Global existence for partially dissipative hyperbolic systems in the Lp framework, and relaxation limit

Here we investigate global strong solutions for a class of partially dissipative hyperbolic systems in the framework of critical homogeneous Besov spaces. Our primary goal is to extend the analysis of our previous paper (Crin-Barat and Danchin in Partially dissipative hyperbolic systems in the criti...

Full description

Saved in:
Bibliographic Details
Published inMathematische annalen Vol. 386; no. 3-4; pp. 2159 - 2206
Main Authors Crin-Barat, Timothée, Danchin, Raphaël
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2023
Springer Nature B.V
Springer Verlag
Subjects
Online AccessGet full text
ISSN0025-5831
1432-1807
DOI10.1007/s00208-022-02450-4

Cover

Loading…
Abstract Here we investigate global strong solutions for a class of partially dissipative hyperbolic systems in the framework of critical homogeneous Besov spaces. Our primary goal is to extend the analysis of our previous paper (Crin-Barat and Danchin in Partially dissipative hyperbolic systems in the critical regularity setting: the multi-dimensional case . Published online in Journal de Mathématiques Pures et Appliquées, 2022) to a functional framework where the low frequencies of the solution are only bounded in L p -type spaces with p larger than 2. This unusual setting is in sharp contrast with the non-dissipative case (even linear), where well-posedness in L p for p ≠ 2 fails (Brenner in Math Scand 19:27–37, 1966). Our new framework enables us to prescribe weaker smallness conditions for global well-posedness and to get a more accurate information on the qualitative properties of the constructed solutions. Our existence theorem applies to the multi-dimensional isentropic compressible Euler system with relaxation, and provide us with bounds that are independent of the relaxation parameter for general ill-prepared data, provided they are small enough. As a consequence, we justify rigorously the relaxation limit to the porous media equation and exhibit explicit rates of convergence in suitable norms, a completely new result to the best of our knowledge.
AbstractList Here we investigate global strong solutions for a class of partially dissipative hyperbolic systems in the framework of critical homogeneous Besov spaces. Our primary goal is to extend the analysis of our previous paper (Crin-Barat and Danchin in Partially dissipative hyperbolic systems in the critical regularity setting: the multi-dimensional case. Published online in Journal de Mathématiques Pures et Appliquées, 2022) to a functional framework where the low frequencies of the solution are only bounded in Lp-type spaces with p larger than 2. This unusual setting is in sharp contrast with the non-dissipative case (even linear), where well-posedness in Lp for p≠2 fails (Brenner in Math Scand 19:27–37, 1966). Our new framework enables us to prescribe weaker smallness conditions for global well-posedness and to get a more accurate information on the qualitative properties of the constructed solutions. Our existence theorem applies to the multi-dimensional isentropic compressible Euler system with relaxation, and provide us with bounds that are independent of the relaxation parameter for general ill-prepared data, provided they are small enough. As a consequence, we justify rigorously the relaxation limit to the porous media equation and exhibit explicit rates of convergence in suitable norms, a completely new result to the best of our knowledge.
Here we investigate global strong solutions for a class of partially dissipative hyperbolic systems in the framework of critical homogeneous Besov spaces. Our primary goal is to extend the analysis of our previous paper [10] to a functional framework where the low frequencies of the solution are only bounded in L p-type spaces with p larger than 2. This enables us to prescribe weaker smallness conditions for global well-posedness and to get a more accurate information on the qualitative properties of the constructed solutions. Our existence theorem in particular applies to the multi-dimensional isentropic compressible Euler system with relaxation, and provide us with bounds that are independent of the relaxation parameter. As a consequence, we justify rigorously the relaxation limit to the porous media equation and exhibit explicit rates of convergence for suitable norms, a completely new result to the best of our knowledge.
