Multi-modal Multi-view Clustering based on Non-negative Matrix Factorization

By combining related objects, unsupervised machine learning techniques aim to reveal the underlying patterns in a data set. Non-negative Matrix Factorization (NMF) is a data mining technique that splits data matrices by imposing restrictions on the elements' non-negativity into two matrices: on...

Full description

Saved in:
Bibliographic Details
Published in2022 IEEE Symposium Series on Computational Intelligence (SSCI) pp. 1386 - 1391
Main Authors Khalafaoui, Yasser, Grozavu, Nistor, Matei, Basarab, Goix, Laurent-Walter
Format Conference Proceeding
LanguageEnglish
Published IEEE 04.12.2022
Subjects
Online AccessGet full text
DOI10.1109/SSCI51031.2022.10022129

Cover

Abstract By combining related objects, unsupervised machine learning techniques aim to reveal the underlying patterns in a data set. Non-negative Matrix Factorization (NMF) is a data mining technique that splits data matrices by imposing restrictions on the elements' non-negativity into two matrices: one representing the data partitions and the other to represent the cluster prototypes of the data set. This method has attracted a lot of attention and is used in a wide range of applications, including text mining, clustering, language modeling, music transcription, and neuroscience (gene separation). The interpretation of the generated matrices is made simpler by the absence of negative values. In this article, we propose a study on multi-modal clustering algorithms and present a novel method called multi-modal multi-view non-negative matrix factorization, in which we analyze the collaboration of several local NMF models. The experimental results show the value of the proposed approach, which was evaluated using a variety of data sets, and the obtained results are very promising compared to state of art methods.
AbstractList By combining related objects, unsupervised machine learning techniques aim to reveal the underlying patterns in a data set. Non-negative Matrix Factorization (NMF) is a data mining technique that splits data matrices by imposing restrictions on the elements' non-negativity into two matrices: one representing the data partitions and the other to represent the cluster prototypes of the data set. This method has attracted a lot of attention and is used in a wide range of applications, including text mining, clustering, language modeling, music transcription, and neuroscience (gene separation). The interpretation of the generated matrices is made simpler by the absence of negative values. In this article, we propose a study on multi-modal clustering algorithms and present a novel method called multi-modal multi-view non-negative matrix factorization, in which we analyze the collaboration of several local NMF models. The experimental results show the value of the proposed approach, which was evaluated using a variety of data sets, and the obtained results are very promising compared to state of art methods.
Author Goix, Laurent-Walter
Khalafaoui, Yasser
Matei, Basarab
Grozavu, Nistor
Author_xml – sequence: 1
  givenname: Yasser
  surname: Khalafaoui
  fullname: Khalafaoui, Yasser
  email: mykhalafaoui@alteca.fr
  organization: ALTECA,R&D department,Massy,France
– sequence: 2
  givenname: Nistor
  surname: Grozavu
  fullname: Grozavu, Nistor
  email: nistor.grozavu@cyu.fr
  organization: ETIS - CNRS UMR 8051, CY Cergy Paris University,Cergy,France
– sequence: 3
  givenname: Basarab
  surname: Matei
  fullname: Matei, Basarab
  email: matei@lipn.univ-paris13.fr
