Estimation of the hyperspectral tucker ranks
In hyperspectral image analysis, one often assumes that observed pixel spectra are linear combinations of pure substance spectra. Unmixing a hyperspectral image consists in finding the number of pure substances in the scene, finding their spectral signatures and estimating the abundance fraction of...
Saved in:
Published in | 2009 IEEE International Conference on Acoustics, Speech and Signal Processing pp. 1281 - 1284 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.04.2009
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In hyperspectral image analysis, one often assumes that observed pixel spectra are linear combinations of pure substance spectra. Unmixing a hyperspectral image consists in finding the number of pure substances in the scene, finding their spectral signatures and estimating the abundance fraction of each pure substance spectrum in each spectral pixel. In this paper, we show that the tensor Tucker decomposition could be considered to solve this problem, and a preliminary problem to overcome consists in estimating the 3 required data Tucker ranks, corresponding to the 3 dimensions of the data cube. Then, we propose an optimal method to estimate them. |
---|---|
AbstractList | In hyperspectral image analysis, one often assumes that observed pixel spectra are linear combinations of pure substance spectra. Unmixing a hyperspectral image consists in finding the number of pure substances in the scene, finding their spectral signatures and estimating the abundance fraction of each pure substance spectrum in each spectral pixel. In this paper, we show that the tensor Tucker decomposition could be considered to solve this problem, and a preliminary problem to overcome consists in estimating the 3 required data Tucker ranks, corresponding to the 3 dimensions of the data cube. Then, we propose an optimal method to estimate them. |
Author | Guillaume, M. Huck, A. |
Author_xml | – sequence: 1 givenname: A. surname: Huck fullname: Huck, A. organization: Inst. Fresnel, Marseille – sequence: 2 givenname: M. surname: Guillaume fullname: Guillaume, M. organization: Inst. Fresnel, Marseille |
BookMark | eNpVj8FKw0AURUetYKz5gm7yASa-N_Mmk7eU0qpQUKiCu5JOZ0hsTUJmXPTvLdiNd3MXFw7n3opJ13dOiBlCgQj88DJ_XK_fCgnABbHmSuoLkbKpkCSRVJr0pUikMpwjw-fVv01VE5GglpCXSHwj0hC-4BTSCkkn4n4RYvtdx7bvst5nsXFZcxzcGAZn41gfsvhj927Mxrrbhztx7etDcOm5p-JjuXifP-er16eT5SpvJHDMzU6iJa_ZkPfWGgVgDSmJ7P1WGl8r8lBqVqYkop0BrZSusSIsAS1v1VTM_ritc24zjCfB8bg5f1e_jDdJAA |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ICASSP.2009.4959825 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9781424423545 1424423546 |
EISSN | 2379-190X |
EndPage | 1284 |
ExternalDocumentID | 4959825 |
Genre | orig-research |
GroupedDBID | 23M 29P 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI JC5 M43 OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-h209t-7d21c4f5974ffcc7300c743219ffb27fa34f0659376444d705335a1841601c9b3 |
IEDL.DBID | RIE |
ISBN | 9781424423538 1424423538 |
ISSN | 1520-6149 |
IngestDate | Wed Jun 26 19:19:00 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-h209t-7d21c4f5974ffcc7300c743219ffb27fa34f0659376444d705335a1841601c9b3 |
PageCount | 4 |
ParticipantIDs | ieee_primary_4959825 |
PublicationCentury | 2000 |
PublicationDate | 2009-April |
PublicationDateYYYYMMDD | 2009-04-01 |
PublicationDate_xml | – month: 04 year: 2009 text: 2009-April |
PublicationDecade | 2000 |
PublicationTitle | 2009 IEEE International Conference on Acoustics, Speech and Signal Processing |
PublicationTitleAbbrev | ICASSP |
PublicationYear | 2009 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000453145 ssj0008748 |
Score | 1.7877331 |
Snippet | In hyperspectral image analysis, one often assumes that observed pixel spectra are linear combinations of pure substance spectra. Unmixing a hyperspectral... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1281 |
SubjectTerms | Additive noise Hyperspectral Hyperspectral imaging Hyperspectral sensors Image analysis Layout Matrix decomposition Multidimensional systems Non-negative Tucker Decomposition (NTD) Pixel Ranks Tensile stress Tensor Unmixing Vectors |
Title | Estimation of the hyperspectral tucker ranks |
URI | https://ieeexplore.ieee.org/document/4959825 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La8JAEB7UU3vpQ0vf7KFHo0l2dbPHIootWAQreJN9IrRosfHSX9_ZTWIf9NBbkksyhJ3vm539vgG4U5YzYYyKENt0xKQSkeph4ZpSzgwzGlHRi5MnT_3xnD0ueosatPdaGGttOHxmO_4y9PLNRu_8VlkXybzAiqYOdS5EodXa76cgNaGhQ1Zm4YyHyVkIT748YqISdaUUl3jl9VTdl3ZESSy6D4P72WxaGFmW7_sxeCXgzugIJtUXF8dNXjq7XHX0xy8zx_-GdAytL4Ufme6x6wRqdn0Kh9_MCZvQHuLqL4SNZOMIEkWywqK10GZu5SvJw5EM4qe-v7dgPho-D8ZROVshWqWxyCNu0kQz58sJ57T2rvUayQTmL-dUyp2kzPmWK-YfxpjhXrLbk4lvUsaJFoqeQWO9WdtzII4iJepTKZG8YDqwQqhMOqUyl1nHqbuApo97-VbYZyzLkC__fnwFB1XDJk6uoZFvd_YGcT9Xt-GHfwKv_qQQ |
link.rule.ids | 310,311,783,787,792,793,799,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4gHtSLDzC-3YNHCm13od2jIRBQICRAwo10XyHRgMFy8dc7u23xEQ_eur20k83OfLMz3zcAD0JHjCslPIxt0mOJ4J5oYuIa0ogppiRGRUtOHo5avRl7mjfnJajtuDBaa9d8puv20dXy1Vpu7VVZA8E8x4xmD_YRV8etjK21u1FBcEJdjSz3w3HkZmdhgLIJEuMFrSukeMgLtadinQsSBT5v9NuPk8k4k7LMv_hj9IqLPN1jGBb_nDWcvNS3qajLj19yjv816gSqXxw_Mt5Fr1Mo6dUZHH2TJ6xArYPnP6M2krUhCBXJEtPWjJ25SV5J6poyiJ37_l6FWbczbfe8fLqCtwx9nnqRCgPJjE0ojJHS6tZLhBPowYwRYWQSyowtuqIHYoypyJJ2m0lgy5R-ILmg51BerVf6AoihCIpaNEkQvqBD0JyLODFCxCbWJqLmEirW7sVbJqCxyE2--vv1PRz0psPBYtAfPV_DYVG-8YMbKKebrb5FFJCKO7f5n39vp1s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing&rft.atitle=Estimation+of+the+hyperspectral+tucker+ranks&rft.au=Huck%2C+A.&rft.au=Guillaume%2C+M.&rft.date=2009-04-01&rft.pub=IEEE&rft.isbn=9781424423538&rft.issn=1520-6149&rft.eissn=2379-190X&rft.spage=1281&rft.epage=1284&rft_id=info:doi/10.1109%2FICASSP.2009.4959825&rft.externalDocID=4959825 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6149&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6149&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6149&client=summon |