Entropy based community detection in augmented social networks

Social network analysis has become a major subject in recent times, bringing also several challenges in the computer science field. One aspect of the social network analysis is the community detection problem, which can be seen as a graph clustering problem. However, social networks are more than a...

Full description

Saved in:
Bibliographic Details
Published in2011 International Conference on Computational Aspects of Social Networks pp. 163 - 168
Main Authors Cruz, J. D., Bothorel, C., Poulet, F.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.10.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Social network analysis has become a major subject in recent times, bringing also several challenges in the computer science field. One aspect of the social network analysis is the community detection problem, which can be seen as a graph clustering problem. However, social networks are more than a graph, they have an interesting amount of information derived from its social aspect, such as profile information, content sharing and annotations, among others. Most of the community detection algorithms use only the structure of the network, i.e., the graph. In this paper we propose a new method which uses the semantic information along with the network structure in the community detection process. Thus, our method combines an algorithm for optimizing modularity and an entropy-based data clustering algorithm, which tries to find a partition with low entropy and keeping in mind the modularity.
AbstractList Social network analysis has become a major subject in recent times, bringing also several challenges in the computer science field. One aspect of the social network analysis is the community detection problem, which can be seen as a graph clustering problem. However, social networks are more than a graph, they have an interesting amount of information derived from its social aspect, such as profile information, content sharing and annotations, among others. Most of the community detection algorithms use only the structure of the network, i.e., the graph. In this paper we propose a new method which uses the semantic information along with the network structure in the community detection process. Thus, our method combines an algorithm for optimizing modularity and an entropy-based data clustering algorithm, which tries to find a partition with low entropy and keeping in mind the modularity.
Author Cruz, J. D.
Bothorel, C.
Poulet, F.
Author_xml – sequence: 1
  givenname: J. D.
  surname: Cruz
  fullname: Cruz, J. D.
  email: juan.cruzgomez@telecom-bretagne.eu
  organization: LUSSI Dept., Telecom - Bretagne, Brest, France
– sequence: 2
  givenname: C.
  surname: Bothorel
  fullname: Bothorel, C.
  email: cecile.bothorel@telecom-bretagne.eu
  organization: LUSSI Dept., Telecom - Bretagne, Brest, France
– sequence: 3
  givenname: F.
  surname: Poulet
  fullname: Poulet, F.
  email: francois.poulet@irisa.fr
  organization: IRISA, Univ. de Rennes I, Rennes, France
BookMark eNo1j11LwzAYhSMq6Gb_gN7kD7Tmbb5vhFHmBwx3oYJ3I01Tja7JaDKk_96B89wcHjg8cGboLMTgELoGUgEQfdssXtbPVU0AKkEU11SeoEJLBYxLCUChPkWzf6jfL1CR0hc5RAilFVyiu2XIY9xNuDXJddjGYdgHnyfcuexs9jFgH7DZfwwu5MMgRevNFgeXf-L4na7QeW-2yRXHnqO3--Vr81iu1g9PzWJVfoJQsqTQWxCG0rYjwtjecO2krhkwYgE4UxyM6DXVHbWCEi4YYdzUIDql-rYldI5u_rzeObfZjX4w47Q5Xqa_ictLbA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CASON.2011.6085937
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781457711312
1457711338
9781457711336
1457711311
EndPage 168
ExternalDocumentID 6085937
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-h1687-31fc16a33bd06acfa59e7924140c1154851a6f939d3c630564045a216d88fbb03
IEDL.DBID RIE
ISBN 145771132X
9781457711329
IngestDate Wed Aug 27 03:08:04 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-h1687-31fc16a33bd06acfa59e7924140c1154851a6f939d3c630564045a216d88fbb03
OpenAccessLink https://hal.science/hal-00640722v1/file/JDC2011.pdf
PageCount 6
ParticipantIDs ieee_primary_6085937
PublicationCentury 2000
PublicationDate 2011-Oct.
PublicationDateYYYYMMDD 2011-10-01
PublicationDate_xml – month: 10
  year: 2011
  text: 2011-Oct.
PublicationDecade 2010
PublicationTitle 2011 International Conference on Computational Aspects of Social Networks
PublicationTitleAbbrev CASON
PublicationYear 2011
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000668981
Score 1.6860263
Snippet Social network analysis has become a major subject in recent times, bringing also several challenges in the computer science field. One aspect of the social...
SourceID ieee
SourceType Publisher
StartPage 163
SubjectTerms Clustering algorithms
Communities
Community Detection
Entropy
Graph Clustering
Optimization
Partitioning algorithms
Semantics
Social network services
Social Networks Analysis
Title Entropy based community detection in augmented social networks
URI https://ieeexplore.ieee.org/document/6085937
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSgMxFA1tV65UWvFNFi6ddjKT5rERpLQUoVXQQnclTxVhWnRmUb_ePGYqigt3k1kMCTfMubk551wArqRMhTGUJw56aIK1TRNmtdvLHFMrrWVK-tLAbE6mC3y3HC5b4HqnhTHGBPKZ6fvHcJev16rypbIBCe5ctA3a7uAWtVq7eoqDTsYZCtqtIaW-gfqysXSqx7wRzaR8MLp9vJ9HB8_6qz_aqwR0meyDWTOvSCp561el7KvPX5aN_534Aeh96_jgww6hDkHLFF1wM_bk9M0WegDTUEWFSLmF2pSBl1XA1wKK6jnYdWoYq-qwiHzxjx5YTMZPo2lSd1FIXhDxfxBkFSIiz6VOiVBWDLmLjQNunCrvxeNSLkEsz7nOFfEHCuyyPJEhohmzLpT5EegU68IcAyiZQUgazQyjWAnKsOLCZQzEZpnhKj8BXb_21SYaZazqZZ_-_foM7GUNoQ6dg075XpkLh_ClvAyh_QJPXaIV
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV27TsMwFLVKGWAC1CLeeGAkbZyHHwsSqooKtAWJVupW-QkIKa0gGcrXYztJEYiBzfEQ2bqWz83NOecCcCFEyLUmLLDQQ4JEmTCgRtmzzBJihDFUClcaGI3xYJrczdJZA1yutTBaa08-0x039P_y1UIWrlTWxd6di2yATYv7aVSqtdYVFQuelFHk1VspIa6F-qw2daqeWS2bCVm3d_30MC49PKv3_miw4vHlZgeM6pWVtJK3TpGLjvz8Zdr436Xvgva3kg8-rjFqDzR01gJXfUdPX66ggzAFZakRyVdQ6dwzszL4mkFePHvDTgXLujrMSsb4RxtMb_qT3iCo-igELwi7OwQZiTCPY6FCzKXhKbPRsdCdhNK58diki2PDYqZiid0nRWLzPB4hrCg1NpjxPmhmi0wfACioRkhoRTUlieSEJpJxmzNgE0WayfgQtNze58vSKmNebfvo7-lzsDWYjIbz4e34_hhsRzW9Dp2AZv5e6FOL97k482H-Av4GpV8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2011+International+Conference+on+Computational+Aspects+of+Social+Networks&rft.atitle=Entropy+based+community+detection+in+augmented+social+networks&rft.au=Cruz%2C+J.+D.&rft.au=Bothorel%2C+C.&rft.au=Poulet%2C+F.&rft.date=2011-10-01&rft.pub=IEEE&rft.isbn=9781457711329&rft.spage=163&rft.epage=168&rft_id=info:doi/10.1109%2FCASON.2011.6085937&rft.externalDocID=6085937
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457711329/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457711329/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457711329/sc.gif&client=summon&freeimage=true