InLoc: Indoor Visual Localization with Dense Matching and View Synthesis

We seek to predict the 6 degree-of-freedom (6DoF) pose of a query photograph with respect to a large indoor 3D map. The contributions of this work are three-fold. First, we develop a new large-scale visual localization method targeted for indoor environments. The method proceeds along three steps: (...

Full description

Saved in:
Bibliographic Details
Published in2018 IEEE CVF Conference on Computer Vision and Pattern Recognition pp. 7199 - 7209
Main Authors Taira, Hajime, Okutomi, Masatoshi, Sattler, Torsten, Cimpoi, Mircea, Pollefeys, Marc, Sivic, Josef, Pajdla, Tomas, Torii, Akihiko
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We seek to predict the 6 degree-of-freedom (6DoF) pose of a query photograph with respect to a large indoor 3D map. The contributions of this work are three-fold. First, we develop a new large-scale visual localization method targeted for indoor environments. The method proceeds along three steps: (i) efficient retrieval of candidate poses that ensures scalability to large-scale environments, (ii) pose estimation using dense matching rather than local features to deal with texture less indoor scenes, and (iii) pose verification by virtual view synthesis to cope with significant changes in viewpoint, scene layout, and occluders. Second, we collect a new dataset with reference 6DoF poses for large-scale indoor localization. Query photographs are captured by mobile phones at a different time than the reference 3D map, thus presenting a realistic indoor localization scenario. Third, we demonstrate that our method significantly outperforms current state-of-the-art indoor localization approaches on this new challenging data.
AbstractList We seek to predict the 6 degree-of-freedom (6DoF) pose of a query photograph with respect to a large indoor 3D map. The contributions of this work are three-fold. First, we develop a new large-scale visual localization method targeted for indoor environments. The method proceeds along three steps: (i) efficient retrieval of candidate poses that ensures scalability to large-scale environments, (ii) pose estimation using dense matching rather than local features to deal with texture less indoor scenes, and (iii) pose verification by virtual view synthesis to cope with significant changes in viewpoint, scene layout, and occluders. Second, we collect a new dataset with reference 6DoF poses for large-scale indoor localization. Query photographs are captured by mobile phones at a different time than the reference 3D map, thus presenting a realistic indoor localization scenario. Third, we demonstrate that our method significantly outperforms current state-of-the-art indoor localization approaches on this new challenging data.
We seek to predict the 6 degree-of-freedom (6DoF) pose of a query photograph with respect to a large indoor 3D map. The contributions of this work are three-fold. First, we develop a new large-scale visual localization method targeted for indoor environments. The method proceeds along three steps: (i) efficient retrieval of candidate poses that ensures scalability to large-scale environments, (ii) pose estimation using dense matching rather than local features to deal with textureless indoor scenes, and (iii) pose verification by virtual view synthesis to cope with significant changes in viewpoint, scene layout, and occluders. Second, we collect a new dataset with reference 6DoF poses for large-scale indoor localization. Query photographs are captured by mobile phones at a different time than the reference 3D map, thus presenting a realistic indoor localization scenario. Third, we demonstrate that our method significantly outperforms current state-of-the-art indoor localization approaches on this new challenging data.
Author Taira, Hajime
Cimpoi, Mircea
Pollefeys, Marc
Torii, Akihiko
Sattler, Torsten
Pajdla, Tomas
Okutomi, Masatoshi
Sivic, Josef
Author_xml – sequence: 1
  givenname: Hajime
  surname: Taira
  fullname: Taira, Hajime
– sequence: 2
  givenname: Masatoshi
  surname: Okutomi
  fullname: Okutomi, Masatoshi
– sequence: 3
  givenname: Torsten
  surname: Sattler
  fullname: Sattler, Torsten
– sequence: 4
  givenname: Mircea
  surname: Cimpoi
  fullname: Cimpoi, Mircea
– sequence: 5
  givenname: Marc
  surname: Pollefeys
  fullname: Pollefeys, Marc
– sequence: 6
  givenname: Josef
  surname: Sivic
  fullname: Sivic, Josef
– sequence: 7
  givenname: Tomas
  surname: Pajdla
  fullname: Pajdla, Tomas
– sequence: 8
  givenname: Akihiko
  surname: Torii
  fullname: Torii, Akihiko
BackLink https://hal.inrae.fr/hal-02738254$$DView record in HAL
BookMark eNpdjbtPwzAYxM1LopTODCxeGVI-P2OzVS3QSkEgHl0j13aJUXBQHajKX0-qIgamk-5-d3eCDmMTPUJnBIaEgL4czx8ehxSIGgLkgu6hgc4VEUxJySnofdQjIFkmNdEH_7JjNEjpDQCoVExx0UPTWSwae4Vn0TXNCs9D-jQ17ixTh2_ThibidWgrPPExeXxnWluF-IpNdB3r1_hpE9vKp5BO0dHS1MkPfrWPXm6un8fTrLi_nY1HRVZ1_20mBfOO5rAARrmVC6IcXxjKlLZMqnzpOXWOA5EOJEi-ZFJbZbWyxnvvPGF9dLHbrUxdfqzCu1ltysaEcjoqyq0HNGeKCv61Zc93bOjKf7ASuVIC2A-2815T
CODEN IEEPAD
ContentType Conference Proceeding
Copyright Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 6IE
6IH
CBEJK
RIE
RIO
1XC
DOI 10.1109/CVPR.2018.00752
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
Hyper Article en Ligne (HAL)
DatabaseTitleList

