Entropy based community detection in augmented social networks
Social network analysis has become a major subject in recent times, bringing also several challenges in the computer science field. One aspect of the social network analysis is the community detection problem, which can be seen as a graph clustering problem. However, social networks are more than a...
Saved in:
Published in | 2011 International Conference on Computational Aspects of Social Networks pp. 163 - 168 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.10.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Social network analysis has become a major subject in recent times, bringing also several challenges in the computer science field. One aspect of the social network analysis is the community detection problem, which can be seen as a graph clustering problem. However, social networks are more than a graph, they have an interesting amount of information derived from its social aspect, such as profile information, content sharing and annotations, among others. Most of the community detection algorithms use only the structure of the network, i.e., the graph. In this paper we propose a new method which uses the semantic information along with the network structure in the community detection process. Thus, our method combines an algorithm for optimizing modularity and an entropy-based data clustering algorithm, which tries to find a partition with low entropy and keeping in mind the modularity. |
---|---|
AbstractList | Social network analysis has become a major subject in recent times, bringing also several challenges in the computer science field. One aspect of the social network analysis is the community detection problem, which can be seen as a graph clustering problem. However, social networks are more than a graph, they have an interesting amount of information derived from its social aspect, such as profile information, content sharing and annotations, among others. Most of the community detection algorithms use only the structure of the network, i.e., the graph. In this paper we propose a new method which uses the semantic information along with the network structure in the community detection process. Thus, our method combines an algorithm for optimizing modularity and an entropy-based data clustering algorithm, which tries to find a partition with low entropy and keeping in mind the modularity. |
Author | Cruz, J. D. Bothorel, C. Poulet, F. |
Author_xml | – sequence: 1 givenname: J. D. surname: Cruz fullname: Cruz, J. D. email: juan.cruzgomez@telecom-bretagne.eu organization: LUSSI Dept., Telecom - Bretagne, Brest, France – sequence: 2 givenname: C. surname: Bothorel fullname: Bothorel, C. email: cecile.bothorel@telecom-bretagne.eu organization: LUSSI Dept., Telecom - Bretagne, Brest, France – sequence: 3 givenname: F. surname: Poulet fullname: Poulet, F. email: francois.poulet@irisa.fr organization: IRISA, Univ. de Rennes I, Rennes, France |
BookMark | eNo1j11LwzAYhSMq6Gb_gN7kD7Tmbb5vhFHmBwx3oYJ3I01Tja7JaDKk_96B89wcHjg8cGboLMTgELoGUgEQfdssXtbPVU0AKkEU11SeoEJLBYxLCUChPkWzf6jfL1CR0hc5RAilFVyiu2XIY9xNuDXJddjGYdgHnyfcuexs9jFgH7DZfwwu5MMgRevNFgeXf-L4na7QeW-2yRXHnqO3--Vr81iu1g9PzWJVfoJQsqTQWxCG0rYjwtjecO2krhkwYgE4UxyM6DXVHbWCEi4YYdzUIDql-rYldI5u_rzeObfZjX4w47Q5Xqa_ictLbA |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/CASON.2011.6085937 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781457711312 1457711338 9781457711336 1457711311 |
