Global existence for partially dissipative hyperbolic systems in the Lp framework, and relaxation limit
Here we investigate global strong solutions for a class of partially dissipative hyperbolic systems in the framework of critical homogeneous Besov spaces. Our primary goal is to extend the analysis of our previous paper (Crin-Barat and Danchin in Partially dissipative hyperbolic systems in the criti...
Saved in:
Published in | Mathematische annalen Vol. 386; no. 3-4; pp. 2159 - 2206 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.08.2023
Springer Nature B.V Springer Verlag |
Subjects | |
Online Access | Get full text |
ISSN | 0025-5831 1432-1807 |
DOI | 10.1007/s00208-022-02450-4 |
Cover
Loading…
Abstract | Here we investigate global strong solutions for a class of partially dissipative hyperbolic systems in the framework of critical homogeneous Besov spaces. Our primary goal is to extend the analysis of our previous paper (Crin-Barat and Danchin in
Partially dissipative hyperbolic systems in the critical regularity setting: the multi-dimensional case
. Published online in Journal de Mathématiques Pures et Appliquées, 2022) to a functional framework where the low frequencies of the solution are only bounded in
L
p
-type spaces with
p
larger than 2. This unusual setting is in sharp contrast with the non-dissipative case (even linear), where well-posedness in
L
p
for
p
≠
2
fails (Brenner in Math Scand 19:27–37, 1966). Our new framework enables us to prescribe weaker smallness conditions for global well-posedness and to get a more accurate information on the qualitative properties of the constructed solutions. Our existence theorem applies to the multi-dimensional isentropic compressible Euler system with relaxation, and provide us with bounds that are
independent
of the relaxation parameter for general ill-prepared data, provided they are small enough. As a consequence, we justify rigorously the relaxation limit to the porous media equation and exhibit explicit rates of convergence in suitable norms, a completely new result to the best of our knowledge. |
---|---|
AbstractList | Here we investigate global strong solutions for a class of partially dissipative hyperbolic systems in the framework of critical homogeneous Besov spaces. Our primary goal is to extend the analysis of our previous paper (Crin-Barat and Danchin in Partially dissipative hyperbolic systems in the critical regularity setting: the multi-dimensional case. Published online in Journal de Mathématiques Pures et Appliquées, 2022) to a functional framework where the low frequencies of the solution are only bounded in Lp-type spaces with p larger than 2. This unusual setting is in sharp contrast with the non-dissipative case (even linear), where well-posedness in Lp for p≠2 fails (Brenner in Math Scand 19:27–37, 1966). Our new framework enables us to prescribe weaker smallness conditions for global well-posedness and to get a more accurate information on the qualitative properties of the constructed solutions. Our existence theorem applies to the multi-dimensional isentropic compressible Euler system with relaxation, and provide us with bounds that are independent of the relaxation parameter for general ill-prepared data, provided they are small enough. As a consequence, we justify rigorously the relaxation limit to the porous media equation and exhibit explicit rates of convergence in suitable norms, a completely new result to the best of our knowledge. Here we investigate global strong solutions for a class of partially dissipative hyperbolic