Spatial and rotation invariant 3D gesture recognition based on sparse representation

Advances in motion tracking technology, especially for commodity hardware, still require robust 3D gesture recognition in order to fully exploit the benefits of natural user interfaces. In this paper, we introduce a novel 3D gesture recognition algorithm based on the sparse representation of 3D huma...

Full description

Saved in:
Bibliographic Details
Published in2017 IEEE Symposium on 3D User Interfaces (3DUI) pp. 158 - 167
Main Authors Argelaguet, Ferran, Ducoffe, Melanie, Lecuyer, Anatole, Gribonval, Remi
Format Conference Proceeding
LanguageEnglish
Published IEEE 2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Advances in motion tracking technology, especially for commodity hardware, still require robust 3D gesture recognition in order to fully exploit the benefits of natural user interfaces. In this paper, we introduce a novel 3D gesture recognition algorithm based on the sparse representation of 3D human motion. The sparse representation of human motion provides a set of features that can be used to efficiently classify gestures in real-time. Compared to existing gesture recognition systems, sparse representation, the proposed approach enables full spatial and rotation invariance and provides high tolerance to noise. Moreover, the proposed classification scheme takes into account the inter-user variability which increases gesture classification accuracy in user-independent scenarios. We validated our approach with existing motion databases for gestural interaction and performed a user evaluation with naive subjects to show its robustness to arbitrarily defined gestures. The results showed that our classification scheme has high classification accuracy for user-independent scenarios even with users who have different handedness. We believe that sparse representation of human motion will pave the way for a new generation of 3D gesture recognition systems in order to fully open the potential of natural user interfaces.
AbstractList Advances in motion tracking technology, especially for commodity hardware, still require robust 3D gesture recognition in order to fully exploit the benefits of natural user interfaces. In this paper, we introduce a novel 3D gesture recognition algorithm based on the sparse representation of 3D human motion. The sparse representation of human motion provides a set of features that can be used to efficiently classify gestures in real-time. Compared to existing gesture recognition systems, sparse representation, the proposed approach enables full spatial and rotation invariance and provides high tolerance to noise. Moreover, the proposed classification scheme takes into account the inter-user variability which increases gesture classification accuracy in user-independent scenarios. We validated our approach with existing motion databases for gestural interaction and performed a user evaluation with naive subjects to show its robustness to arbitrarily defined gestures. The results showed that our classification scheme has high classification accuracy for user-independent scenarios even with users who have different handedness. We believe that sparse representation of human motion will pave the way for a new generation of 3D gesture recognition systems in order to fully open the potential of natural user interfaces.
Author Lecuyer, Anatole
Gribonval, Remi
Argelaguet, Ferran
Ducoffe, Melanie
Author_xml – sequence: 1
  givenname: Ferran
  surname: Argelaguet
  fullname: Argelaguet, Ferran
  email: ferran.argelaguet@inria.fr
  organization: IRISA, Inria, Rennes, France
– sequence: 2
  givenname: Melanie
  surname: Ducoffe
  fullname: Ducoffe, Melanie
  email: melanie.ducoffe@ens-rennes.fr
