franco, Jean-Sebastien email: Jean-Sebastien.Franco@inria.fr – sequence: 4 givenname: Nassir surname: Navab fullname: Navab, Nassir email: navab@in.tum.de – sequence: 5 givenname: Slobodan surname: Ilic fullname: Ilic, Slobodan email: ilics@in.tum.de – sequence: 6 givenname: Edmond surname: Boyer fullname: Boyer, Edmond email: Edmond.Boyer@inria.fr |
BookMark | eNotzDFPwzAQQGGDQKItGZlYIjEn-OzUdzeitEClSiBUula2c4FAm6AkDP33IMHyvu1N1VnbtaLUFegcQPNtuX1-yY0GlxfAJyphJCgcWqI5wKmagHY2cwx8oZJh-NBaAzsC4om62Xb774OMfRNTu0g3vY-fTfuWhmO6kFHi2HTtpTqv_X6Q5N-Zer1fbsrHbP30sCrv1tm7KWjMYsCKmK2reW40axaPwUqNFitjfDQgv2GhyjiPLtRWkBB8cBxiXQU7U9d_30ZEdl99c_D9cYdIGonsD_0AQLc |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR.2016.419 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISBN | 9781467388511 1467388513 |
EISSN | 1063-6919 |
EndPage | 3870 |
ExternalDocumentID | 7780788 |
Genre | orig-research |
GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS |
ID | FETCH-LOGICAL-h248t-cb7d89936f9520909ea7b3ef737d22ac21eac29e8d26a76bf3e7871ab69bcfdb3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 01:54:52 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-h248t-cb7d89936f9520909ea7b3ef737d22ac21eac29e8d26a76bf3e7871ab69bcfdb3 |
OpenAccessLink | https://inria.hal.science/hal-01300191v1/file/Huang_Allain_CVPR16.pdf |
PageCount | 9 |
ParticipantIDs | ieee_primary_7780788 |
PublicationCentury | 2000 |
PublicationDate | 2016-June |
PublicationDateYYYYMMDD | 2016-06-01 |
PublicationDate_xml | – month: 06 year: 2016 text: 2016-June |
PublicationDecade | 2010 |
PublicationTitle | 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2016 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001968189 ssj0023720 ssj0003211698 |
Score | 2.174335 |
Snippet | In this paper, we propose a new framework for 3D tracking by detection based on fully volumetric representations. On one hand, 3D tracking by detection has... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 3862 |
SubjectTerms | Feature extraction Robustness Shape Target tracking Three-dimensional displays Training Vegetation |
Title | Volumetric 3D Tracking by Detection |
URI | https://ieeexplore.ieee.org/document/7780788 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH5sO3mauom_KejRdmuSJs15cwxhMsSN3UbzC0HoRLuD_vXmtV0n4sFLaN4pJCRf33vf-x7ALSOOZXHMQ2o4C5lOaCgdJlwzllpuEssyDA3MHvl0wR5WyaoFd00tjLW2JJ_ZCD_LXL7Z6C2GygZCoDp62oa2H6tarX08RXKPPbKZU-_ZcNlkFAh2Y9lrbA5Gy_kTErt4xFBk50dnlRJYJl2Y7ZZU8Uleo22hIv31S63xv2s-hP6-hC-YN-B0BC2bH0O3_ucM6hv94U27tg47Ww9uluWLhdL9AR0HHs00xtMD9RmMbVFSt_I-LCb3z6NpWPdSCF8IS4tQK2G8a0W5k0h8GUqbCUWtE1QYQjJNYv8CE2lTQ3gmuHLU-qscZ4pLpZ1R9AQ6-Sa3pxDETqPbpGlihqi2JlPnnRLNDLVDqlhyBj3chvVbJZexrnfg_G_zBRzgMVTsq0voFO9be-VxvlDX5QF_A53bo6Y |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTwIxEJ0gHvSECsZvm-jRXdi2292eQYIKhBgg3Mj2KyYmi9HloL_edndZjPHgrZ1T06Z9nZk3bwBuKTY0CQLmEcWoR2VIPG5cwjWhsWYq1DRxoYHRmA1m9HERLmpwV9XCaK1z8pn23TDP5auVXLtQWTuKnDp6vAO7FvdDXFRrbSMqnFn04dWcWN-G8SqngF0_lq3KZrs7nzw7ahfzqZPZ-dFbJYeWfgNGm0UVjJJXf50JX3790mv876oPoLUt4kOTCp4OoabTI2iUv05U3ukPa9o0dtjYmnAzz98sJ96PSA9ZPJMuoo7EJ-rpLCdvpS2Y9e-n3YFXdlPwXjCNM0-KSFnnijDDHfWlw3USCaJNRCKFcSJxYN9gzHWsMEsiJgzR9jIHiWBcSKMEOYZ6ukr1CaDASOc4SRKqjtNb47GxbomkiugOETQ8habbhuVbIZixLHfg7G_zNewNpqPhcvgwfjqHfXckBRfrAurZ-1pfWtTPxFV-2N9fM6bw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%29&rft.atitle=Volumetric+3D+Tracking+by+Detection&rft.au=Chun-Hao+Huang&rft.au=Allain%2C+Benjamin&rft.au=Franco%2C+Jean-Sebastien&rft.au=Navab%2C+Nassir&rft.date=2016-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=3862&rft.epage=3870&rft_id=info:doi/10.1109%2FCVPR.2016.419&rft.externalDocID=7780788 |