systems in the framework of critical homogeneous Besov spaces. Our primary goal is to extend the analysis of our previous paper [10] to a functional framework where the low frequencies of the solution are only bounded in L p-type spaces with p larger than 2. This enables us to prescribe weaker smallness conditions for global well-posedness and to get a more accurate information on the qualitative properties of the constructed solutions. Our existence theorem in particular applies to the multi-dimensional isentropic compressible Euler system with relaxation, and provide us with bounds that are independent of the relaxation parameter. As a consequence, we justify rigorously the relaxation limit to the porous media equation and exhibit explicit rates of convergence for suitable norms, a completely new result to the best of our knowledge. Here we investigate global strong solutions for a class of partially dissipative hyperbolic systems in the framework of critical homogeneous Besov spaces. Our primary goal is to extend the analysis of our previous paper (Crin-Barat and Danchin in Partially dissipative hyperbolic systems in the critical regularity setting: the multi-dimensional case . Published online in Journal de Mathématiques Pures et Appliquées, 2022) to a functional framework where the low frequencies of the solution are only bounded in L p -type spaces with p larger than 2. This unusual setting is in sharp contrast with the non-dissipative case (even linear), where well-posedness in L p for p ≠ 2 fails (Brenner in Math Scand 19:27–37, 1966). Our new framework enables us to prescribe weaker smallness conditions for global well-posedness and to get a more accurate information on the qualitative properties of the constructed solutions. Our existence theorem applies to the multi-dimensional isentropic compressible Euler system with relaxation, and provide us with bounds that are independent of the relaxation parameter for general ill-prepared data, provided they are small enough. As a consequence, we justify rigorously the relaxation limit to the porous media equation and exhibit explicit rates of convergence in suitable norms, a completely new result to the best of our knowledge. |
Author | Danchin, Raphaël Crin-Barat, Timothée |
Author_xml | – sequence: 1 givenname: Timothée orcidid: 0000-0002-5012-3354 surname: Crin-Barat fullname: Crin-Barat, Timothée email: timothee.crin-barat@deusto.es organization: Chair of Computational Mathematics, Fundación Deusto – sequence: 2 givenname: Raphaël surname: Danchin fullname: Danchin, Raphaël organization: Univ Paris Est Creteil, Univ Gustave Eiffel, CNRS, LAMA UMR8050 |
BackLink | https://hal.science/hal-03531038$$DView record in HAL |
BookMark | eNpFkE1LAzEQhoMoWD_-gKeAJ8HVSSbpZo-laCsUvOg5ZNtsm5pu1mSr7b83tYKHYWDmmZfhuSCnbWgtITcMHhhA-ZgAOKgCOM8lJBTihAyYQF4wBeUpGeS9LKRCdk4uUloDAALIAVlOfKiNp3bnUm_buaVNiLQzsXfG-z1duJRcZ3r3Zelq39lYB-_mNO0zvUnUtbRfWTrraBPNxn6H-HFPTbug0Xqzy2ehpd5tXH9Fzhrjk73-65fk_fnpbTwtZq-Tl_FoVqxYxfpCWkBRC1bLGsshQs2HQy4QFwYqzmtWyZpXCg1KaeaghCxNM0QuFVcVN1WDl-TumLsyXnfRbUzc62Ccno5m-jADlMgA1RfL7O2R7WL43NrU63XYxja_p7lCUQpWMp4pPFIpx7VLG_8pBvpgXx_t62xf_9rXAn8A2gJ4Ng |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | 1XC VOOES |
DOI | 10.1007/s00208-022-02450-4 |
DatabaseName | Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1432-1807 |
EndPage | 2206 |
ExternalDocumentID | oai_HAL_hal_03531038v1 10_1007_s00208_022_02450_4 |
GrantInformation_xml | – fundername: HORIZON EUROPE European Research Council grantid: 694126-DyCon funderid: http://dx.doi.org/10.13039/100019180 – fundername: ANR INFAMIE grantid: ANR-15-CE40-0011; ANR-15-CE40-0011 |