  organization: LIPN - CNRS UMR 7030, Sorbonne Paris Nord University,Villetaneuse,France
– sequence: 4
  givenname: Laurent-Walter
  surname: Goix
  fullname: Goix, Laurent-Walter
  email: lwgoix@alteca.fr
  organization: ALTECA,R&D department,Lyon,France
BookMark eNo1T8tOwzAQNBIcoO0fIOEfSPA79hFFFCql9FA4V469KZZSGyVueXw9kQqXea12pLlBlzFFQOiOkpJSYu6323olKeG0ZISxkpIJKTMXaGEqTZWSQldKm2vUrI99DsUhedvjsz4F-MR1fxwzDCHucWtH8DhF_JJiEWFvczgBXts8hC-8tC6nIfxMYYpzdNXZfoTFH8_Q2_LxtX4ums3Tqn5oinfGdS6M4FIyBkxaJ71jRlFSVZqoVksy3SrquDPeOOG5aIX008NkueegOhAdn6Hbc28AgN3HEA52-N79j-S_UCBLtg
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SSCI51031.2022.10022129
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore Digital Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665487689
1665487682
EndPage 1391
ExternalDocumentID 10022129
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-h238t-9435522e25ac5dc2961077806b85043571c3c9d9c4d34b45d9439d93d3e6fe4f3
IEDL.DBID RIE
IngestDate Thu Jan 18 11:14:52 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-h238t-9435522e25ac5dc2961077806b85043571c3c9d9c4d34b45d9439d93d3e6fe4f3
OpenAccessLink https://hal.science/hal-04176931
PageCount 6
ParticipantIDs ieee_primary_10022129
PublicationCentury 2000
PublicationDate 2022-Dec.-4
PublicationDateYYYYMMDD 2022-12-04
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-Dec.-4
  day: 04
PublicationDecade 2020
PublicationTitle 2022 IEEE Symposium Series on Computational Intelligence (SSCI)
PublicationTitleAbbrev SSCI
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8658522
Snippet By combining related objects, unsupervised machine learning techniques aim to reveal the underlying patterns in a data set. Non-negative Matrix Factorization...
SourceID ieee
SourceType Publisher
StartPage 1386
SubjectTerms Analytical models
Clustering algorithms
Collaboration
collaborative clustering
multi-modal multi-view clustering
Neuroscience
non-negative matrix factorization
Prototypes
Text mining
Title Multi-modal Multi-view Clustering based on Non-negative Matrix Factorization
URI https://ieeexplore.ieee.org/document/10022129
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5uJ08qTvxNDl7TZWmaNufhmOKGMAe7jSZ5VXC2Ii2If70vaacoCN7SkJLw0vZ7eX3f9wi5KpTLktxKZrgDJk3hWJ5qhS-eVJALMLn1oYHZXE2X8naVrDqyeuDCAEBIPoPIN8O_fFfZxofKhl4uFD-1ukd6-Jy1ZK0uZ2vE9XCxGN94gTh_7BMi2o7-UTclwMZkj8y3E7bZIs9RU5vIfvzSYvz3ivbJ4JuhR--_sOeA7EB5SO4Cm5a9VC7f0LbtA_90vGm8HAIOpB60HK1KOq9KVsJjkP2mM6_T_04nofZOR8wckOXk-mE8ZV21BPaEsFszjY4POlMg0PSJs0KjY5SmGVcm8yplSTqysdVOW-liaWTi8Aa8jF0MqgBZxEekX1YlHBOa8VyMrBUOnSnJDeiCZ9qmWcxBgnLqhAy8KdavrSDGemuF0z_6z8iu35GQBSLPSb9-a-ACsbw2l2EPPwH2E5_B
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA46D3pSceJvc_CaLkvTtDkPx6ZbEbbBbqNJXhWcrUgL4l9vknaKguAtCQkNL7Tf68v7vofQTS5MEmWaE0UNEK5yQ7JYCvvicQEZA5VpFxqYpmK04HfLaNmS1T0XBgB88hkErunv8k2paxcq6zm5UPupldtoxwI_jxq6Vpu11aeyN5sNxk4izv34MRZs5v-onOKBY7iP0s0jm3yR56CuVKA_fqkx_ntPB6j7zdHDD1_oc4i2oDhCE8-nJS-lyda4abvQPx6sayeIYCdiB1sGlwVOy4IU8OiFv_HUKfW_46GvvtNSM7toMbydD0akrZdAnizwVkRa18e6U8Cs8SOjmbSuURwnVKjE6ZRFcV-HWhqpuQm54pGxC2w3NCGIHHgeHqNOURZwgnBCM9bXmhnrTnGqQOY0kTpOQgochBGnqOtMsXptJDFWGyuc_TF-jXZH8-lkNRmn9-doz52OzwnhF6hTvdVwaZG9Ulf-PD8BhlGjDg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE+Symposium+Series+on+Computational+Intelligence+%28SSCI%29&rft.atitle=Multi-modal+Multi-view+Clustering+based+on+Non-negative+Matrix+Factorization&rft.au=Khalafaoui%2C+Yasser&rft.au=Grozavu%2C+Nistor&rft.au=Matei%2C+Basarab&rft.au=Goix%2C+Laurent-Walter&rft.date=2022-12-04&rft.pub=IEEE&rft.spage=1386&rft.epage=1391&rft_id=info:doi/10.1109%2FSSCI51031.2022.10022129&rft.externalDocID=10022129