Near-Optimal and Explicit Bell Inequality Violations

Bell inequality violations correspond to behavior of entangled quantum systems that cannot be simulated classically. We give two new two-player games with Bell inequality violations that are stronger, fully explicit, and arguably simpler than earlier work.The first game is based on the Hidden Matchi...

Full description

Saved in:
Bibliographic Details
Published in2011 IEEE 26th Annual Conference on Computational Complexity pp. 157 - 166
Main Authors Buhrman, H., Regev, O., Scarpa, G., de Wolf, R.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2011
Subjects
Online AccessGet full text
ISBN9781457701795
1457701790
ISSN1093-0159
DOI10.1109/CCC.2011.30

Cover

Abstract Bell inequality violations correspond to behavior of entangled quantum systems that cannot be simulated classically. We give two new two-player games with Bell inequality violations that are stronger, fully explicit, and arguably simpler than earlier work.The first game is based on the Hidden Matching problem of quantum communication complexity, introduced by Bar-Yossef, Jayram, and Kerenidis. This game can be won with probability 1 by a quantum strategy using a maximally entangled state with local dimension n (e.g., log n EPR-pairs), while we show that the winning probability of any classical strategy differs from 1/2 by at most O(log n/√n).The second game is based on the integrality gap for Unique Games by Khot and Vishnoi and the quantum rounding procedure of Kempe, Regev, and Toner. Here n-dimensional entanglement allows to win the game with probability 1/(log n) 2 , while the best winning probability without entanglement is 1/n. This near-linear ratio ("Bell inequality violation'') is near-optimal, both in terms of the local dimension of the entangled state, and in terms of the number of possible outputs of the two players.
AbstractList Bell inequality violations correspond to behavior of entangled quantum systems that cannot be simulated classically. We give two new two-player games with Bell inequality violations that are stronger, fully explicit, and arguably simpler than earlier work.The first game is based on the Hidden Matching problem of quantum communication complexity, introduced by Bar-Yossef, Jayram, and Kerenidis. This game can be won with probability 1 by a quantum strategy using a maximally entangled state with local dimension n (e.g., log n EPR-pairs), while we show that the winning probability of any classical strategy differs from 1/2 by at most O(log n/√n).The second game is based on the integrality gap for Unique Games by Khot and Vishnoi and the quantum rounding procedure of Kempe, Regev, and Toner. Here n-dimensional entanglement allows to win the game with probability 1/(log n) 2 , while the best winning probability without entanglement is 1/n. This near-linear ratio ("Bell inequality violation'') is near-optimal, both in terms of the local dimension of the entangled state, and in terms of the number of possible outputs of the two players.
Author Regev, O.
Scarpa, G.
de Wolf, R.
Buhrman, H.
Author_xml – sequence: 1
  givenname: H.
  surname: Buhrman
  fullname: Buhrman, H.
  email: buhrman@cwi.nl
  organization: CWI, Amsterdam, Netherlands
– sequence: 2
  givenname: O.
  surname: Regev
  fullname: Regev, O.
  organization: Blavatnik Sch. of Comput. Sci., Tel Aviv Univ., Tel Aviv, Israel
– sequence: 3
  givenname: G.
  surname: Scarpa
  fullname: Scarpa, G.
  email: g.scarpa@cwi.nl
  organization: CWI, Amsterdam, Netherlands
– sequence: 4
  givenname: R.
  surname: de Wolf
  fullname: de Wolf, R.
  email: rdewolf@cwi.nl
  organization: CWI, Amsterdam, Netherlands
