Spatial and rotation invariant 3D gesture recognition based on sparse representation
Advances in motion tracking technology, especially for commodity hardware, still require robust 3D gesture recognition in order to fully exploit the benefits of natural user interfaces. In this paper, we introduce a novel 3D gesture recognition algorithm based on the sparse representation of 3D huma...
Saved in:
Published in | 2017 IEEE Symposium on 3D User Interfaces (3DUI) pp. 158 - 167 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Advances in motion tracking technology, especially for commodity hardware, still require robust 3D gesture recognition in order to fully exploit the benefits of natural user interfaces. In this paper, we introduce a novel 3D gesture recognition algorithm based on the sparse representation of 3D human motion. The sparse representation of human motion provides a set of features that can be used to efficiently classify gestures in real-time. Compared to existing gesture recognition systems, sparse representation, the proposed approach enables full spatial and rotation invariance and provides high tolerance to noise. Moreover, the proposed classification scheme takes into account the inter-user variability which increases gesture classification accuracy in user-independent scenarios. We validated our approach with existing motion databases for gestural interaction and performed a user evaluation with naive subjects to show its robustness to arbitrarily defined gestures. The results showed that our classification scheme has high classification accuracy for user-independent scenarios even with users who have different handedness. We believe that sparse representation of human motion will pave the way for a new generation of 3D gesture recognition systems in order to fully open the potential of natural user interfaces. |
---|---|
AbstractList | Advances in motion tracking technology, especially for commodity hardware, still require robust 3D gesture recognition in order to fully exploit the benefits of natural user interfaces. In this paper, we introduce a novel 3D gesture recognition algorithm based on the sparse representation of 3D human motion. The sparse representation of human motion provides a set of features that can be used to efficiently classify gestures in real-time. Compared to existing gesture recognition systems, sparse representation, the proposed approach enables full spatial and rotation invariance and provides high tolerance to noise. Moreover, the proposed classification scheme takes into account the inter-user variability which increases gesture classification accuracy in user-independent scenarios. We validated our approach with existing motion databases for gestural interaction and performed a user evaluation with naive subjects to show its robustness to arbitrarily defined gestures. The results showed that our classification scheme has high classification accuracy for user-independent scenarios even with users who have different handedness. We believe that sparse representation of human motion will pave the way for a new generation of 3D gesture recognition systems in order to fully open the potential of natural user interfaces. |
Author | Lecuyer, Anatole Gribonval, Remi Argelaguet, Ferran Ducoffe, Melanie |
Author_xml | – sequence: 1 givenname: Ferran surname: Argelaguet fullname: Argelaguet, Ferran email: ferran.argelaguet@inria.fr organization: IRISA, Inria, Rennes, France – sequence: 2 givenname: Melanie surname: Ducoffe fullname: Ducoffe, Melanie email: melanie.ducoffe@ens-rennes.fr organization: ENS Rennes, Rennes, France – sequence: 3 givenname: Anatole surname: Lecuyer fullname: Lecuyer, Anatole email: anatole.lecuyer@inria.fr organization: IRISA, Inria, Rennes, France – sequence: 4 givenname: Remi surname: Gribonval fullname: Gribonval, Remi email: remi.gribonval@inria.fr organization: IRISA, Inria, Rennes, France |
