Volumetric 3D Tracking by Detection

In this paper, we propose a new framework for 3D tracking by detection based on fully volumetric representations. On one hand, 3D tracking by detection has shown robust use in the context of interaction (Kinect) and surface tracking. On the other hand, volumetric representations have recently been p...

Full description

Saved in:
Bibliographic Details
Published in2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 3862 - 3870
Main Authors Chun-Hao Huang, Allain, Benjamin, Franco, Jean-Sebastien, Navab, Nassir, Ilic, Slobodan, Boyer, Edmond
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we propose a new framework for 3D tracking by detection based on fully volumetric representations. On one hand, 3D tracking by detection has shown robust use in the context of interaction (Kinect) and surface tracking. On the other hand, volumetric representations have recently been proven efficient both for building 3D features and for addressing the 3D tracking problem. We leverage these benefits by unifying both families of approaches into a single, fully volumetric tracking-by-detection framework. We use a centroidal Voronoi tessellation (CVT) representation to compactly tessellate shapes with optimal discretization, construct a feature space, and perform the tracking according to the correspondences provided by trained random forests. Our results show improved tracking and training computational efficiency and improved memory performance. This in turn enables the use of larger training databases than state of the art approaches, which we leverage by proposing a cross-tracking subject training scheme to benefit from all subject sequences for all tracking situations, thus yielding better detection and less overfitting.
AbstractList In this paper, we propose a new framework for 3D tracking by detection based on fully volumetric representations. On one hand, 3D tracking by detection has shown robust use in the context of interaction (Kinect) and surface tracking. On the other hand, volumetric representations have recently been proven efficient both for building 3D features and for addressing the 3D tracking problem. We leverage these benefits by unifying both families of approaches into a single, fully volumetric tracking-by-detection framework. We use a centroidal Voronoi tessellation (CVT) representation to compactly tessellate shapes with optimal discretization, construct a feature space, and perform the tracking according to the correspondences provided by trained random forests. Our results show improved tracking and training computational efficiency and improved memory performance. This in turn enables the use of larger training databases than state of the art approaches, which we leverage by proposing a cross-tracking subject training scheme to benefit from all subject sequences for all tracking situations, thus yielding better detection and less overfitting.
Author Franco, Jean-Sebastien
Allain, Benjamin
Navab, Nassir
Ilic, Slobodan
Boyer, Edmond
Chun-Hao Huang
Author_xml – sequence: 1
  surname: Chun-Hao Huang
  fullname: Chun-Hao Huang
  email: huangc@in.tum.de
– sequence: 2
  givenname: Benjamin
  surname: Allain
  fullname: Allain, Benjamin
  email: Benjamin.Allain@inria.fr
– sequence: 3
  givenname: Jean-Sebastien
  surname: Franco
  fullname: Franco, Jean-Sebastien
  email: Jean-Sebastien.Franco@inria.fr
– sequence: 4
