Learning-based driving events classification

Drivers typically depict different behavior with respect to various driving events. The modeling of their behavior enables an accurate estimation of fuel consumption during the truck design process and is also helpful for ADAS in order to give relevant advices. In this paper, we propose a learning-b...

Full description

Saved in:
Bibliographic Details
Published in16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013) pp. 1778 - 1783
Main Authors D'Agostino, Claire, Saidi, Alexandre, Scouarnec, Gilles, Chen, Liming
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.10.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Drivers typically depict different behavior with respect to various driving events. The modeling of their behavior enables an accurate estimation of fuel consumption during the truck design process and is also helpful for ADAS in order to give relevant advices. In this paper, we propose a learning-based approach to the automatic recognition of driving events, e.g., roundabouts or stops, which impact the driver behavior. We first synthesize and categorize meaningful driving events and then study a set of features potentially sensitive to the driver behavior. These features were experimented on real truck driver data using two machine-learning techniques, i.e., decision tree and linear logic regression, to evaluate their relevance and ability to recognize driving events.
AbstractList Drivers typically depict different behavior with respect to various driving events. The modeling of their behavior enables an accurate estimation of fuel consumption during the truck design process and is also helpful for ADAS in order to give relevant advices. In this paper, we propose a learning-based approach to the automatic recognition of driving events, e.g., roundabouts or stops, which impact the driver behavior. We first synthesize and categorize meaningful driving events and then study a set of features potentially sensitive to the driver behavior. These features were experimented on real truck driver data using two machine-learning techniques, i.e., decision tree and linear logic regression, to evaluate their relevance and ability to recognize driving events.
Author Scouarnec, Gilles
Saidi, Alexandre
Chen, Liming
D'Agostino, Claire
Author_xml – sequence: 1
  givenname: Claire
  surname: D'Agostino
  fullname: D'Agostino, Claire
  email: claire.dagostino@volvo.com
  organization: Volvo Group, Features, Verification & Validation, 69800 St-Priest, France
– sequence: 2
  givenname: Alexandre
  surname: Saidi
  fullname: Saidi, Alexandre
  email: alexandre.saidi@ec-lyon.fr
  organization: University of Lyon, Ecole Centrale de Lyon, CNRS, Laboratoire d'InfoRmatique en Image et Systmes d'information, 69130 Ecully, France
– sequence: 3
  givenname: Gilles
  surname: Scouarnec
  fullname: Scouarnec, Gilles
  email: gilles.scouarnec@volvo.com
  organization: Volvo Group, Features, Verification & Validation, 69800 St-Priest, France
– sequence: 4
  givenname: Liming
  surname: Chen
  fullname: Chen, Liming
  email: liming.chen@ec-lyon.fr
  organization: University of Lyon, Ecole Centrale de Lyon, CNRS, Laboratoire d'InfoRmatique en Image et Systmes d'information, 69130 Ecully, France