BookMark | eNotT8tOwzAQNBI9QOkHVFz8Awl-JF77iFoelSpxoD1XG2dTLBUnsgMSf0-gncvMaHZHmlt2HftIjC2lKKUU7kGv95tSCQklWKcnXLGFAytr4YQBadwN270POAY8cYwtT_04mT7yEL8xBYwj12t-pDx-JeKJfH-M4f-gwUwtn0QeMOW_bEiUKZ7_79isw1OmxYXnbP_8tFu9Ftu3l83qcVt8SAO6qJUxXkjbemiE0gZb77ACqIzurFC1tVBB5wmccFZ701XSVJ3TRjWCGkd6zu7PvYGIDkMKn5h-Dpet-hfBDk2C |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/3DUI.2017.7893333 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781509067169 1509067167 |
EndPage | 167 |
ExternalDocumentID | 7893333 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-h1673-5266c018dc7b0236adc9a477463f802588747fce790983c6f4164f9362b0eb9e3 |
IEDL.DBID | RIE |
IngestDate | Thu Jun 29 18:37:55 EDT 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-h1673-5266c018dc7b0236adc9a477463f802588747fce790983c6f4164f9362b0eb9e3 |
OpenAccessLink | https://inria.hal.science/hal-01625128v1/file/manuscript_ID215.pdf |
PageCount | 10 |
ParticipantIDs | ieee_primary_7893333 |
PublicationCentury | 2000 |
PublicationDate | 20170000 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – year: 2017 text: 20170000 |
PublicationDecade | 2010 |
PublicationTitle | 2017 IEEE Symposium on 3D User Interfaces (3DUI) |
PublicationTitleAbbrev | 3DUI |
PublicationYear | 2017 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.663719 |
Snippet | Advances in motion tracking technology, especially for commodity hardware, still require robust 3D gesture recognition in order to fully exploit the benefits... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 158 |
SubjectTerms | Dictionaries Gesture recognition I.5.2 [Pattern Recognition]: Design Methodology-Classifier design and evaluation I.6.3 [Computing Methodologies]: Methodologies and Techniques-Interaction Techniques Machine learning algorithms Matching pursuit algorithms Robustness Three-dimensional displays User interfaces |
Title | Spatial and rotation invariant 3D gesture recognition based on sparse representation |
URI | https://ieeexplore.ieee.org/document/7893333 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB7anjyptOKbPXg0acomu9mztVSh4qGF3so-UYS0xMaDv96ZJLYoHrwtm4UNs8nON_PNA-Am1YkJIjORCjXNKLMot9JFlmuhlckSoSkbefYkpov0cZktO3C7y4Xx3tfBZz6mYc3lu7WtyFU2lNQbnvMudNFwa3K1WqJylKghHy8eKFZLxu26Hw1Tan0xOYTZ905NmMhbXG1NbD9_FWH876scwWCfmceedzrnGDq-6MOc-grjd8R04Vi5bsh19lp8oB2MgmN8zIhFqkrPdvFCuIAUmGM4wEulfKdnm30uUjGAxeR-fjeN2m4J0ctISI4WpRA2GeXOSkNl4bWzSqeI7gQPOSIbvE1SGayXKlE5tyIgFEuDQgVmEm-U5yfQK9aFPwVGP7HWUgVnEGA4rciZY8jxQYBRyTPok0RWm6YgxqoVxvnf0xdwQKfS-C0uobctK3-Fmnxrrusj_AJwJZ_2 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKGWAC1CLeeGAkaSIndjxTUAttxdBK3So_BUJKq9Aw8Ou5S0IrEAOblVhKdE78fb7vHoTcJCrSnqc6kL6SGUUaZEbYwDDFldRpxBVmI48nfDBLHufpvEVuN7kwzrkq-MyFOKy0fLs0JbrKegJ7wzO2Q3YB99O4ztZqpMo4kj3Wnw0xWkuEzcwfLVMqxHg4IOPvZ9WBIm9hudah-fxVhvG_L3NIutvcPPq8QZ0j0nJ5h0yxszB8SVTllhbLWl6nr_kHnITBdJT1KepIZeHoJmIIJiCEWQoD2FaKd7y32mYj5V0ye7if3g2Cpl9C8BJzweBMybmJ4swaobEwvLJGqgT4HWc-A24D-0kivHFCRjJjhnsgY4mXAGE6clo6dkza-TJ3J4Tib6yUkN5qoBhWSXTnaHR9IGWU4pR00CKLVV0SY9EY4-zvy9dkbzAdjxaj4eTpnOzjCtVejAvSXheluwRcX-urajm_APlgoz8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+IEEE+Symposium+on+3D+User+Interfaces+%283DUI%29&rft.atitle=Spatial+and+rotation+invariant+3D+gesture+recognition+based+on+sparse+representation&rft.au=Argelaguet%2C+Ferran&rft.au=Ducoffe%2C+Melanie&rft.au=Lecuyer%2C+Anatole&rft.au=Gribonval%2C+Remi&rft.date=2017-01-01&rft.pub=IEEE&rft.spage=158&rft.epage=167&rft_id=info:doi/10.1109%2F3DUI.2017.7893333&rft.externalDocID=7893333 |