Here we investigate global strong solutions for a class of partially dissipative hyperbolic systems in the framework of critical homogeneous Besov spaces. Our primary goal is to extend the analysis of our previous paper (Crin-Barat and Danchin in Partially dissipative hyperbolic systems in the critical regularity setting: the multi-dimensional case . Published online in Journal de Mathématiques Pures et Appliquées, 2022) to a functional framework where the low frequencies of the solution are only bounded in L p -type spaces with p larger than 2. This unusual setting is in sharp contrast with the non-dissipative case (even linear), where well-posedness in L p for p ≠ 2 fails (Brenner in Math Scand 19:27–37, 1966). Our new framework enables us to prescribe weaker smallness conditions for global well-posedness and to get a more accurate information on the qualitative properties of the constructed solutions. Our existence theorem applies to the multi-dimensional isentropic compressible Euler system with relaxation, and provide us with bounds that are independent of the relaxation parameter for general ill-prepared data, provided they are small enough. As a consequence, we justify rigorously the relaxation limit to the porous media equation and exhibit explicit rates of convergence in suitable norms, a completely new result to the best of our knowledge.
Author Danchin, Raphaël
Crin-Barat, Timothée
Author_xml – sequence: 1
  givenname: Timothée
  orcidid: 0000-0002-5012-3354
  surname: Crin-Barat
  fullname: Crin-Barat, Timothée
  email: timothee.crin-barat@deusto.es
  organization: Chair of Computational Mathematics, Fundación Deusto
– sequence: 2
  givenname: Raphaël
  surname: Danchin
  fullname: Danchin, Raphaël
  organization: Univ Paris Est Creteil, Univ Gustave Eiffel, CNRS, LAMA UMR8050
BackLink https://hal.science/hal-03531038$$DView record in HAL
BookMark eNpFkE1LAzEQhoMoWD_-gKeAJ8HVSSbpZo-laCsUvOg5ZNtsm5pu1mSr7b83tYKHYWDmmZfhuSCnbWgtITcMHhhA-ZgAOKgCOM8lJBTihAyYQF4wBeUpGeS9LKRCdk4uUloDAALIAVlOfKiNp3bnUm_buaVNiLQzsXfG-z1duJRcZ3r3Zelq39lYB-_mNO0zvUnUtbRfWTrraBPNxn6H-HFPTbug0Xqzy2ehpd5tXH9Fzhrjk73-65fk_fnpbTwtZq-Tl_FoVqxYxfpCWkBRC1bLGsshQs2HQy4QFwYqzmtWyZpXCg1KaeaghCxNM0QuFVcVN1WDl-TumLsyXnfRbUzc62Ccno5m-jADlMgA1RfL7O2R7WL43NrU63XYxja_p7lCUQpWMp4pPFIpx7VLG_8pBvpgXx_t62xf_9rXAn8A2gJ4Ng
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 1XC
VOOES
DOI 10.1007/s00208-022-02450-4
DatabaseName Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1432-1807
EndPage 2206
ExternalDocumentID oai_HAL_hal_03531038v1
10_1007_s00208_022_02450_4
GrantInformation_xml – fundername: HORIZON EUROPE European Research Council
  grantid: 694126-DyCon
  funderid: http://dx.doi.org/10.13039/100019180
– fundername: ANR INFAMIE
  grantid: ANR-15-CE40-0011; ANR-15-CE40-0011
GroupedDBID --Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
199
1N0
1SB
203
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2WC
2~H
30C
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
692
6NX
6TJ
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAHTB
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPEJ
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACREN
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDYV
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ3
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KQ8
LAS
LLZTM
M4Y
MA-
MVM
