Learning-based driving events classification
Drivers typically depict different behavior with respect to various driving events. The modeling of their behavior enables an accurate estimation of fuel consumption during the truck design process and is also helpful for ADAS in order to give relevant advices. In this paper, we propose a learning-b...
Saved in:
Published in | 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013) pp. 1778 - 1783 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.10.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Drivers typically depict different behavior with respect to various driving events. The modeling of their behavior enables an accurate estimation of fuel consumption during the truck design process and is also helpful for ADAS in order to give relevant advices. In this paper, we propose a learning-based approach to the automatic recognition of driving events, e.g., roundabouts or stops, which impact the driver behavior. We first synthesize and categorize meaningful driving events and then study a set of features potentially sensitive to the driver behavior. These features were experimented on real truck driver data using two machine-learning techniques, i.e., decision tree and linear logic regression, to evaluate their relevance and ability to recognize driving events. |
---|---|
AbstractList | Drivers typically depict different behavior with respect to various driving events. The modeling of their behavior enables an accurate estimation of fuel consumption during the truck design process and is also helpful for ADAS in order to give relevant advices. In this paper, we propose a learning-based approach to the automatic recognition of driving events, e.g., roundabouts or stops, which impact the driver behavior. We first synthesize and categorize meaningful driving events and then study a set of features potentially sensitive to the driver behavior. These features were experimented on real truck driver data using two machine-learning techniques, i.e., decision tree and linear logic regression, to evaluate their relevance and ability to recognize driving events. |
Author | Scouarnec, Gilles Saidi, Alexandre Chen, Liming D'Agostino, Claire |
Author_xml | – sequence: 1 givenname: Claire surname: D'Agostino fullname: D'Agostino, Claire email: claire.dagostino@volvo.com organization: Volvo Group, Features, Verification & Validation, 69800 St-Priest, France – sequence: 2 givenname: Alexandre surname: Saidi fullname: Saidi, Alexandre email: alexandre.saidi@ec-lyon.fr organization: University of Lyon, Ecole Centrale de Lyon, CNRS, Laboratoire d'InfoRmatique en Image et Systmes d'information, 69130 Ecully, France – sequence: 3 givenname: Gilles surname: Scouarnec fullname: Scouarnec, Gilles email: gilles.scouarnec@volvo.com organization: Volvo Group, Features, Verification & Validation, 69800 St-Priest, France – sequence: 4 givenname: Liming surname: Chen fullname: Chen, Liming email: liming.chen@ec-lyon.fr organization: University of Lyon, Ecole Centrale de Lyon, CNRS, Laboratoire d'InfoRmatique en Image et Systmes d'information, 69130 Ecully, France |