BookMark eNo9j8FKxDAURaOM4Dj2A8RNP8DWl7wkTZZSHB0ouHBcD2n6opExI00Z8O8tOLi43HM2F-4VW6RDIsZuONScg73fbF_bWgDHWjfCSKPPWGEbw2VjrbBc6nO2FFxhBcCbxT-DvWRFzp8zAQqjEZbsriM3ppjeq95lGsphjMfZSjpSmnLp9y7nGKJ3Uzyka3YR3D5TceoVe1s_btvnqnt52rQPXfUhwE5VUCaAIC2c98R7AIMCGhN0mDNoyxFRGscFatBAQ--l74NVwgUtFSlcsdu_3UhEu-8xfrnxZ3f6ir_eaUZ2
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ITSC.2013.6728486
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781479929146
147992914X
EISSN 2153-0017
EndPage 1783
ExternalDocumentID 6728486
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-h209t-f58f02e62acce1b00832078f6f8f6d69133348a1236060edbc4cbf952af645e53
IEDL.DBID RIE
ISSN 2153-0009
IngestDate Wed Jun 26 19:27:35 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-h209t-f58f02e62acce1b00832078f6f8f6d69133348a1236060edbc4cbf952af645e53
PageCount 6
ParticipantIDs ieee_primary_6728486
PublicationCentury 2000
PublicationDate 2013-Oct.
PublicationDateYYYYMMDD 2013-10-01
PublicationDate_xml – month: 10
  year: 2013
  text: 2013-Oct.
PublicationDecade 2010
PublicationTitle 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013)
PublicationTitleAbbrev ITSC
PublicationYear 2013
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000328630
Score 1.5929838
Snippet Drivers typically depict different behavior with respect to various driving events. The modeling of their behavior enables an accurate estimation of fuel...
SourceID ieee
SourceType Publisher
StartPage 1778
SubjectTerms Acceleration
Context
Decision trees
Fuels
Logistics
Roads
Vehicles
Title Learning-based driving events classification
URI https://ieeexplore.ieee.org/document/6728486
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07a8MwED6STO3SR1L6xkPHyFFsWbbm0JAWUgpNIFuQ5FNbCklJ7aW_vjrbTR906CAwGoweoO90-r7vAK5yGWkrDWfCZP6CorlmRhjJNFVGsiZH60jgPL2Tk7m4XSSLFvS3WhhErMhnGNJn9Zafr21JqbKBTP1hmsk2tFOlaq3WNp9CvnCyKi3iQSwmsbRqHjGHXA1uZg8j4nHFYfOPH8VUKiwZ78H0cxQ1heQlLAsT2vdfBo3_HeY-9L5Ue8H9Fo8OoIWrQ9j9ZjjYhX5jp_rICL3yIN88U0IhqGyc3gJLoTRxh6rt6sF8fD0bTVhTL4E9RVwVzCWZ4xHS6lscGoquIh8BOOl8y6Xy19FYZJr8VrjkmBsrrHEqibSTIsEkPoLOar3CYwgyJVOBcSq40yLxQYuJhI5RCctRZJicQJfmvXytLTGWzZRP_-4-gx1a-5oDdw6dYlPihcfywlxWm_gBvTScjA
link.rule.ids 310,311,783,787,792,793,799,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED2VMgALHy3imwyMTeomjuvMFVULbYVEK3WrbOcMFVKLSrrw6_EloXyIgSGSlSGyfVLe8_neO4CbVITKCM18rqU7oCimfM218BV1RjI6RWNJ4Dwcid6E303jaQUaGy0MIubFZxjQML_LT5dmTamypmi7n6kUW7DteLUUhVprk1EhZziRNxdxMBaRXDoprzFbLGn2x48dquSKgvIrP9qp5GjS3Yfh5zyKIpKXYJ3pwLz_smj870QPoP6l2_MeNoh0CBVcHMHeN8vBGjRKQ9Unn_Ar9dLVnFIKXm7k9OYZItNUPZQHrA6T7u240_PLjgn-c8iSzLextCxE2n-DLU38KnQcwArrnlQk7kAacanIcYUJhqk23GibxKGygscYR8dQXSwXeAKeTESbY9TmzCoeO9qiQ64iTLhhyCXGp1Cjdc9eC1OMWbnks79fX8NObzwczAb90f057FIcioq4C6hmqzVeOmTP9FUe0A8jb5_X
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=16th+International+IEEE+Conference+on+Intelligent+Transportation+Systems+%28ITSC+2013%29&rft.atitle=Learning-based+driving+events+classification&rft.au=D%27Agostino%2C+Claire&rft.au=Saidi%2C+Alexandre&rft.au=Scouarnec%2C+Gilles&rft.au=Chen%2C+Liming&rft.date=2013-10-01&rft.pub=IEEE&rft.issn=2153-0009&rft.eissn=2153-0017&rft.spage=1778&rft.epage=1783&rft_id=info:doi/10.1109%2FITSC.2013.6728486&rft.externalDocID=6728486
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2153-0009&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2153-0009&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2153-0009&client=summon