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OHT
OK1
P19
P2P
P9R
PF-
PT4
PT5
QOK
QOS
R4E
R89
R9I
REI
RHV
RIG
RNI
ROL
RPX
RSU
RSV
RYB
RZK
RZZ
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TWZ
U2A
UG4
UOJIU
UQL
UTJUX
UZXMN
VC2
VFIZW
VXZ
W23
W48
WH7
WIP
WK8
XOL
YLTOR
YNT
YQT
Z45
ZMTXR
ZWQNP
ZY4
~EX
AAPKM
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
DARCH
1XC
ACMFV
ADHKG
AETEA
AGQPQ
UMC
VOOES
ID FETCH-LOGICAL-h191t-5e034b41b5b37630b2662433da0922b195b2983a355ac08457af632582892a9f3
IEDL.DBID U2A
ISSN 0025-5831
IngestDate Fri May 09 12:27:43 EDT 2025
Fri Jul 25 11:11:33 EDT 2025
Fri Feb 21 02:42:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3-4
Keywords 35Q35
76N10
1991 Mathematics Subject Classification. 35Q35
relaxation limit
critical regularity
76N10 Hyperbolic systems
partially dissipative
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-h191t-5e034b41b5b37630b2662433da0922b195b2983a355ac08457af632582892a9f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5012-3354
0000-0003-3072-3341
OpenAccessLink https://hal.science/hal-03531038
PQID 2834741712
PQPubID 2043618
PageCount 48
ParticipantIDs hal_primary_oai_HAL_hal_03531038v1
proquest_journals_2834741712
springer_journals_10_1007_s00208_022_02450_4
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Mathematische annalen
PublicationTitleAbbrev Math. Ann
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: Springer Verlag
References XuJKawashimaSDiffusive relaxation limit of classical solutions to the damped compressible Euler equationsJ. Differ. Equ.201425677179631217131329.3523810.1016/j.jde.2013.09.019
Coron, J.-M.: Control and nonlinearity, vol. 136. American Mathematical Society, Mathematical Surveys and Monographs (2007)
MarcatiPRubinoBHyperbolic to parabolic relaxation theory for quasilinear first order systemsJ. Differ. Equ.200016235939917517100987.3510310.1006/jdeq.1999.3676
Kawashima, S.: Systems of a hyperbolic-parabolic composite type, with applications to the equations of magnetohydrodynamics. Doctoral Thesis (1983)
Wasiolek, V.: Analyse asymptotique de systèmes hyperboliques quasi-linéaires du premier ordre. Thesis dissertation, Université Blaise Pascal - Clermont-Ferrand II (2015)
BonyJ-MCalcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéairesAnn. Sci. École Norm. Sup.19814142092460495.3502410.24033/asens.1404
PengY-JWasiolekVParabolic limit with differential constraints of first-order quasilinear hyperbolic systemsAnn. I. H. Poincaré20163341103113035195341347.3502310.1016/j.anihpc.2015.03.006
Crin-BaratTDanchinRPartially dissipative one-dimensional hyperbolic systems in the critical regularity setting, and applicationsPure Appl. Anal.2022418512544193691489.3519310.2140/paa.2022.4.85
BrennerPThe cauchy problem for symmetric hyperbolic systems in Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {L}^p$$\end{document}Math. Scand.19661927372124270154.1130410.7146/math.scand.a-10793
MasciaCNguyenTTLp- Lq decay estimates for dissipative linear hyperbolic systems in 1dJ. Differ. Equ.2017263618962301397.3514810.1016/j.jde.2017.07.011
ShizutaSKawashimaSSystems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equationHokkaido Math. J.1985142492757987560587.3504610.14492/hokmj/1381757663
Serre, D.: Systèmes de lois de conservation, tome 1. Diderot editeur, Arts et Sciences, Paris, New York (1996)