GroupedDBID | --Z -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 199 1N0 1SB 203 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2WC 2~H 30C 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 692 6NX 6TJ 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAHTB AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPEJ ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACREN ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDYV AFEXP AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ3 GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KQ8 LAS LLZTM M4Y MA- MVM N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OHT OK1 P19 P2P P9R PF- PT4 PT5 QOK QOS R4E R89 R9I REI RHV RIG RNI ROL RPX RSU RSV RYB RZK RZZ S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC TWZ U2A UG4 UOJIU UQL UTJUX UZXMN VC2 VFIZW VXZ W23 W48 WH7 WIP WK8 XOL YLTOR YNT YQT Z45 ZMTXR ZWQNP ZY4 ~EX AAPKM ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA DARCH 1XC ACMFV ADHKG AETEA AGQPQ UMC VOOES |
ID | FETCH-LOGICAL-h191t-5e034b41b5b37630b2662433da0922b195b2983a355ac08457af632582892a9f3 |
IEDL.DBID | U2A |
ISSN | 0025-5831 |
IngestDate | Fri May 09 12:27:43 EDT 2025 Fri Jul 25 11:11:33 EDT 2025 Fri Feb 21 02:42:32 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3-4 |
Keywords | 35Q35 76N10 1991 Mathematics Subject Classification. 35Q35 relaxation limit critical regularity 76N10 Hyperbolic systems partially dissipative |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-h191t-5e034b41b5b37630b2662433da0922b195b2983a355ac08457af632582892a9f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5012-3354 0000-0003-3072-3341 |
OpenAccessLink | https://hal.science/hal-03531038 |
PQID | 2834741712 |
PQPubID | 2043618 |
PageCount | 48 |
ParticipantIDs | hal_primary_oai_HAL_hal_03531038v1 proquest_journals_2834741712 springer_journals_10_1007_s00208_022_02450_4 |
PublicationCentury | 2000 |
PublicationDate | 2023-08-01 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Mathematische annalen |
PublicationTitleAbbrev | Math. Ann |
PublicationYear | 2023 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V Springer Verlag |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: Springer Verlag |
References | XuJKawashimaSDiffusive relaxation limit of classical solutions to the damped compressible Euler equationsJ. Differ. Equ.201425677179631217131329.3523810.1016/j.jde.2013.09.019 Coron, J.-M.: Control and nonlinearity, vol. 136. American Mathematical Society, Mathematical Surveys and Monographs (2007) MarcatiPRubinoBHyperbolic to parabolic relaxation theory for quasilinear first order systemsJ. Differ. Equ.200016235939917517100987.3510310.1006/jdeq.1999.3676 Kawashima, S.: Systems of a hyperbolic-parabolic composite type, with applications to the equations of magnetohydrodynamics. Doctoral Thesis (1983) Wasiolek, V.: Analyse asymptotique de systèmes hyperboliques quasi-linéaires du premier ordre. Thesis dissertation, Université Blaise Pascal - Clermont-Ferrand II (2015) BonyJ-MCalcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéairesAnn. Sci. École Norm. Sup.19814142092460495.3502410.24033/asens.1404 PengY-JWasiolekVParabolic limit with differential constraints of first-order quasilinear hyperbolic systemsAnn. I. H. Poincaré20163341103113035195341347.3502310.1016/j.anihpc.2015.03.006 Crin-BaratTDanchinRPartially dissipative one-dimensional hyperbolic systems in the critical regularity setting, and applicationsPure