Efficiency Comparison of Machine Learning Algorithms for EEG Interpretation

This paper intends to use a small protocol to detect stroke disease on a patient by using signals provided by only three EEG probes. To achieve this objective, we compare the performances in terms of accuracy and time of six machine learning (ML) algorithms (Random Forest, Logistic Regression, Suppo...

Full description

Saved in:
Bibliographic Details
Published inIEEE International Conference on Artificial Intelligence Circuits and Systems (Online) pp. 1 - 5
Main Authors Han, Xia, Amiel, Frederic, Zhang, Xun, Wei, Kunni, Yan, Cong, Hu, Wenjun, Wang, Zefeng
Format Conference Proceeding
LanguageEnglish
Published IEEE 11.06.2023
Subjects
Online AccessGet full text
ISSN2834-9857
DOI10.1109/AICAS57966.2023.10168626

Cover

Loading…
Abstract This paper intends to use a small protocol to detect stroke disease on a patient by using signals provided by only three EEG probes. To achieve this objective, we compare the performances in terms of accuracy and time of six machine learning (ML) algorithms (Random Forest, Logistic Regression, Support Vector Machine, K-Nearest Neighbor, Decision Tree and CatBoost) during a process of EEG-based classification pathology. We use a database of EEG recording signals collected by three electrodes, established by Beijing University of Chinese Medicine and carried out on subjects healthy or affected by strokes when they are exposed to the vision of planes of five different colors. The subjects are known to be healthy or affected by strokes. The records are used to train each algorithm for 70% of the population, and the performances are estimated on the remaining 30%. Then the process is repeated one hundred times when changing the set used for training and the set used to test. We then consider a statistic on the results obtained using each method for comparison. Our results show that the SVM algorithm is the most efficient in terms of the accuracy of the results, and can detect stoke disease with a reliability of 70%.
AbstractList This paper intends to use a small protocol to detect stroke disease on a patient by using signals provided by only three EEG probes. To achieve this objective, we compare the performances in terms of accuracy and time of six machine learning (ML) algorithms (Random Forest, Logistic Regression, Support Vector Machine, K-Nearest Neighbor, Decision Tree and CatBoost) during a process of EEG-based classification pathology. We use a database of EEG recording signals collected by three electrodes, established by Beijing University of Chinese Medicine and carried out on subjects healthy or affected by strokes when they are exposed to the vision of planes of five different colors. The subjects are known to be healthy or affected by strokes. The records are used to train each algorithm for 70% of the population, and the performances are estimated on the remaining 30%. Then the process is repeated one hundred times when changing the set used for training and the set used to test. We then consider a statistic on the results obtained using each method for comparison. Our results show that the SVM algorithm is the most efficient in terms of the accuracy of the results, and can detect stoke disease with a reliability of 70%.
Author Han, Xia
Wei, Kunni
Hu, Wenjun
Wang, Zefeng
Zhang, Xun
Yan, Cong
Amiel, Frederic
Author_xml – sequence: 1
  givenname: Xia
  surname: Han
  fullname: Han, Xia
  email: xia.han@ext.isep.fr
  organization: Institut Supérieur D'électronique de Paris,LISIT-ECoS,Paris,France
– sequence: 2
  givenname: Frederic
  surname: Amiel
  fullname: Amiel, Frederic
  email: frederic.amiel@isep.fr
  organization: Institut Supérieur D'électronique de Paris,LISIT-ECoS,Paris,France
– sequence: 3
  givenname: Xun
  surname: Zhang
  fullname: Zhang, Xun
  email: xun.zhang@isep.fr
  organization: Institut Supérieur D'électronique de Paris,LISIT-ECoS,Paris,France
– sequence: 4
  givenname: Kunni
  surname: Wei
  fullname: Wei, Kunni
  email: iannya@bucm.edu.cn
  organization: Beijing University of Chinese Medicine,The School of Life Sciences,Beijing,China