BookMark | eNo9j8FKxDAURaOM4Dj2A8RNP8DWl7wkTZZSHB0ouHBcD2n6opExI00Z8O8tOLi43HM2F-4VW6RDIsZuONScg73fbF_bWgDHWjfCSKPPWGEbw2VjrbBc6nO2FFxhBcCbxT-DvWRFzp8zAQqjEZbsriM3ppjeq95lGsphjMfZSjpSmnLp9y7nGKJ3Uzyka3YR3D5TceoVe1s_btvnqnt52rQPXfUhwE5VUCaAIC2c98R7AIMCGhN0mDNoyxFRGscFatBAQ--l74NVwgUtFSlcsdu_3UhEu-8xfrnxZ3f6ir_eaUZ2 |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ITSC.2013.6728486 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9781479929146 147992914X |
EISSN | 2153-0017 |
EndPage | 1783 |
ExternalDocumentID | 6728486 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI M43 OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-h209t-f58f02e62acce1b00832078f6f8f6d69133348a1236060edbc4cbf952af645e53 |
IEDL.DBID | RIE |
ISSN | 2153-0009 |
IngestDate | Wed Jun 26 19:27:35 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-h209t-f58f02e62acce1b00832078f6f8f6d69133348a1236060edbc4cbf952af645e53 |
PageCount | 6 |
ParticipantIDs | ieee_primary_6728486 |
PublicationCentury | 2000 |
PublicationDate | 2013-Oct. |
PublicationDateYYYYMMDD | 2013-10-01 |
PublicationDate_xml | – month: 10 year: 2013 text: 2013-Oct. |
PublicationDecade | 2010 |
PublicationTitle | 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013) |
PublicationTitleAbbrev | ITSC |
PublicationYear | 2013 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000328630 |
Score | 1.5929838 |
Snippet | Drivers typically depict different behavior with respect to various driving events. The modeling of their behavior enables an accurate estimation of fuel... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1778 |
SubjectTerms | Acceleration Context Decision trees Fuels Logistics Roads Vehicles |
Title | Learning-based driving events classification |
URI | https://ieeexplore.ieee.org/document/6728486 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07a8MwED6STO3SR1L6xkPHyFFsWbbm0JAWUgpNIFuQ5FNbCklJ7aW_vjrbTR906CAwGoweoO90-r7vAK5yGWkrDWfCZP6CorlmRhjJNFVGsiZH60jgPL2Tk7m4XSSLFvS3WhhErMhnGNJn9Zafr21JqbKBTP1hmsk2tFOlaq3WNp9CvnCyKi3iQSwmsbRqHjGHXA1uZg8j4nHFYfOPH8VUKiwZ78H0cxQ1heQlLAsT2vdfBo3_HeY-9L5Ue8H9Fo8OoIWrQ9j9ZjjYhX5jp_rICL3yIN88U0IhqGyc3gJLoTRxh6rt6sF8fD0bTVhTL4E9RVwVzCWZ4xHS6lscGoquIh8BOOl8y6Xy19FYZJr8VrjkmBsrrHEqibSTIsEkPoLOar3CYwgyJVOBcSq40yLxQYuJhI5RCctRZJicQJfmvXytLTGWzZRP_-4-gx1a-5oDdw6dYlPihcfywlxWm_gBvTScjA |
link.rule.ids | 310,311,783,787,792,793,799,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED2VMgALHy3imwyMTeomjuvMFVULbYVEK3WrbOcMFVKLSrrw6_EloXyIgSGSlSGyfVLe8_neO4CbVITKCM18rqU7oCimfM218BV1RjI6RWNJ4Dwcid6E303jaQUaGy0MIubFZxjQML_LT5dmTamypmi7n6kUW7DteLUUhVprk1EhZziRNxdxMBaRXDoprzFbLGn2x48dquSKgvIrP9qp5GjS3Yfh5zyKIpKXYJ3pwLz_smj870QPoP6l2_MeNoh0CBVcHMHeN8vBGjRKQ9Unn_Ar9dLVnFIKXm7k9OYZItNUPZQHrA6T7u240_PLjgn-c8iSzLextCxE2n-DLU38KnQcwArrnlQk7kAacanIcYUJhqk23GibxKGygscYR8dQXSwXeAKeTESbY9TmzCoeO9qiQ64iTLhhyCXGp1Cjdc9eC1OMWbnks79fX8NObzwczAb90f057FIcioq4C6hmqzVeOmTP9FUe0A8jb5_X |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=16th+International+IEEE+Conference+on+Intelligent+Transportation+Systems+%28ITSC+2013%29&rft.atitle=Learning-based+driving+events+classification&rft.au=D%27Agostino%2C+Claire&rft.au=Saidi%2C+Alexandre&rft.au=Scouarnec%2C+Gilles&rft.au=Chen%2C+Liming&rft.date=2013-10-01&rft.pub=IEEE&rft.issn=2153-0009&rft.eissn=2153-0017&rft.spage=1778&rft.epage=1783&rft_id=info:doi/10.1109%2FITSC.2013.6728486&rft.externalDocID=6728486 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2153-0009&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2153-0009&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2153-0009&client=summon |