YongW-AEntropy and global existence for hyperbolic balance lawsArch. Rational Mech. Anal200417247266205816510.1007/s00205-003-0304-3
Crin-Barat, T., Danchin, R.: Partially dissipative hyperbolic systems in the critical regularity setting: the multi-dimensional case. Accepted in Journal de Mathématiques Pures et Appliquées (2022)
BeauchardKZuazuaELarge time asymptotics for partially dissipative hyperbolic systemsArch. Rational Mech. Anal201119917722727543411237.3501710.1007/s00205-010-0321-y
LiangZShuaiZConvergence rate from hyperbolic systems of balance laws to parabolic systemsAsymptot. Anal.202112241631981502.35137
Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations. Grundlehren der Mathematischen Wissenschaften, vol. 343. Springer, Heidelberg (2011)
MarcatiPMilaniAThe one-dimensional Darcy’s law as the limit of a compressible Euler flowJ. Differ. Equ.19908412914710426620715.3506510.1016/0022-0396(90)90130-H
XuJWangZRelaxation limit in besov spaces for compressible Euler equationsJournal de Mathématiques Pures et Appliquées201399436130032821258.3516310.1016/j.matpur.2012.06.002
BianchiniSHanouzetBNataliniRAsymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropyCommun. Pure Appl. Math.2007601559162223493491152.3500910.1002/cpa.20195
BoscarinoSRussoAOn a class of uniformly accurate IMEX Runge–Kutta schemes and applications to hyperbolic systems with relaxationSim J. Sci. Compt.20093131926194525161391193.6516210.1137/080713562
KawashimaSYongW-ADecay estimates for hyperbolic balance lawsJ. Anal. Appl.20092813324697131173.35365
ChenG-QLevermoreCDLiuT-PHyperbolic conservation laws with stiff relaxation terms and entropyCommun. Pure Appl. Math.199447678783012809890806.3511210.1002/cpa.3160470602
JuncaSRascleMStrong relaxation of the isothermal Euler system to the heat equationZ. Angew. Math. Phys.20025323926419006730997.3503510.1007/s00033-002-8154-7
Li, Y., Peng, Y-J., Zhao, L.: Convergence rate from hyperbolic systems of balance laws to parabolic systems. Appl. Anal. pp. 1079–1095 (2021)
ChenQMiaoCZhangZGlobal well-posedness for compressible Navier–Stokes equations with highly oscillating initial velocityCommun. Pure Appl. Math.20106391173122426754851202.35002
MajdaACompressible fluid flow and systems of conservation laws in several space variable1984New-YorkSpringer0537.7600110.1007/978-1-4612-1116-7
DanchinRLocal theory in critical spaces for compressible viscous and heat-conductive gasesCommun. Partial Differ. Equ.2001267–81183123318552771007.3507110.1081/PDE-100106132
Zuazua, E.: Decay of partially dissipative hyperbolic systems. https://caa-avh.nat.fau.eu/enrique-zuazua-presentations/ (2020)
BianchiniRUniform asymptotic and convergence estimates for the Jin-Xin model under the diffusion scalingSIAM J. Math. Anal.20185021877189937823991407.3513010.1137/17M1152395
HsiaoLQuasilinear Hyperbolic Systems and Dissipative Mechanisms1997SingaporeWorld Scientific Publishing0911.35003
CoulombelJ-FGoudonTThe strong relaxation limit of the multidimensional isothermal Euler equationsTrans. Am. Math. Soc.2007359263764822551901170.3547710.1090/S0002-9947-06-04028-1
Li, T-T.: Global classical solutions for quasilinear hyperbolic systems. Masson, Paris; John Wiley & Sons, Ltd., Chichester (1994)
LinCCoulombelJ-FThe strong relaxation limit of the multidimensional Euler equationsNonlinear Differ. Equ. Appl.20132044746130571381268.3509910.1007/s00030-012-0159-0
