InLoc: Indoor Visual Localization with Dense Matching and View Synthesis
We seek to predict the 6 degree-of-freedom (6DoF) pose of a query photograph with respect to a large indoor 3D map. The contributions of this work are three-fold. First, we develop a new large-scale visual localization method targeted for indoor environments. The method proceeds along three steps: (...
Saved in:
Published in | 2018 IEEE CVF Conference on Computer Vision and Pattern Recognition pp. 7199 - 7209 |
---|---|
Main Authors | , , , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We seek to predict the 6 degree-of-freedom (6DoF) pose of a query photograph with respect to a large indoor 3D map. The contributions of this work are three-fold. First, we develop a new large-scale visual localization method targeted for indoor environments. The method proceeds along three steps: (i) efficient retrieval of candidate poses that ensures scalability to large-scale environments, (ii) pose estimation using dense matching rather than local features to deal with texture less indoor scenes, and (iii) pose verification by virtual view synthesis to cope with significant changes in viewpoint, scene layout, and occluders. Second, we collect a new dataset with reference 6DoF poses for large-scale indoor localization. Query photographs are captured by mobile phones at a different time than the reference 3D map, thus presenting a realistic indoor localization scenario. Third, we demonstrate that our method significantly outperforms current state-of-the-art indoor localization approaches on this new challenging data. |
---|---|
AbstractList | We seek to predict the 6 degree-of-freedom (6DoF) pose of a query photograph with respect to a large indoor 3D map. The contributions of this work are three-fold. First, we develop a new large-scale visual localization method targeted for indoor environments. The method proceeds along three steps: (i) efficient retrieval of candidate poses that ensures scalability to large-scale environments, (ii) pose estimation using dense matching rather than local features to deal with texture less indoor scenes, and (iii) pose verification by virtual view synthesis to cope with significant changes in viewpoint, scene layout, and occluders. Second, we collect a new dataset with reference 6DoF poses for large-scale indoor localization. Query photographs are captured by mobile phones at a different time than the reference 3D map, thus presenting a realistic indoor localization scenario. Third, we demonstrate that our method significantly outperforms current state-of-the-art indoor localization approaches on this new challenging data. We seek to predict the 6 degree-of-freedom (6DoF) pose of a query photograph with respect to a large indoor 3D map. The contributions of this work are three-fold. First, we develop a new large-scale visual localization method targeted for indoor environments. The method proceeds along three steps: (i) efficient retrieval of candidate poses that ensures scalability to large-scale environments, (ii) pose estimation using dense matching rather than local features to deal with textureless indoor scenes, and (iii) pose verification by virtual view synthesis to cope with significant changes in viewpoint, scene layout, and occluders. Second, we collect a new dataset with reference 6DoF poses for large-scale indoor localization. Query photographs are captured by mobile phones at a different time than the reference 3D map, thus presenting a realistic indoor localization scenario. Third, we demonstrate that our method significantly outperforms current state-of-the-art indoor localization approaches on this new challenging data. |
Author | Taira, Hajime Cimpoi, Mircea Pollefeys, Marc Torii, Akihiko Sattler, Torsten Pajdla, Tomas Okutomi, Masatoshi Sivic, Josef |
Author_xml | – sequence: 1 givenname: Hajime surname: Taira fullname: Taira, Hajime – sequence: 2 givenname: Masatoshi surname: Okutomi fullname: Okutomi, Masatoshi – sequence: 3 givenname: Torsten surname: Sattler fullname: Sattler, Torsten – sequence: 4 givenname: Mircea surname: Cimpoi fullname: Cimpoi, Mircea – sequence: 5 givenname: Marc surname: Pollefeys fullname: Pollefeys, Marc – sequence: 6 givenname: Josef surname: Sivic fullname: Sivic, Josef – sequence: 7 givenname: Tomas surname: Pajdla fullname: Pajdla, Tomas – sequence: 8 givenname: Akihiko surname: Torii fullname: Torii, Akihiko |
BackLink | https://hal.inrae.fr/hal-02738254$$DView record in HAL |