  organization: ENS Rennes, Rennes, France
– sequence: 3
  givenname: Anatole
  surname: Lecuyer
  fullname: Lecuyer, Anatole
  email: anatole.lecuyer@inria.fr
  organization: IRISA, Inria, Rennes, France
– sequence: 4
  givenname: Remi
  surname: Gribonval
  fullname: Gribonval, Remi
  email: remi.gribonval@inria.fr
  organization: IRISA, Inria, Rennes, France
BookMark eNotT8tOwzAQNBI9QOkHVFz8Awl-JF77iFoelSpxoD1XG2dTLBUnsgMSf0-gncvMaHZHmlt2HftIjC2lKKUU7kGv95tSCQklWKcnXLGFAytr4YQBadwN270POAY8cYwtT_04mT7yEL8xBYwj12t-pDx-JeKJfH-M4f-gwUwtn0QeMOW_bEiUKZ7_79isw1OmxYXnbP_8tFu9Ftu3l83qcVt8SAO6qJUxXkjbemiE0gZb77ACqIzurFC1tVBB5wmccFZ701XSVJ3TRjWCGkd6zu7PvYGIDkMKn5h-Dpet-hfBDk2C
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/3DUI.2017.7893333
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781509067169
1509067167
EndPage 167
ExternalDocumentID 7893333
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-h1673-5266c018dc7b0236adc9a477463f802588747fce790983c6f4164f9362b0eb9e3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:55 EDT 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-h1673-5266c018dc7b0236adc9a477463f802588747fce790983c6f4164f9362b0eb9e3
OpenAccessLink https://inria.hal.science/hal-01625128v1/file/manuscript_ID215.pdf
PageCount 10
ParticipantIDs ieee_primary_7893333
PublicationCentury 2000
PublicationDate 20170000
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 20170000
PublicationDecade 2010
PublicationTitle 2017 IEEE Symposium on 3D User Interfaces (3DUI)
PublicationTitleAbbrev 3DUI
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.663719
Snippet Advances in motion tracking technology, especially for commodity hardware, still require robust 3D gesture recognition in order to fully exploit the benefits...
SourceID ieee
SourceType Publisher
StartPage 158
SubjectTerms Dictionaries
Gesture recognition
I.5.2 [Pattern Recognition]: Design Methodology-Classifier design and evaluation
I.6.3 [Computing Methodologies]: Methodologies and Techniques-Interaction Techniques
Machine learning algorithms
Matching pursuit algorithms
Robustness
Three-dimensional displays
User interfaces
Title Spatial and rotation invariant 3D gesture recognition based on sparse representation
URI https://ieeexplore.ieee.org/document/7893333
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB7anjyptOKbPXg0acomu9mztVSh4qGF3so-UYS0xMaDv96ZJLYoHrwtm4UNs8nON_PNA-Am1YkJIjORCjXNKLMot9JFlmuhlckSoSkbefYkpov0cZktO3C7y4Xx3tfBZz6mYc3lu7WtyFU2lNQbnvMudNFwa3K1WqJylKghHy8eKFZLxu26Hw1Tan0xOYTZ905NmMhbXG1NbD9_FWH876scwWCfmceedzrnGDq-6MOc-grjd8R04Vi5bsh19lp8oB2MgmN8zIhFqkrPdvFCuIAUmGM4wEulfKdnm30uUjGAxeR-fjeN2m4J0ctISI4WpRA2GeXOSkNl4bWzSqeI7gQPOSIbvE1SGayXKlE5tyIgFEuDQgVmEm-U5yfQK9aFPwVGP7HWUgVnEGA4rciZY8jxQYBRyTPok0RWm6YgxqoVxvnf0xdwQKfS-C0uobctK3-Fmnxrrusj_AJwJZ_2
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKGWAC1CLeeGAkaSIndjxTUAttxdBK3So_BUJKq9Aw8Ou5S0IrEAOblVhKdE78fb7vHoTcJCrSnqc6kL6SGUUaZEbYwDDFldRpxBVmI48nfDBLHufpvEVuN7kwzrkq-MyFOKy0fLs0JbrKegJ7wzO2Q3YB99O4ztZqpMo4kj3Wnw0xWkuEzcwfLVMqxHg4IOPvZ9WBIm9hudah-fxVhvG_L3NIutvcPPq8QZ0j0nJ5h0yxszB8SVTllhbLWl6nr_kHnITBdJT1KepIZeHoJmIIJiCEWQoD2FaKd7y32mYj5V0ye7if3g2Cpl9C8BJzweBMybmJ4swaobEwvLJGqgT4HWc-A24D-0kivHFCRjJjhnsgY4mXAGE6clo6dkza-TJ3J4Tib6yUkN5qoBhWSXTnaHR9IGWU4pR00CKLVV0SY9EY4-zvy9dkbzAdjxaj4eTpnOzjCtVejAvSXheluwRcX-urajm_APlgoz8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+IEEE+Symposium+on+3D+User+Interfaces+%283DUI%29&rft.atitle=Spatial+and+rotation+invariant+3D+gesture+recognition+based+on+sparse+representation&rft.au=Argelaguet%2C+Ferran&rft.au=Ducoffe%2C+Melanie&rft.au=Lecuyer%2C+Anatole&rft.au=Gribonval%2C+Remi&rft.date=2017-01-01&rft.pub=IEEE&rft.spage=158&rft.epage=167&rft_id=info:doi/10.1109%2F3DUI.2017.7893333&rft.externalDocID=7893333