EndPage | 168 |
ExternalDocumentID | 6085937 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ADFMO ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK IERZE OCL RIE RIL |
ID | FETCH-LOGICAL-h1687-31fc16a33bd06acfa59e7924140c1154851a6f939d3c630564045a216d88fbb03 |
IEDL.DBID | RIE |
ISBN | 145771132X 9781457711329 |
IngestDate | Wed Aug 27 03:08:04 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-h1687-31fc16a33bd06acfa59e7924140c1154851a6f939d3c630564045a216d88fbb03 |
OpenAccessLink | https://hal.science/hal-00640722v1/file/JDC2011.pdf |
PageCount | 6 |
ParticipantIDs | ieee_primary_6085937 |
PublicationCentury | 2000 |
PublicationDate | 2011-Oct. |
PublicationDateYYYYMMDD | 2011-10-01 |
PublicationDate_xml | – month: 10 year: 2011 text: 2011-Oct. |
PublicationDecade | 2010 |
PublicationTitle | 2011 International Conference on Computational Aspects of Social Networks |
PublicationTitleAbbrev | CASON |
PublicationYear | 2011 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000668981 |
Score | 1.6860263 |
Snippet | Social network analysis has become a major subject in recent times, bringing also several challenges in the computer science field. One aspect of the social... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 163 |
SubjectTerms | Clustering algorithms Communities Community Detection Entropy Graph Clustering Optimization Partitioning algorithms Semantics Social network services Social Networks Analysis |
Title | Entropy based community detection in augmented social networks |
URI | https://ieeexplore.ieee.org/document/6085937 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSgMxFA1tV65UWvFNFi6ddjKT5rERpLQUoVXQQnclTxVhWnRmUb_ePGYqigt3k1kMCTfMubk551wArqRMhTGUJw56aIK1TRNmtdvLHFMrrWVK-tLAbE6mC3y3HC5b4HqnhTHGBPKZ6fvHcJev16rypbIBCe5ctA3a7uAWtVq7eoqDTsYZCtqtIaW-gfqysXSqx7wRzaR8MLp9vJ9HB8_6qz_aqwR0meyDWTOvSCp561el7KvPX5aN_534Aeh96_jgww6hDkHLFF1wM_bk9M0WegDTUEWFSLmF2pSBl1XA1wKK6jnYdWoYq-qwiHzxjx5YTMZPo2lSd1FIXhDxfxBkFSIiz6VOiVBWDLmLjQNunCrvxeNSLkEsz7nOFfEHCuyyPJEhohmzLpT5EegU68IcAyiZQUgazQyjWAnKsOLCZQzEZpnhKj8BXb_21SYaZazqZZ_-_foM7GUNoQ6dg075XpkLh_ClvAyh_QJPXaIV |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV27TsMwFLVKGWAC1CLeeGAkbZyHHwsSqooKtAWJVupW-QkIKa0gGcrXYztJEYiBzfEQ2bqWz83NOecCcCFEyLUmLLDQQ4JEmTCgRtmzzBJihDFUClcaGI3xYJrczdJZA1yutTBaa08-0x039P_y1UIWrlTWxd6di2yATYv7aVSqtdYVFQuelFHk1VspIa6F-qw2daqeWS2bCVm3d_30MC49PKv3_miw4vHlZgeM6pWVtJK3TpGLjvz8Zdr436Xvgva3kg8-rjFqDzR01gJXfUdPX66ggzAFZakRyVdQ6dwzszL4mkFePHvDTgXLujrMSsb4RxtMb_qT3iCo-igELwi7OwQZiTCPY6FCzKXhKbPRsdCdhNK58diki2PDYqZiid0nRWLzPB4hrCg1NpjxPmhmi0wfACioRkhoRTUlieSEJpJxmzNgE0WayfgQtNze58vSKmNebfvo7-lzsDWYjIbz4e34_hhsRzW9Dp2AZv5e6FOL97k482H-Av4GpV8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2011+International+Conference+on+Computational+Aspects+of+Social+Networks&rft.atitle=Entropy+based+community+detection+in+augmented+social+networks&rft.au=Cruz%2C+J.+D.&rft.au=Bothorel%2C+C.&rft.au=Poulet%2C+F.&rft.date=2011-10-01&rft.pub=IEEE&rft.isbn=9781457711329&rft.spage=163&rft.epage=168&rft_id=info:doi/10.1109%2FCASON.2011.6085937&rft.externalDocID=6085937 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457711329/lc.gif&client=summon&freeimage=true |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457711329/mc.gif&client=summon&freeimage=true |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457711329/sc.gif&client=summon&freeimage=true |