CharveFDanchinRA global existence result for the compressible Navier–Stokes equations in the critical Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {L}^p$$\end{document} frameworkArch. Rational Mech. Anal201019823327126793721229.3516710.1007/s00205-010-0306-x
XuJKawashimaSGlobal classical solutions for partially dissipative hyperbolic system of balance lawsArch. Rational Mech. Anal201421151355331490651293.3517310.1007/s00205-013-0679-8
Villani, C.: Hypocoercivity. Mem. Am. Math. Soc. (2010)
References_xml – reference: MarcatiPRubinoBHyperbolic to parabolic relaxation theory for quasilinear first order systemsJ. Differ. Equ.200016235939917517100987.3510310.1006/jdeq.1999.3676
– reference: MasciaCNguyenTTLp- Lq decay estimates for dissipative linear hyperbolic systems in 1dJ. Differ. Equ.2017263618962301397.3514810.1016/j.jde.2017.07.011
– reference: BianchiniRUniform asymptotic and convergence estimates for the Jin-Xin model under the diffusion scalingSIAM J. Math. Anal.20185021877189937823991407.3513010.1137/17M1152395
– reference: BonyJ-MCalcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéairesAnn. Sci. École Norm. Sup.19814142092460495.3502410.24033/asens.1404
– reference: XuJKawashimaSGlobal classical solutions for partially dissipative hyperbolic system of balance lawsArch. Rational Mech. Anal201421151355331490651293.3517310.1007/s00205-013-0679-8
– reference: XuJWangZRelaxation limit in besov spaces for compressible Euler equationsJournal de Mathématiques Pures et Appliquées201399436130032821258.3516310.1016/j.matpur.2012.06.002
– reference: Li, T-T.: Global classical solutions for quasilinear hyperbolic systems. Masson, Paris; John Wiley & Sons, Ltd., Chichester (1994)
– reference: Kawashima, S.: Systems of a hyperbolic-parabolic composite type, with applications to the equations of magnetohydrodynamics. Doctoral Thesis (1983)
– reference: Zuazua, E.: Decay of partially dissipative hyperbolic systems. https://caa-avh.nat.fau.eu/enrique-zuazua-presentations/ (2020)
– reference: MarcatiPMilaniAThe one-dimensional Darcy’s law as the limit of a compressible Euler flowJ. Differ. Equ.19908412914710426620715.3506510.1016/0022-0396(90)90130-H
– reference: Coron, J.-M.: Control and nonlinearity, vol. 136. American Mathematical Society, Mathematical Surveys and Monographs (2007)
– reference: HsiaoLQuasilinear Hyperbolic Systems and Dissipative Mechanisms1997SingaporeWorld Scientific Publishing0911.35003
– reference: BoscarinoSRussoAOn a class of uniformly accurate IMEX Runge–Kutta schemes and applications to hyperbolic systems with relaxationSim J. Sci. Compt.20093131926194525161391193.6516210.1137/080713562
– reference: Serre, D.: Systèmes de lois de conservation, tome 1. Diderot editeur, Arts et Sciences, Paris, New York (1996)
– reference: JuncaSRascleMStrong relaxation of the isothermal Euler system to the heat equationZ. Angew. Math. Phys.20025323926419006730997.3503510.1007/s00033-002-8154-7
– reference: Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations. Grundlehren der Mathematischen Wissenschaften, vol. 343. Springer, Heidelberg (2011)
– reference: CoulombelJ-FGoudonTThe strong relaxation limit of the multidimensional isothermal Euler equationsTrans. Am. Math. Soc.2007359263764822551901170.3547710.1090/S0002-9947-06-04028-1