Appl. Anal.2022418512544193691489.3519310.2140/paa.2022.4.85 BrennerPThe cauchy problem for symmetric hyperbolic systems in Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {L}^p$$\end{document}Math. Scand.19661927372124270154.1130410.7146/math.scand.a-10793 MasciaCNguyenTTLp- Lq decay estimates for dissipative linear hyperbolic systems in 1dJ. Differ. Equ.2017263618962301397.3514810.1016/j.jde.2017.07.011 ShizutaSKawashimaSSystems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equationHokkaido Math. J.1985142492757987560587.3504610.14492/hokmj/1381757663 Serre, D.: Systèmes de lois de conservation, tome 1. Diderot editeur, Arts et Sciences, Paris, New York (1996) YongW-AEntropy and global existence for hyperbolic balance lawsArch. Rational Mech. Anal200417247266205816510.1007/s00205-003-0304-3 Crin-Barat, T., Danchin, R.: Partially dissipative hyperbolic systems in the critical regularity setting: the multi-dimensional case. Accepted in Journal de Mathématiques Pures et Appliquées (2022) BeauchardKZuazuaELarge time asymptotics for partially dissipative hyperbolic systemsArch. Rational Mech. Anal201119917722727543411237.3501710.1007/s00205-010-0321-y LiangZShuaiZConvergence rate from hyperbolic systems of balance laws to parabolic systemsAsymptot. Anal.202112241631981502.35137 Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations. Grundlehren der Mathematischen Wissenschaften, vol. 343. Springer, Heidelberg (2011) MarcatiPMilaniAThe one-dimensional Darcy’s law as the limit of a compressible Euler flowJ. Differ. Equ.19908412914710426620715.3506510.1016/0022-0396(90)90130-H XuJWangZRelaxation limit in besov spaces for compressible Euler equationsJournal de Mathématiques Pures et Appliquées201399436130032821258.3516310.1016/j.matpur.2012.06.002 BianchiniSHanouzetBNataliniRAsymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropyCommun. Pure Appl. Math.2007601559162223493491152.3500910.1002/cpa.20195 BoscarinoSRussoAOn a class of uniformly accurate IMEX Runge–Kutta schemes and applications to hyperbolic systems with relaxationSim J. Sci. Compt.20093131926194525161391193.6516210.1137/080713562 KawashimaSYongW-ADecay estimates for hyperbolic balance lawsJ. Anal. Appl.20092813324697131173.35365 ChenG-QLevermoreCDLiuT-PHyperbolic conservation laws with stiff relaxation terms and entropyCommun. Pure Appl. Math.199447678783012809890806.3511210.1002/cpa.3160470602 JuncaSRascleMStrong relaxation of the isothermal Euler system to the heat equationZ. Angew. Math. Phys.20025323926419006730997.3503510.1007/s00033-002-8154-7 Li, Y., Peng, Y-J., Zhao, L.: Convergence rate from hyperbolic systems of balance laws to parabolic systems. Appl. Anal. pp. 1079–1095 (2021) ChenQMiaoCZhangZGlobal well-posedness for compressible Navier–Stokes equations with highly oscillating initial velocityCommun. Pure Appl. Math.20106391173122426754851202.35002 MajdaACompressible fluid flow and systems of conservation laws in several space variable1984New-YorkSpringer0537.7600110.1007/978-1-4612-1116-7 DanchinRLocal theory in critical spaces for compressible viscous and heat-conductive gasesCommun. Partial Differ. Equ.2001267–81183123318552771007.3507110.1081/PDE-100106132 Zuazua, E.: Decay of partially dissipative hyperbolic systems. https://caa-avh.nat.fau.eu/enrique-zuazua-presentations/ (2020) BianchiniRUniform asymptotic and convergence estimates for the Jin-Xin model under the diffusion scalingSIAM J. Math. Anal.20185021877189937823991407.3513010.1137/17M1152395 HsiaoLQuasilinear Hyperbolic Systems and Dissipative