BookMark | eNpdjbtPwzAYxM1LopTODCxeGVI-P2OzVS3QSkEgHl0j13aJUXBQHajKX0-qIgamk-5-d3eCDmMTPUJnBIaEgL4czx8ehxSIGgLkgu6hgc4VEUxJySnofdQjIFkmNdEH_7JjNEjpDQCoVExx0UPTWSwae4Vn0TXNCs9D-jQ17ixTh2_ThibidWgrPPExeXxnWluF-IpNdB3r1_hpE9vKp5BO0dHS1MkPfrWPXm6un8fTrLi_nY1HRVZ1_20mBfOO5rAARrmVC6IcXxjKlLZMqnzpOXWOA5EOJEi-ZFJbZbWyxnvvPGF9dLHbrUxdfqzCu1ltysaEcjoqyq0HNGeKCv61Zc93bOjKf7ASuVIC2A-2815T |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
Copyright | Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | 6IE 6IH CBEJK RIE RIO 1XC |
DOI | 10.1109/CVPR.2018.00752 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present Hyper Article en Ligne (HAL) |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISBN | 9781538664209 1538664208 |
EISSN | 1063-6919 |
EndPage | 7209 |
ExternalDocumentID | oai_HAL_hal_02738254v1 8578850 |
Genre | orig-research |
GroupedDBID | 6IE 6IH 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP OCL RIE RIL RIO 1XC 6IF 6IG AAJGR ABQGA |
ID | FETCH-LOGICAL-h209t-653ed270b0324c6b18d4ba2389c3687fe42dd4016d06064f369c8c98caeeede13 |
IEDL.DBID | RIE |
ISBN | 9781538664209 1538664208 |
IngestDate | Fri May 09 12:10:29 EDT 2025 Wed Aug 27 02:52:16 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Keywords | scale |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MeetingName | 31st IEEE/CVF Conference on Computer Vision and Pattern Recognition |
MergedId | FETCHMERGED-LOGICAL-h209t-653ed270b0324c6b18d4ba2389c3687fe42dd4016d06064f369c8c98caeeede13 |
PageCount | 11 |
ParticipantIDs | hal_primary_oai_HAL_hal_02738254v1 ieee_primary_8578850 |
PublicationCentury | 2000 |
PublicationDate | 2018-Jun 2018 |
PublicationDateYYYYMMDD | 2018-06-01 2018-01-01 |
PublicationDate_xml | – month: 06 year: 2018 text: 2018-Jun |
PublicationDecade | 2010 |
PublicationTitle | 2018 IEEE CVF Conference on Computer Vision and Pattern Recognition |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2018 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0002683845 ssj0003211698 |
Score | 2.589445 |
Snippet | We seek to predict the 6 degree-of-freedom (6DoF) pose of a query photograph with respect to a large indoor 3D map. The contributions of this work are... |
SourceID | hal ieee |
SourceType | Open Access Repository Publisher |
StartPage | 7199 |
SubjectTerms | Buildings Cameras Distributed databases Life Sciences Lighting Three-dimensional displays Visualization |
Title | InLoc: Indoor Visual Localization with Dense Matching and View Synthesis |
URI | https://ieeexplore.ieee.org/document/8578850 https://hal.inrae.fr/hal-02738254 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG-QkydUMOJXGuPRQfdB13ozKBkGDFEh3Mj6sUA0m2FMo3-9r9ucxnjwtK7poXtt99779ffeQ-icMOEVuAYXBq2yQyv0oRX5EZjHEfF1XjNyfEeDqXc7781r6KKKhdFa5-Qz3THN_C5fJTIzUFmXwfZixkHfgmcRq1XhKQ5lLitvyMy7C54N5azM5mMT3u3PJveGy2XIk74JNNpaGu7jj6IquU4ZNND4azYFleSpk21ER378StT43-nuoNZ39B6eVHppF9V0vIcapbmJy8OcNlEwjEeJvMTDWCXJGs9WaRY-45FRbmVwJjYoLb4GT1fjMfyzDVqFw1jBWP2GH95jsB7TVdpC08HNYz-wysIK1tIhfGPRnquV4xMBUvIkFTZTnghBeXPpUlgh7TlKgeNFFQH_xotcyiWTnMkQvlFp291H9TiJ9QHCLiHKVVrSSEjPjnph5DlSUJ9SX0keiTY6AykvXorUGQuTzDq4Gi1MX55JB_zTV7uNmkZ61ahScId_dx-hbbOKBV_rGNU360yfgGWwEaf5lvgEuya2Eg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LS8NAEB6qHvTkG-tzET22bl6bjeBBrCW1qYgvvNXsIyhKIqZV9Lf4V_xvziaxingVvG2WJclmhsw3s9_MAGxRLtwyrhEIE62y4kbs4yjxE4THCfV10TOyd8zCC_foyruqwdsoF0ZrXZDPdNMMi7N8lcmhCZXtcFQv7tGKQtnVL8_ooOV7nRZKc9u224fnB2Gj6iHQuLFpMGgwz9HK9qmgiBwkExZXrojRTgXSYfgy2rWVQh-DKYpQ3k0cFkguAy5jfLrSloP3HYMJxBmeXWaHjSI4NuMOr87kzLWDvhQLeFU_yKLBzsHlyalhjxm6pm9Sm8ZuDNvyWxuXwoq1p-H9c_8leeWuORyIpnz9URryv36gGVj4yk8kJyPLOws1nc7BdAWoSfW7yuch7KRRJndJJ1VZ9kgub_NhfE8iY76r9FNi4tCkhb68Jj20SiYeR-JU4Vr9TM5eUsTH-W2-ABd_sqtFGE-zVC8BcShVjtKSJUK6VuLFiWtLwXzGfCWDRNRhE6XafyiLg_RNue5wP-qbuaJWEHrgT1Yd5o20RqsqQS3_Pr0Bk-F5L-pHnePuCkwZDSrZaaswPngc6jXEQQOxXqgjgeu_Fu8HVv8TXg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE+CVF+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=InLoc%3A+Indoor+visual+localization+with+dense+matching+and+view+synthesis&rft.au=Taira%2C+Hajime&rft.au=Okutomi%2C+Masatoshi&rft.au=Sattler%2C+Torsten&rft.au=Cimpoi%2C+Mircea&rft.date=2018-01-01&rft.pub=IEEE&rft.isbn=9781538664209&rft_id=info:doi/10.1109%2FCVPR.2018.00752&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_02738254v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781538664209/lc.gif&client=summon&freeimage=true |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781538664209/mc.gif&client=summon&freeimage=true |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781538664209/sc.gif&client=summon&freeimage=true |