– reference: Crin-BaratTDanchinRPartially dissipative one-dimensional hyperbolic systems in the critical regularity setting, and applicationsPure Appl. Anal.2022418512544193691489.3519310.2140/paa.2022.4.85
– reference: LinCCoulombelJ-FThe strong relaxation limit of the multidimensional Euler equationsNonlinear Differ. Equ. Appl.20132044746130571381268.3509910.1007/s00030-012-0159-0
– reference: ChenQMiaoCZhangZGlobal well-posedness for compressible Navier–Stokes equations with highly oscillating initial velocityCommun. Pure Appl. Math.20106391173122426754851202.35002
– reference: PengY-JWasiolekVParabolic limit with differential constraints of first-order quasilinear hyperbolic systemsAnn. I. H. Poincaré20163341103113035195341347.3502310.1016/j.anihpc.2015.03.006
– reference: Villani, C.: Hypocoercivity. Mem. Am. Math. Soc. (2010)
– reference: DanchinRLocal theory in critical spaces for compressible viscous and heat-conductive gasesCommun. Partial Differ. Equ.2001267–81183123318552771007.3507110.1081/PDE-100106132
– reference: BeauchardKZuazuaELarge time asymptotics for partially dissipative hyperbolic systemsArch. Rational Mech. Anal201119917722727543411237.3501710.1007/s00205-010-0321-y
– reference: MajdaACompressible fluid flow and systems of conservation laws in several space variable1984New-YorkSpringer0537.7600110.1007/978-1-4612-1116-7
– reference: Wasiolek, V.: Analyse asymptotique de systèmes hyperboliques quasi-linéaires du premier ordre. Thesis dissertation, Université Blaise Pascal - Clermont-Ferrand II (2015)
– reference: CharveFDanchinRA global existence result for the compressible Navier–Stokes equations in the critical Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {L}^p$$\end{document} frameworkArch. Rational Mech. Anal201019823327126793721229.3516710.1007/s00205-010-0306-x
– reference: XuJKawashimaSDiffusive relaxation limit of classical solutions to the damped compressible Euler equationsJ. Differ. Equ.201425677179631217131329.3523810.1016/j.jde.2013.09.019
– reference: Li, Y., Peng, Y-J., Zhao, L.: Convergence rate from hyperbolic systems of balance laws to parabolic systems. Appl. Anal. pp. 1079–1095 (2021)
– reference: ShizutaSKawashimaSSystems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equationHokkaido Math. J.1985142492757987560587.3504610.14492/hokmj/1381757663
– reference: LiangZShuaiZConvergence rate from hyperbolic systems of balance laws to parabolic systemsAsymptot. Anal.202112241631981502.35137
– reference: YongW-AEntropy and global existence for hyperbolic balance lawsArch. Rational Mech. Anal200417247266205816510.1007/s00205-003-0304-3
– reference: Crin-Barat, T., Danchin, R.: Partially dissipative hyperbolic systems in the critical regularity setting: the multi-dimensional case. Accepted in Journal de Mathématiques Pures et Appliquées (2022)
– reference: BrennerPThe cauchy problem for symmetric hyperbolic systems in Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {L}^p$$\end{document}Math. Scand.19661927372124270154.1130410.7146/math.scand.a-10793
– reference: KawashimaSYongW-ADecay estimates for hyperbolic balance lawsJ. Anal. Appl.20092813324697131173.35365
– reference: BianchiniSHanouzetBNataliniRAsymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropyCommun. Pure Appl. Math.2007601559162223493491152.3500910.1002/cpa.20195
– reference: ChenG-QLevermoreCDLiuT-PHyperbolic conservation laws with stiff relaxation terms and entropyCommun. Pure Appl. Math.199447678783012809890806.3511210.1002/cpa.3160470602