Mechanisms1997SingaporeWorld Scientific Publishing0911.35003 CoulombelJ-FGoudonTThe strong relaxation limit of the multidimensional isothermal Euler equationsTrans. Am. Math. Soc.2007359263764822551901170.3547710.1090/S0002-9947-06-04028-1 Li, T-T.: Global classical solutions for quasilinear hyperbolic systems. Masson, Paris; John Wiley & Sons, Ltd., Chichester (1994) LinCCoulombelJ-FThe strong relaxation limit of the multidimensional Euler equationsNonlinear Differ. Equ. Appl.20132044746130571381268.3509910.1007/s00030-012-0159-0 CharveFDanchinRA global existence result for the compressible Navier–Stokes equations in the critical Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {L}^p$$\end{document} frameworkArch. Rational Mech. Anal201019823327126793721229.3516710.1007/s00205-010-0306-x XuJKawashimaSGlobal classical solutions for partially dissipative hyperbolic system of balance lawsArch. Rational Mech. Anal201421151355331490651293.3517310.1007/s00205-013-0679-8 Villani, C.: Hypocoercivity. Mem. Am. Math. Soc. (2010) |
References_xml | – reference: MarcatiPRubinoBHyperbolic to parabolic relaxation theory for quasilinear first order systemsJ. Differ. Equ.200016235939917517100987.3510310.1006/jdeq.1999.3676 – reference: MasciaCNguyenTTLp- Lq decay estimates for dissipative linear hyperbolic systems in 1dJ. Differ. Equ.2017263618962301397.3514810.1016/j.jde.2017.07.011 – reference: BianchiniRUniform asymptotic and convergence estimates for the Jin-Xin model under the diffusion scalingSIAM J. Math. Anal.20185021877189937823991407.3513010.1137/17M1152395 – reference: BonyJ-MCalcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéairesAnn. Sci. École Norm. Sup.19814142092460495.3502410.24033/asens.1404 – reference: XuJKawashimaSGlobal classical solutions for partially dissipative hyperbolic system of balance lawsArch. Rational Mech. Anal201421151355331490651293.3517310.1007/s00205-013-0679-8 – reference: XuJWangZRelaxation limit in besov spaces for compressible Euler equationsJournal de Mathématiques Pures et Appliquées201399436130032821258.3516310.1016/j.matpur.2012.06.002 – reference: Li, T-T.: Global classical solutions for quasilinear hyperbolic systems. Masson, Paris; John Wiley & Sons, Ltd., Chichester (1994) – reference: Kawashima, S.: Systems of a hyperbolic-parabolic composite type, with applications to the equations of magnetohydrodynamics. Doctoral Thesis (1983) – reference: Zuazua, E.: Decay of partially dissipative hyperbolic systems. https://caa-avh.nat.fau.eu/enrique-zuazua-presentations/ (2020) – reference: MarcatiPMilaniAThe one-dimensional Darcy’s law as the limit of a compressible Euler flowJ. Differ. Equ.19908412914710426620715.3506510.1016/0022-0396(90)90130-H – reference: Coron, J.-M.: Control and nonlinearity, vol. 136. American Mathematical Society, Mathematical Surveys and Monographs (2007) – reference: HsiaoLQuasilinear Hyperbolic Systems and Dissipative Mechanisms1997SingaporeWorld Scientific Publishing0911.35003 – reference: BoscarinoSRussoAOn a class of uniformly accurate IMEX Runge–Kutta schemes and applications to hyperbolic systems with relaxationSim J. Sci. Compt.20093131926194525161391193.6516210.1137/080713562 – reference: Serre, D.: Systèmes de lois de conservation, tome 1. Diderot editeur, Arts et Sciences, Paris, New York (1996) – reference: JuncaSRascleMStrong relaxation of the isothermal Euler system to the heat equationZ. Angew. Math. Phys.20025323926419006730997.3503510.1007/s00033-002-8154-7 – reference: Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations. Grundlehren