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781538664209
1538664208
EISSN 1063-6919
EndPage 7209
ExternalDocumentID oai_HAL_hal_02738254v1
8578850
Genre orig-research
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
1XC
6IF
6IG
AAJGR
ABQGA
ID FETCH-LOGICAL-h209t-653ed270b0324c6b18d4ba2389c3687fe42dd4016d06064f369c8c98caeeede13
IEDL.DBID RIE
ISBN 9781538664209
1538664208
IngestDate Fri May 09 12:10:29 EDT 2025
Wed Aug 27 02:52:16 EDT 2025
IsPeerReviewed false
IsScholarly true
Keywords scale
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MeetingName 31st IEEE/CVF Conference on Computer Vision and Pattern Recognition
MergedId FETCHMERGED-LOGICAL-h209t-653ed270b0324c6b18d4ba2389c3687fe42dd4016d06064f369c8c98caeeede13
PageCount 11
ParticipantIDs hal_primary_oai_HAL_hal_02738254v1
ieee_primary_8578850
PublicationCentury 2000
PublicationDate 2018-Jun
2018
PublicationDateYYYYMMDD 2018-06-01
2018-01-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-Jun
PublicationDecade 2010
PublicationTitle 2018 IEEE CVF Conference on Computer Vision and Pattern Recognition
PublicationTitleAbbrev CVPR
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002683845
ssj0003211698
Score 2.589445
Snippet We seek to predict the 6 degree-of-freedom (6DoF) pose of a query photograph with respect to a large indoor 3D map. The contributions of this work are...
SourceID hal
ieee
SourceType Open Access Repository
Publisher
StartPage 7199
SubjectTerms Buildings
Cameras
Distributed databases
Life Sciences
Lighting
Three-dimensional displays
Visualization
Title InLoc: Indoor Visual Localization with Dense Matching and View Synthesis
URI https://ieeexplore.ieee.org/document/8578850
https://hal.inrae.fr/hal-02738254
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG-QkydUMOJXGuPRQfdB13ozKBkGDFEh3Mj6sUA0m2FMo3-9r9ucxnjwtK7poXtt99779ffeQ-icMOEVuAYXBq2yQyv0oRX5EZjHEfF1XjNyfEeDqXc7781r6KKKhdFa5-Qz3THN_C5fJTIzUFmXwfZixkHfgmcRq1XhKQ5lLitvyMy7C54N5azM5mMT3u3PJveGy2XIk74JNNpaGu7jj6IquU4ZNND4azYFleSpk21ER378StT43-nuoNZ39B6eVHppF9V0vIcapbmJy8OcNlEwjEeJvMTDWCXJGs9WaRY-45FRbmVwJjYoLb4GT1fjMfyzDVqFw1jBWP2GH95jsB7TVdpC08HNYz-wysIK1tIhfGPRnquV4xMBUvIkFTZTnghBeXPpUlgh7TlKgeNFFQH_xotcyiWTnMkQvlFp291H9TiJ9QHCLiHKVVrSSEjPjnph5DlSUJ9SX0keiTY6AykvXorUGQuTzDq4Gi1MX55JB_zTV7uNmkZ61ahScId_dx-hbbOKBV_rGNU360yfgGWwEaf5lvgEuya2Eg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LS8NAEB6qHvTkG-tzET22bl6bjeBBrCW1qYgvvNXsIyhKIqZV9Lf4V_xvziaxingVvG2WJclmhsw3s9_MAGxRLtwyrhEIE62y4kbs4yjxE4THCfV10TOyd8zCC_foyruqwdsoF0ZrXZDPdNMMi7N8lcmhCZXtcFQv7tGKQtnVL8_ooOV7nRZKc9u224fnB2Gj6iHQuLFpMGgwz9HK9qmgiBwkExZXrojRTgXSYfgy2rWVQh-DKYpQ3k0cFkguAy5jfLrSloP3HYMJxBmeXWaHjSI4NuMOr87kzLWDvhQLeFU_yKLBzsHlyalhjxm6pm9Sm8ZuDNvyWxuXwoq1p-H9c_8leeWuORyIpnz9URryv36gGVj4yk8kJyPLOws1nc7BdAWoSfW7yuch7KRRJndJJ1VZ9kgub_NhfE8iY76r9FNi4tCkhb68Jj20SiYeR-JU4Vr9TM5eUsTH-W2-ABd_sqtFGE-zVC8BcShVjtKSJUK6VuLFiWtLwXzGfCWDRNRhE6XafyiLg_RNue5wP-qbuaJWEHrgT1Yd5o20RqsqQS3_Pr0Bk-F5L-pHnePuCkwZDSrZaaswPngc6jXEQQOxXqgjgeu_Fu8HVv8TXg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE+CVF+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=InLoc%3A+Indoor+visual+localization+with+dense+matching+and+view+synthesis&rft.au=Taira%2C+Hajime&rft.au=Okutomi%2C+Masatoshi&rft.au=Sattler%2C+Torsten&rft.au=Cimpoi%2C+Mircea&rft.date=2018-01-01&rft.pub=IEEE&rft.isbn=9781538664209&rft_id=info:doi/10.1109%2FCVPR.2018.00752&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_02738254v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781538664209/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781538664209/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781538664209/sc.gif&client=summon&freeimage=true