Estimation of the hyperspectral tucker ranks

In hyperspectral image analysis, one often assumes that observed pixel spectra are linear combinations of pure substance spectra. Unmixing a hyperspectral image consists in finding the number of pure substances in the scene, finding their spectral signatures and estimating the abundance fraction of...

Full description

Saved in:
Bibliographic Details
Published in2009 IEEE International Conference on Acoustics, Speech and Signal Processing pp. 1281 - 1284
Main Authors Huck, A., Guillaume, M.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.04.2009
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In hyperspectral image analysis, one often assumes that observed pixel spectra are linear combinations of pure substance spectra. Unmixing a hyperspectral image consists in finding the number of pure substances in the scene, finding their spectral signatures and estimating the abundance fraction of each pure substance spectrum in each spectral pixel. In this paper, we show that the tensor Tucker decomposition could be considered to solve this problem, and a preliminary problem to overcome consists in estimating the 3 required data Tucker ranks, corresponding to the 3 dimensions of the data cube. Then, we propose an optimal method to estimate them.
AbstractList In hyperspectral image analysis, one often assumes that observed pixel spectra are linear combinations of pure substance spectra. Unmixing a hyperspectral image consists in finding the number of pure substances in the scene, finding their spectral signatures and estimating the abundance fraction of each pure substance spectrum in each spectral pixel. In this paper, we show that the tensor Tucker decomposition could be considered to solve this problem, and a preliminary problem to overcome consists in estimating the 3 required data Tucker ranks, corresponding to the 3 dimensions of the data cube. Then, we propose an optimal method to estimate them.
Author Guillaume, M.
Huck, A.
Author_xml – sequence: 1
  givenname: A.
  surname: Huck
  fullname: Huck, A.
  organization: Inst. Fresnel, Marseille
– sequence: 2
  givenname: M.
  surname: Guillaume
  fullname: Guillaume, M.
  organization: Inst. Fresnel, Marseille
BookMark eNpVj8FKw0AURUetYKz5gm7yASa-N_Mmk7eU0qpQUKiCu5JOZ0hsTUJmXPTvLdiNd3MXFw7n3opJ13dOiBlCgQj88DJ_XK_fCgnABbHmSuoLkbKpkCSRVJr0pUikMpwjw-fVv01VE5GglpCXSHwj0hC-4BTSCkkn4n4RYvtdx7bvst5nsXFZcxzcGAZn41gfsvhj927Mxrrbhztx7etDcOm5p-JjuXifP-er16eT5SpvJHDMzU6iJa_ZkPfWGgVgDSmJ7P1WGl8r8lBqVqYkop0BrZSusSIsAS1v1VTM_ritc24zjCfB8bg5f1e_jDdJAA
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICASSP.2009.4959825
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781424423545
1424423546
EISSN 2379-190X
EndPage 1284
ExternalDocumentID 4959825
Genre orig-research
GroupedDBID 23M
29P
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
JC5
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-h209t-7d21c4f5974ffcc7300c743219ffb27fa34f0659376444d705335a1841601c9b3
IEDL.DBID RIE
ISBN 9781424423538
1424423538
ISSN 1520-6149
IngestDate Wed Jun 26 19:19:00 EDT 2024
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-h209t-7d21c4f5974ffcc7300c743219ffb27fa34f0659376444d705335a1841601c9b3
PageCount 4
ParticipantIDs ieee_primary_4959825
PublicationCentury 2000
PublicationDate 2009-April
PublicationDateYYYYMMDD 2009-04-01
PublicationDate_xml – month: 04
  year: 2009
  text: 2009-April
PublicationDecade 2000
PublicationTitle 2009 IEEE International Conference on Acoustics, Speech and Signal Processing
PublicationTitleAbbrev ICASSP
PublicationYear 2009
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000453145
ssj0008748
Score 1.7877331
Snippet In hyperspectral image analysis, one often assumes that observed pixel spectra are linear combinations of pure substance spectra. Unmixing a hyperspectral...
SourceID ieee
SourceType Publisher
StartPage 1281
SubjectTerms Additive noise
Hyperspectral
Hyperspectral imaging
Hyperspectral sensors
Image analysis
Layout
Matrix decomposition
Multidimensional systems
Non-negative Tucker Decomposition (NTD)
Pixel
Ranks
Tensile stress
Tensor
Unmixing
Vectors
Title Estimation of the hyperspectral tucker ranks
URI https://ieeexplore.ieee.org/document/4959825
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La8JAEB7UU3vpQ0vf7KFHo0l2dbPHIootWAQreJN9IrRosfHSX9_ZTWIf9NBbkksyhJ3vm539vgG4U5YzYYyKENt0xKQSkeph4ZpSzgwzGlHRi5MnT_3xnD0ueosatPdaGGttOHxmO_4y9PLNRu_8VlkXybzAiqYOdS5EodXa76cgNaGhQ1Zm4YyHyVkIT748YqISdaUUl3jl9VTdl3ZESSy6D4P72WxaGFmW7_sxeCXgzugIJtUXF8dNXjq7XHX0xy8zx_-GdAytL4Ufme6x6wRqdn0Kh9_MCZvQHuLqL4SNZOMIEkWywqK10GZu5SvJw5EM4qe-v7dgPho-D8ZROVshWqWxyCNu0kQz58sJ57T2rvUayQTmL-dUyp2kzPmWK-YfxpjhXrLbk4lvUsaJFoqeQWO9WdtzII4iJepTKZG8YDqwQqhMOqUyl1nHqbuApo97-VbYZyzLkC__fnwFB1XDJk6uoZFvd_YGcT9Xt-GHfwKv_qQQ
link.rule.ids 310,311,783,787,792,793,799,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4gHtSLDzC-3YNHCm13od2jIRBQICRAwo10XyHRgMFy8dc7u23xEQ_eur20k83OfLMz3zcAD0JHjCslPIxt0mOJ4J5oYuIa0ogppiRGRUtOHo5avRl7mjfnJajtuDBaa9d8puv20dXy1Vpu7VVZA8E8x4xmD_YRV8etjK21u1FBcEJdjSz3w3HkZmdhgLIJEuMFrSukeMgLtadinQsSBT5v9NuPk8k4k7LMv_hj9IqLPN1jGBb_nDWcvNS3qajLj19yjv816gSqXxw_Mt5Fr1Mo6dUZHH2TJ6xArYPnP6M2krUhCBXJEtPWjJ25SV5J6poyiJ37_l6FWbczbfe8fLqCtwx9nnqRCgPJjE0ojJHS6tZLhBPowYwRYWQSyowtuqIHYoypyJJ2m0lgy5R-ILmg51BerVf6AoihCIpaNEkQvqBD0JyLODFCxCbWJqLmEirW7sVbJqCxyE2--vv1PRz0psPBYtAfPV_DYVG-8YMbKKebrb5FFJCKO7f5n39vp1s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing&rft.atitle=Estimation+of+the+hyperspectral+tucker+ranks&rft.au=Huck%2C+A.&rft.au=Guillaume%2C+M.&rft.date=2009-04-01&rft.pub=IEEE&rft.isbn=9781424423538&rft.issn=1520-6149&rft.eissn=2379-190X&rft.spage=1281&rft.epage=1284&rft_id=info:doi/10.1109%2FICASSP.2009.4959825&rft.externalDocID=4959825
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6149&client=summon