der Mathematischen Wissenschaften, vol. 343. Springer, Heidelberg (2011) – reference: CoulombelJ-FGoudonTThe strong relaxation limit of the multidimensional isothermal Euler equationsTrans. Am. Math. Soc.2007359263764822551901170.3547710.1090/S0002-9947-06-04028-1 – reference: Crin-BaratTDanchinRPartially dissipative one-dimensional hyperbolic systems in the critical regularity setting, and applicationsPure Appl. Anal.2022418512544193691489.3519310.2140/paa.2022.4.85 – reference: LinCCoulombelJ-FThe strong relaxation limit of the multidimensional Euler equationsNonlinear Differ. Equ. Appl.20132044746130571381268.3509910.1007/s00030-012-0159-0 – reference: ChenQMiaoCZhangZGlobal well-posedness for compressible Navier–Stokes equations with highly oscillating initial velocityCommun. Pure Appl. Math.20106391173122426754851202.35002 – reference: PengY-JWasiolekVParabolic limit with differential constraints of first-order quasilinear hyperbolic systemsAnn. I. H. Poincaré20163341103113035195341347.3502310.1016/j.anihpc.2015.03.006 – reference: Villani, C.: Hypocoercivity. Mem. Am. Math. Soc. (2010) – reference: DanchinRLocal theory in critical spaces for compressible viscous and heat-conductive gasesCommun. Partial Differ. Equ.2001267–81183123318552771007.3507110.1081/PDE-100106132 – reference: BeauchardKZuazuaELarge time asymptotics for partially dissipative hyperbolic systemsArch. Rational Mech. Anal201119917722727543411237.3501710.1007/s00205-010-0321-y – reference: MajdaACompressible fluid flow and systems of conservation laws in several space variable1984New-YorkSpringer0537.7600110.1007/978-1-4612-1116-7 – reference: Wasiolek, V.: Analyse asymptotique de systèmes hyperboliques quasi-linéaires du premier ordre. Thesis dissertation, Université Blaise Pascal - Clermont-Ferrand II (2015) – reference: CharveFDanchinRA global existence result for the compressible Navier–Stokes equations in the critical Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {L}^p$$\end{document} frameworkArch. Rational Mech. Anal201019823327126793721229.3516710.1007/s00205-010-0306-x – reference: XuJKawashimaSDiffusive relaxation limit of classical solutions to the damped compressible Euler equationsJ. Differ. Equ.201425677179631217131329.3523810.1016/j.jde.2013.09.019 – reference: Li, Y., Peng, Y-J., Zhao, L.: Convergence rate from hyperbolic systems of balance laws to parabolic systems. Appl. Anal. pp. 1079–1095 (2021) – reference: ShizutaSKawashimaSSystems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equationHokkaido Math. J.1985142492757987560587.3504610.14492/hokmj/1381757663 – reference: LiangZShuaiZConvergence rate from hyperbolic systems of balance laws to parabolic systemsAsymptot. Anal.202112241631981502.35137 – reference: YongW-AEntropy and global existence for hyperbolic balance lawsArch. Rational Mech. Anal200417247266205816510.1007/s00205-003-0304-3 – reference: Crin-Barat, T., Danchin, R.: Partially dissipative hyperbolic systems in the critical regularity setting: the multi-dimensional case. Accepted in Journal de Mathématiques Pures et Appliquées (2022) – reference: BrennerPThe cauchy problem for symmetric hyperbolic systems in Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {L}^p$$\end{document}Math. Scand.19661927372124270154.1130410.7146/math.scand.a-10793 – reference: KawashimaSYongW-ADecay estimates for hyperbolic balance lawsJ. Anal. Appl.20092813324697131173.35365 – reference: BianchiniSHanouzetBNataliniRAsymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropyCommun. Pure Appl. Math.2007601559162223493491152.3500910.1002/cpa.20195 – reference: ChenG-QLevermoreCDLiuT-PHyperbolic conservation laws with stiff relaxation terms and entropyCommun. Pure Appl. Math.199447678783012809890806.3511210.1002/cpa.3160470602 |