SSID ssj0003005
Score 2.4425476
Snippet Here we investigate global strong solutions for a class of partially dissipative hyperbolic systems in the framework of critical homogeneous Besov spaces. Our...
SourceID hal
proquest
springer
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 2159
SubjectTerms Analysis of PDEs
Compressibility
Dissipation
Existence theorems
Function space
Hyperbolic systems
Mathematics
Mathematics and Statistics
Norms
Porous media
Well posed problems
Title Global existence for partially dissipative hyperbolic systems in the Lp framework, and relaxation limit
URI https://link.springer.com/article/10.1007/s00208-022-02450-4
https://www.proquest.com/docview/2834741712
https://hal.science/hal-03531038
Volume 386
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gu8AB8RSDMUWI4yq1TdKmxw5tTLDtxKRxqhKaMqSpTNuY4N9jpw8Q4sKpUlvlYDv2Z9n-TMhNFpowg7jrKJa5Do-kdiDPEk6apoFi-jk0HAeFx5NgOOX3MzErh8LWVbd7VZK0nroedrP7JB3sPsdyIRy8S5oCcne066kf1_4XCdirRa1CMq8clfn7DAgpc-yA_AEvf1VEbaAZHJKDEiHSuFDpEdkx-THZH9f0qusT8lIw9VOksbSYlwL0pEu0ArVYfFIssttW6a2hc0g0VxrZf2nB2rymrzmFw-hoSbOqNatLVZ5SHGz5sKqiCxx8OiXTQf_xduiUGxOcOeRdG0cYl3HNPS00Og5XQ_j1OWOpciPf114ktB9JpgBkqGdXchGqLGA-ls4iX0UZOyON_C0354Qqk2YChBvIKOBw06XhAeMSIQLXjGUtcg2CS5YFJ0aCLNXDeJTgO5cJ3F4mt16LtCu5JuXdWCcAaDjgmNDzW6Rbyfr7c82jbHWVgK4Sq6uEX_zv90uyh7vhi269NmlsVu_mChDERndIMx70ehN83j099DvWgL4AgIi-2Q
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgHIADb8R4Rojjitom6eM4IcaAbadNglOUrClDTGViAwG_HruPgRAXrusUtbVrf5Y_fwY4S0Mbpph3Hc1T1xFxZByss6STJEmguRmGVtCgcLcXtAfi5k7elUNh04rtXrUk80g9H3bL90k6xD6ndiEevAhLAmtwWYOl5tX97eU8ApMEe7WqVUbcK4dl_j4Fk8qIOJA_AOavnmiealrrMKhusmCYPJ2_zsz58POXfuN_n2ID1krsyZqFs2zCgs22YLU7F26dbsNDsQOAkUBmjqYZglo2If_S4_EHo_Z9TsJ-s2yEJeyLIV1hVuhBT9ljxvAw1pmwtCJ9NZjOEkYjM--5E7AxjVTtwKB12b9oO-UuBmeEFd3MkdblwgjPSEMhyTWY2H3BeaLd2PeNF0vjxxHXCF_00I2EDHUacJ-acrGv45TvQi17zuweMG2TVGLpF0RxIDCGRFYEXEQEPoThPK3DKRpETQq1DUX61-1mR9FvLpe0Fy168-pwWNlLlV_dVCFUEoiQQs-vQ6N6_d-X5wrNuQ0U2kDlNlBi_39_P4Hldr_bUZ3r3u0BrNAG-oITeAi12curPUKcMjPHpVt-Af_D26E
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA1aQfQgfmK1ahCPXbq7SfbjWNRStS0eLPQWkm5ihbKWthb9985ku7WIF6-7SxYyycwbZt4bQm5sbGILcddTzPoeTxPtQZ4lvCzLIsX0MDYcicLdXtTu88eBGKyx-F23e1mSLDgNqNKUzxuTzDZWxDc3W9LDTnQsHcJPNskWuOMAm7r6YXPli1GMvRzaKhIWLGkzf68B4WWE3ZBrUPNXddQFndY-2VuiRdoszHtANkx-SHa7K6nV2RF5LVT7KUpaOvxLAYbSCZ4INR5_USy4u7bphaEjSDqnGpWAaaHgPKNvOYXFaGdCbdmmVacqzyiSXD6d2egYSVDHpN-6f7lte8vpCd4IcrC5J4zPuOaBFhqdiK8hFIecsUz5aRjqIBU6TBOmAHCooZ9wESsbsRDLaGmoUstOSCV_z80pocpkVkCyFiVpxOHWJ4ZHjCcIF7hmzFbJNWycnBT6GBIVq9vNjsRnPhM4ySxZBFVSK_dVLu_JTAK44YBp4iCsknq51z-vV5rKzlYSbCWdrSQ_-9_nV2T7-a4lOw-9p3OygyPjiya-GqnMpx_mAoDFXF-6s_MNGTjC-A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+existence+for+partially+dissipative+hyperbolic+systems+in+the+Lp+framework%2C+and+relaxation+limit&rft.jtitle=Mathematische+annalen&rft.au=Crin-Barat+Timoth%C3%A9e&rft.au=Danchin+Rapha%C3%ABl&rft.date=2023-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0025-5831&rft.eissn=1432-1807&rft.volume=386&rft.issue=3-4&rft.spage=2159&rft.epage=2206&rft_id=info:doi/10.1007%2Fs00208-022-02450-4&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5831&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5831&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5831&client=summon