  givenname: Nassir
  surname: Navab
  fullname: Navab, Nassir
  email: navab@in.tum.de
– sequence: 5
  givenname: Slobodan
  surname: Ilic
  fullname: Ilic, Slobodan
  email: ilics@in.tum.de
– sequence: 6
  givenname: Edmond
  surname: Boyer
  fullname: Boyer, Edmond
  email: Edmond.Boyer@inria.fr
BookMark eNotzDFPwzAQQGGDQKItGZlYIjEn-OzUdzeitEClSiBUula2c4FAm6AkDP33IMHyvu1N1VnbtaLUFegcQPNtuX1-yY0GlxfAJyphJCgcWqI5wKmagHY2cwx8oZJh-NBaAzsC4om62Xb774OMfRNTu0g3vY-fTfuWhmO6kFHi2HTtpTqv_X6Q5N-Zer1fbsrHbP30sCrv1tm7KWjMYsCKmK2reW40axaPwUqNFitjfDQgv2GhyjiPLtRWkBB8cBxiXQU7U9d_30ZEdl99c_D9cYdIGonsD_0AQLc
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2016.419
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 9781467388511
1467388513
EISSN 1063-6919
EndPage 3870
ExternalDocumentID 7780788
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-h248t-cb7d89936f9520909ea7b3ef737d22ac21eac29e8d26a76bf3e7871ab69bcfdb3
IEDL.DBID RIE
IngestDate Wed Aug 27 01:54:52 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-h248t-cb7d89936f9520909ea7b3ef737d22ac21eac29e8d26a76bf3e7871ab69bcfdb3
OpenAccessLink https://inria.hal.science/hal-01300191v1/file/Huang_Allain_CVPR16.pdf
PageCount 9
ParticipantIDs ieee_primary_7780788
PublicationCentury 2000
PublicationDate 2016-June
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-June
PublicationDecade 2010
PublicationTitle 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
PublicationTitleAbbrev CVPR
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001968189
ssj0023720
ssj0003211698
Score 2.174335
Snippet In this paper, we propose a new framework for 3D tracking by detection based on fully volumetric representations. On one hand, 3D tracking by detection has...
SourceID ieee
SourceType Publisher
StartPage 3862
SubjectTerms Feature extraction
Robustness
Shape
Target tracking
Three-dimensional displays
Training
Vegetation
Title Volumetric 3D Tracking by Detection
URI https://ieeexplore.ieee.org/document/7780788
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH5sO3mauom_KejRdmuSJs15cwxhMsSN3UbzC0HoRLuD_vXmtV0n4sFLaN4pJCRf33vf-x7ALSOOZXHMQ2o4C5lOaCgdJlwzllpuEssyDA3MHvl0wR5WyaoFd00tjLW2JJ_ZCD_LXL7Z6C2GygZCoDp62oa2H6tarX08RXKPPbKZU-_ZcNlkFAh2Y9lrbA5Gy_kTErt4xFBk50dnlRJYJl2Y7ZZU8Uleo22hIv31S63xv2s-hP6-hC-YN-B0BC2bH0O3_ucM6hv94U27tg47Ww9uluWLhdL9AR0HHs00xtMD9RmMbVFSt_I-LCb3z6NpWPdSCF8IS4tQK2G8a0W5k0h8GUqbCUWtE1QYQjJNYv8CE2lTQ3gmuHLU-qscZ4pLpZ1R9AQ6-Sa3pxDETqPbpGlihqi2JlPnnRLNDLVDqlhyBj3chvVbJZexrnfg_G_zBRzgMVTsq0voFO9be-VxvlDX5QF_A53bo6Y
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTwIxEJ0gHvSECsZvm-jRXdi2292eQYIKhBgg3Mj2KyYmi9HloL_edndZjPHgrZ1T06Z9nZk3bwBuKTY0CQLmEcWoR2VIPG5cwjWhsWYq1DRxoYHRmA1m9HERLmpwV9XCaK1z8pn23TDP5auVXLtQWTuKnDp6vAO7FvdDXFRrbSMqnFn04dWcWN-G8SqngF0_lq3KZrs7nzw7ahfzqZPZ-dFbJYeWfgNGm0UVjJJXf50JX3790mv876oPoLUt4kOTCp4OoabTI2iUv05U3ukPa9o0dtjYmnAzz98sJ96PSA9ZPJMuoo7EJ-rpLCdvpS2Y9e-n3YFXdlPwXjCNM0-KSFnnijDDHfWlw3USCaJNRCKFcSJxYN9gzHWsMEsiJgzR9jIHiWBcSKMEOYZ6ukr1CaDASOc4SRKqjtNb47GxbomkiugOETQ8habbhuVbIZixLHfg7G_zNewNpqPhcvgwfjqHfXckBRfrAurZ-1pfWtTPxFV-2N9fM6bw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%29&rft.atitle=Volumetric+3D+Tracking+by+Detection&rft.au=Chun-Hao+Huang&rft.au=Allain%2C+Benjamin&rft.au=Franco%2C+Jean-Sebastien&rft.au=Navab%2C+Nassir&rft.date=2016-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=3862&rft.epage=3870&rft_id=info:doi/10.1109%2FCVPR.2016.419&rft.externalDocID=7780788