SSID | ssj0003005 |
Score | 2.4425476 |
Snippet | Here we investigate global strong solutions for a class of partially dissipative hyperbolic systems in the framework of critical homogeneous Besov spaces. Our... |
SourceID | hal proquest springer |
SourceType | Open Access Repository Aggregation Database Publisher |
StartPage | 2159 |
SubjectTerms | Analysis of PDEs Compressibility Dissipation Existence theorems Function space Hyperbolic systems Mathematics Mathematics and Statistics Norms Porous media Well posed problems |
Title | Global existence for partially dissipative hyperbolic systems in the Lp framework, and relaxation limit |
URI | https://link.springer.com/article/10.1007/s00208-022-02450-4 https://www.proquest.com/docview/2834741712 https://hal.science/hal-03531038 |
Volume | 386 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gu8AB8RSDMUWI4yq1TdKmxw5tTLDtxKRxqhKaMqSpTNuY4N9jpw8Q4sKpUlvlYDv2Z9n-TMhNFpowg7jrKJa5Do-kdiDPEk6apoFi-jk0HAeFx5NgOOX3MzErh8LWVbd7VZK0nroedrP7JB3sPsdyIRy8S5oCcne066kf1_4XCdirRa1CMq8clfn7DAgpc-yA_AEvf1VEbaAZHJKDEiHSuFDpEdkx-THZH9f0qusT8lIw9VOksbSYlwL0pEu0ArVYfFIssttW6a2hc0g0VxrZf2nB2rymrzmFw-hoSbOqNatLVZ5SHGz5sKqiCxx8OiXTQf_xduiUGxOcOeRdG0cYl3HNPS00Og5XQ_j1OWOpciPf114ktB9JpgBkqGdXchGqLGA-ls4iX0UZOyON_C0354Qqk2YChBvIKOBw06XhAeMSIQLXjGUtcg2CS5YFJ0aCLNXDeJTgO5cJ3F4mt16LtCu5JuXdWCcAaDjgmNDzW6Rbyfr7c82jbHWVgK4Sq6uEX_zv90uyh7vhi269NmlsVu_mChDERndIMx70ehN83j099DvWgL4AgIi-2Q |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgHIADb8R4Rojjitom6eM4IcaAbadNglOUrClDTGViAwG_HruPgRAXrusUtbVrf5Y_fwY4S0Mbpph3Hc1T1xFxZByss6STJEmguRmGVtCgcLcXtAfi5k7elUNh04rtXrUk80g9H3bL90k6xD6ndiEevAhLAmtwWYOl5tX97eU8ApMEe7WqVUbcK4dl_j4Fk8qIOJA_AOavnmiealrrMKhusmCYPJ2_zsz58POXfuN_n2ID1krsyZqFs2zCgs22YLU7F26dbsNDsQOAkUBmjqYZglo2If_S4_EHo_Z9TsJ-s2yEJeyLIV1hVuhBT9ljxvAw1pmwtCJ9NZjOEkYjM--5E7AxjVTtwKB12b9oO-UuBmeEFd3MkdblwgjPSEMhyTWY2H3BeaLd2PeNF0vjxxHXCF_00I2EDHUacJ-acrGv45TvQi17zuweMG2TVGLpF0RxIDCGRFYEXEQEPoThPK3DKRpETQq1DUX61-1mR9FvLpe0Fy168-pwWNlLlV_dVCFUEoiQQs-vQ6N6_d-X5wrNuQ0U2kDlNlBi_39_P4Hldr_bUZ3r3u0BrNAG-oITeAi12curPUKcMjPHpVt-Af_D26E |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA1aQfQgfmK1ahCPXbq7SfbjWNRStS0eLPQWkm5ihbKWthb9985ku7WIF6-7SxYyycwbZt4bQm5sbGILcddTzPoeTxPtQZ4lvCzLIsX0MDYcicLdXtTu88eBGKyx-F23e1mSLDgNqNKUzxuTzDZWxDc3W9LDTnQsHcJPNskWuOMAm7r6YXPli1GMvRzaKhIWLGkzf68B4WWE3ZBrUPNXddQFndY-2VuiRdoszHtANkx-SHa7K6nV2RF5LVT7KUpaOvxLAYbSCZ4INR5_USy4u7bphaEjSDqnGpWAaaHgPKNvOYXFaGdCbdmmVacqzyiSXD6d2egYSVDHpN-6f7lte8vpCd4IcrC5J4zPuOaBFhqdiK8hFIecsUz5aRjqIBU6TBOmAHCooZ9wESsbsRDLaGmoUstOSCV_z80pocpkVkCyFiVpxOHWJ4ZHjCcIF7hmzFbJNWycnBT6GBIVq9vNjsRnPhM4ySxZBFVSK_dVLu_JTAK44YBp4iCsknq51z-vV5rKzlYSbCWdrSQ_-9_nV2T7-a4lOw-9p3OygyPjiya-GqnMpx_mAoDFXF-6s_MNGTjC-A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+existence+for+partially+dissipative+hyperbolic+systems+in+the+Lp+framework%2C+and+relaxation+limit&rft.jtitle=Mathematische+annalen&rft.au=Crin-Barat+Timoth%C3%A9e&rft.au=Danchin+Rapha%C3%ABl&rft.date=2023-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0025-5831&rft.eissn=1432-1807&rft.volume=386&rft.issue=3-4&rft.spage=2159&rft.epage=2206&rft_id=info:doi/10.1007%2Fs00208-022-02450-4&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5831&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5831&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5831&client=summon |