– sequence: 5
  givenname: Cong
  surname: Yan
  fullname: Yan, Cong
  email: yancong@bucm.edu.cn
  organization: Beijing University of Chinese Medicine,The School of Life Sciences,Beijing,China
– sequence: 6
  givenname: Wenjun
  surname: Hu
  fullname: Hu, Wenjun
  email: wenjun.hu@zjhu.edu.cn
  organization: Huzhou University,The School of Information Engineering,Huzhou,China
– sequence: 7
  givenname: Zefeng
  surname: Wang
  fullname: Wang, Zefeng
  email: zefeng.wang@zjhu.edu.cn
  organization: Huzhou University,The School of Information Engineering,Huzhou,China
BookMark eNo1j7FOwzAURQ0CiVLyBwz-gZRnO7aTMapCqQhiAObKsZ9bo8aunCz9eyoB012Ojs69JzcxRSSEMlgxBs1Tu123H1I3Sq04cLFiwFStuLoiRaObWkgQgitdXZMFr0VVNrXUd6SYpm8AEJxdaLEgr533wQaM9kzXaTyZHKYUafL0zdhDiEh7NDmGuKftcZ9ymA_jRH3KtOs2dBtnzKeMs5lDig_k1pvjhMXfLsnXc_e5fin7980lti8PHIQqB1f5RmqLll_CpBqck15WMDA9oLUOAEFKgY4PTqL3Va2EsaDB-YozpcWSPP56AyLuTjmMJp93___FD1M6UdQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/AICAS57966.2023.10168626
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350332674
EISSN 2834-9857
EndPage 5
ExternalDocumentID 10168626
Genre orig-research
GrantInformation_xml – fundername: China Scholarship Council
  funderid: 10.13039/501100004543
GroupedDBID 6IE
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-h2036-bd4f957cec228356bdd5f540b17beccd00e0553ed2bd5eff4863ac070df421673
IEDL.DBID RIE
IngestDate Wed Aug 27 02:20:01 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-h2036-bd4f957cec228356bdd5f540b17beccd00e0553ed2bd5eff4863ac070df421673
OpenAccessLink https://telecom-paris.hal.science/hal-04229298
PageCount 5
ParticipantIDs ieee_primary_10168626
PublicationCentury 2000
PublicationDate 2023-June-11
PublicationDateYYYYMMDD 2023-06-11
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-June-11
  day: 11
PublicationDecade 2020
PublicationTitle IEEE International Conference on Artificial Intelligence Circuits and Systems (Online)
PublicationTitleAbbrev AICAS
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003211683
Score 1.8518486
Snippet This paper intends to use a small protocol to detect stroke disease on a patient by using signals provided by only three EEG probes. To achieve this objective,...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms algorithm performance
EEG
Electrodes
Electroencephalography
Image color analysis
Machine Learning
Machine learning algorithms
Protocols
stroke EEG classification
Support vector machines
Training
Title Efficiency Comparison of Machine Learning Algorithms for EEG Interpretation
URI https://ieeexplore.ieee.org/document/10168626
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5uJ08qTvxNDl7bNW2TrMcxOqeyIehgt5EfL5uoq8zu4l9vXrdOJgheQgkUQh7kfS_5vu8RchM7xmXkIFAgXZAqZgLNcTCIhl0sbIba4eFIDMbp_YRPNmL1SgsDABX5DEL8rN7ybWFWeFXWxkoTEXiDNHzlthZrbS9UEl_KiE5Ss3WirN2963WfUGuJVIQ4CevfdxqpVHmkf0BG9QrW9JHXcFXq0Hz9Mmf89xIPSetHskcft8noiOzB4pg85JVBBKoraW_bcJAWjg4rDiXQjb3qjHbfZsXypZy_f1IPY2me39JdPmKLjPv5c28QbLonBHN8XAy0TV3GpQGDDjdcaGu58_hMM4lxs1EEEecJ2FhbDs6lHZEo408A69KYCZmckOaiWMApoTqznCkTG-08GlCQCaVYlGiEQ7GU2Rlp4U5MP9YGGdN6E87_mL8g-xgQZFwxdkma5XIFVz63l_q6iuk3yG-j6Q
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4UD3pSI8bf9uB1Y93WjR0JGYL8iImQcCNr-woGZQbHxb_evsIwmJh4aZoemqYv6fvaft_3CHnwNeOxp8HJINZOmDHpCI6NRDSs_UglqB3uD6L2KHwa8_FGrG61MABgyWfgYtf-5atcrvCprIY3TUTg--TAJP4wWcu1tk8qgbnMRPWg5Ot4Sa3RaTZeUG2JZAQ_cMsJdkqp2EzSOiaDcg1rAsncXRXClV-_7Bn_vcgTUv0R7dHnbTo6JXuwOCPd1FpEoL6SNrclB2muad-yKIFuDFantPE2zZevxez9kxogS9P0ke4yEqtk1EqHzbazqZ_gzPB70REq1AmPJUj0uOGRUIprg9AEizFyyvPA4zwA5QvFQeuwHgWZNGeA0qHPojg4J5VFvoALQkWiOMukL4U2eCCDJMoy5gUCAZEfx8klqeJOTD7WFhmTchOu_hi_J4ftYb836XUG3WtyhMFB_hVjN6RSLFdwazJ9Ie5sfL8BlZqnOQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+International+Conference+on+Artificial+Intelligence+Circuits+and+Systems+%28Online%29&rft.atitle=Efficiency+Comparison+of+Machine+Learning+Algorithms+for+EEG+Interpretation&rft.au=Han%2C+Xia&rft.au=Amiel%2C+Frederic&rft.au=Zhang%2C+Xun&rft.au=Wei%2C+Kunni&rft.date=2023-06-11&rft.pub=IEEE&rft.eissn=2834-9857&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FAICAS57966.2023.10168626&rft.externalDocID=10168626