BookMark eNotjr1OwzAYRY0oEm3JxMiSF0jw55_YHiFqoVJFF2Ct_PNZWDJJSYJE355IMJ07HF2dFVl0fYeE3AKtAai5b9u2ZhSg5vSCrKhqjBQCQF-SwigNQipFQRm5IMtZ5xUFaa5JMY7JzVNzJrVZEvGCdqgOpyl92lzaLpSbn1NOPk3lI-Zc7jr8-rY5TefyPfXZTqnvxhtyFW0esfjnmrxtN6_tc7U_PO3ah331waiZKhYbDiyAY8jAqyhs8E30YB1orfycGKNAYbhrQBgWmPeWhWA9tcI5iXxN7v5-EyIeT8PcOJyP0kijqeS_QSRJFw
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CCC.2011.30
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISBN 0769544118
9780769544113
EndPage 166
ExternalDocumentID 5959805
Genre orig-research
GroupedDBID -~X
23M
29F
29O
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-h209t-2f6312d1b2e21c7f4adc6fc1ab1887c145ff4e493b61492d2cca2ddac0a4bb5e3
IEDL.DBID RIE
ISBN 9781457701795
1457701790
ISSN 1093-0159
IngestDate Wed Aug 27 03:24:57 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-h209t-2f6312d1b2e21c7f4adc6fc1ab1887c145ff4e493b61492d2cca2ddac0a4bb5e3
PageCount 10
ParticipantIDs ieee_primary_5959805
PublicationCentury 2000
PublicationDate 2011-June
PublicationDateYYYYMMDD 2011-06-01
PublicationDate_xml – month: 06
  year: 2011
  text: 2011-June
PublicationDecade 2010
PublicationTitle 2011 IEEE 26th Annual Conference on Computational Complexity
PublicationTitleAbbrev ccc
PublicationYear 2011
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib015832589
ssj0000668984
ssj0019955
Score 1.9905145
Snippet Bell inequality violations correspond to behavior of entangled quantum systems that cannot be simulated classically. We give two new two-player games with Bell...
SourceID ieee
SourceType Publisher
StartPage 157
SubjectTerms Bell inequality
communication complexity
Computer science
Correlation
Games
nonlocal games
Protocols
quantum computing
Quantum entanglement
Upper bound
Title Near-Optimal and Explicit Bell Inequality Violations
URI https://ieeexplore.ieee.org/document/5959805
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKJ1gKbRHf8sCI29ixk3iOqApSCwNF3Sp_igpIK0gH-PXYiZtKiIEtiTIkp-e78_neOwCuIyqVjrFFJssMoiZlSFghEcZKSGuTSGhPcJ5Mk_GM3s_ZvAVuGi6MMaZqPjMDf1md5euV2vhS2ZBxxjMvWLrnYFZztbbYwcxBkwXl9NoLJxn3HMxwosB5NQHVqye57TPjFcmLpalHZKP9FO5ZIPK5l4d5ntdCn1Wf9G4ASxV_Rh0w2X553XbyOtiUcqC-f4k6_vfXDkF_x_SDj00MOwItU3RBZzvqAYaV3wUHk0be9bMH6NStD_TgvM27eIOi0NC38i3VsoSe7wPvClOTNb_g83IVuu36YDa6fcrHKIxfQC8k4iUiNokx0VgSQ7BKLRVaJVZhIbHzTMpZy1pqKI-lC_GcaOLAQLQWKhJUSmbiY9AuVoU5AdDt4lwWb0VspaJaCs6okZnkVGPr8ov4FPS8SRbrWmFjEaxx9vfjc7BfV3Z9LeQCtMuPjbl0qUEprypM_ADJSbFr
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELWqMgBLoS3imwyMpI0dO4nniKqFpjC0qFvlT1EBKYJ0gF-PnbiphBjYkihDcnq-O5_vvQPgOsBcyBBqXyWJ8rGKic804z6EgnGto4BJS3DOJtFwhu_mZN4ANzUXRilVNp-pnr0sz_LlSqxtqaxPKKGJFSzdMXEfk4qttUEPJAacxGmnV344SqhlYbozBUrLGahWP8lsoAktaV4kji0ma_Und08clc-83E_TtJL6LDultyNYygg0aIFs8-1V48lLb13wnvj-Jev43587AN0t1897rKPYIWiovA1am2EPnlv7bbCf1QKvnx2AJ2aF-A_G37yxV4_l0rPNfEuxLDzL-PFGuaroml_e03Ll-u26YDa4naZD3w1g8J9RQAsf6SiESEKOFIIi1phJEWkBGYfGNwljLa2xwjTkJshTJJGBA5KSiYBhzokKj0AzX-XqGHhmH2fyeM1CzQWWnFGCFU84xRJqk2GEJ6BjTbJ4rzQ2Fs4ap38_vgK7w2k2XoxHk_szsFfVeW1l5Bw0i4-1ujCJQsEvS3z8AE0CtLg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2011+IEEE+26th+Annual+Conference+on+Computational+Complexity&rft.atitle=Near-Optimal+and+Explicit+Bell+Inequality+Violations&rft.au=Buhrman%2C+H.&rft.au=Regev%2C+O.&rft.au=Scarpa%2C+G.&rft.au=de+Wolf%2C+R.&rft.date=2011-06-01&rft.pub=IEEE&rft.isbn=9781457701795&rft.issn=1093-0159&rft.spage=157&rft.epage=166&rft_id=info:doi/10.1109%2FCCC.2011.30&rft.externalDocID=5959805
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1093-0159&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1093-0159&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1093-0159&client=summon